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Abstract: Previous studies have reported that intra-urban variability of NO2 concentrations is even
higher than inter-urban variability. In recent years, an increasing number of studies have developed
satellite-derived land use regression (LUR) models to predict ground-level NO2 concentrations,
though only a few have been conducted at a city scale. In this study, we developed a satellite-derived
LUR model to predict seasonal NO2 concentrations at a city scale by including satellite-retrieved NO2

tropospheric column density, population density, traffic indicators, and NOx emission data. The R2

of model fitting and 10-fold cross validation were 0.70 and 0.61 for the satellite-derived seasonal LUR
model, respectively. The satellite-based LUR model captured seasonal patterns and fine gradients
of NO2 variations at a 100 m × 100 m resolution and demonstrated that NO2 pollution in winter is
1.46 times higher than that in summer. NO2 concentrations declined significantly with increasing
distance from roads and with increasing distance from the city center. In Suzhou, 84% of the total
population lived in areas with NO2 concentrations exceeding the annual-mean standard at 40 µg/m3

in 2014. This study demonstrated that satellite-retrieved data could help increase the accuracy and
temporal resolution of the traditional LUR models at a city scale. This application could support
exposure assessment at a high resolution for future epidemiological studies and policy development
pertaining to air quality control.

Keywords: satellite-based; NO2; land use regression; exposure assessment

1. Introduction

Nitrogen dioxide (NO2) is not only a primary pollutant mainly from fossil fuel emis-
sions but also a secondary pollutant arising in large part from a photochemical conversion
combining NO with O3 [1,2]. It is a common indicator for traffic-related air pollution and
proven to be associated with a myriad of adverse health effects. NO2 has been positively
linked to lung cancer mortality in California by the American Cancer Society Cancer Pre-
vention II Study [3]. In China, short-term exposure to NO2 was significantly associated with
total natural causes mortality and cardiorespiratory disease mortality across 272 cities [4].
Even at or below the current European Air quality limit values, the associations between
NO2 exposure and adverse effects have been found for both short-term and long-term
exposure in Europe [5]. In previous epidemiological studies, exposure to NO2 was mostly
evaluated using ground-based fixed monitoring data, interpolation methods, or land use
regression (LUR) models [6,7].
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The concentrations of NO2 may decline at a distance of several hundred meters from
emission sources [8], and the spatial distributions of NO2 differ significantly between, and
especially within, cities [9,10]. In Canada, variations in NO2 concentrations within a city
further showed a stronger association with cause-specific mortality than that between
cities [11]. Thus, it is an essential issue to evaluate intra-urban NO2 concentrations with
a high spatial resolution for epidemiological studies. The LUR models are one of the
most common assessment methods used to capture spatial variability of NO2 with a
high spatial resolution, and have been applied in NO2-related cohort studies in Europe
and the United States [9,12–15]. Land use regression models also have been developed
for predicting NO2 concentrations in Chinese cities, including Shanghai, Tianjin, and
Wuhan [16–18]. Traditional LUR models highly depend on land use data and have
lower temporal resolution, but these do not satisfy the flexible requirements of exposure
assessment in epidemiological studies.

Satellite data have been proven to be one of the key predictors for estimating ambient
NO2 concentrations with a high temporal resolution [19–21]. Specifically, a study in Western
Europe indicated that the adjusted R2 of LUR models with satellite data was increased by
0.02–0.06 compared to the models without satellite data with the R2 of 0.48–0.56 [22]. Other
studies showed that the satellite-based LUR models could expand the temporal resolution
of traditional LUR models for predicting air pollutants’ concentrations, from annual level
to monthly or seasonal scales [19,23–25]. NO2 column density from the Ozone Monitoring
Instrument (OMI) aboard satellite Aura is the most commonly used dataset for establishing
satellite-based LUR or machine learning models [26–28]. The satellite-based LUR models
not only expanded the temporal resolution of traditional ones [19], but also simultaneously
helped improve model performance [22,29,30]. However, in China, most of these studies
were conducted at regional or national scales [21,31]; whether satellite data can improve
the resolution and model performance of LUR models at a city scale, has not been fully
evaluated. In addition, the row anomaly of OMI led to a large amount of missing data
at the daily level [32], hence OMI NO2 column density data might be inappropriate to be
directly used to assess NO2 exposure levels within a city at a daily scale, and some studies
resampled the data at a seasonal scale [33].

Therefore, in this study, we developed a satellite-derived LUR model, in a Chinese
metropolis, to capture intra-urban NO2 temporal variations at a seasonal level with a high
spatial resolution. This model with a high spatial resolution is expected to capture the
finer gradients of NO2 variations within a city at a higher temporal resolution than that of
the traditional LUR model, which could provide more accurate exposure assessment for
epidemiological studies.

2. Materials and Methods
2.1. Study Area

Suzhou is a city located in southeastern Jiangsu Province of East China (Figure 1). It
includes five urban districts (Gusu, Huqiu, Wuzhong, Xiangcheng, and Wujiang) and four
satellite cities (Changshu, Taicang, Kunshan, and Zhangjiagang). Suzhou is one of five
urban locations in the China Kadoorie Biobank (CKB) cohort that have focused on common
chronic diseases since 2004 [34]. We developed a satellite-derived LUR model in Suzhou
as a case study to establish the methodology for the assessment of exposure to NO2 of
the CKB cohort study to support the next phase of air pollution-related epidemiological
studies. Suzhou covered 8488.42 km2 in 2018 and about 42.5% of the total area was covered
by waterbody. The total registered population in Suzhou reached 7.04 million by the end
of 2018 (http://tjj.suzhou.gov.cn/sztjj/tjnj/2019/zk/indexce.htm). Suzhou is located in a
subtropical monsoon climate zone with four distinct seasons.

http://tjj.suzhou.gov.cn/sztjj/tjnj/2019/zk/indexce.htm
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2.2. Data

The database included data on NO2 monitoring, NO2 tropospheric column density
from the OMI instrument, population density, road network, land use parameters, and
NOx emissions.

2.2.1. Monitoring Data

Daily NO2 monitoring data of 20 fixed air quality stations were obtained from the
National Environmental Monitoring Network, and the locations of the stations are shown
in Figure 1. In accordance with the Chinese Ambient Air Quality Standard (GB3095-2012),
at least 20 hourly measurements were included to calculate the daily NO2 concentration;
at least 27 daily values were needed to calculate monthly concentrations (25 daily values
for February); at least 324 daily values were needed to calculate the annual concentration.
Most of the fixed stations were located in areas with a relatively high population density to
represent the averaged exposure levels for public health.

2.2.2. Satellite Data

The OMI instrument is on board the National Aeronautics and Space Administration
(NASA) Aura satellite that was launched in 2004. It measures radiances across 270–500 nm
of the ultraviolet and visible waveband. Global tropospheric vertical column NO2 density
data of OMI level 2 (OMNO2) product, with a spatial resolution of 13 km × 24 km at
nadir [35], are available online at a daily time step and were downloaded from NASA
Goddard Earth Sciences Data and Information Services Center (https://earthdata.nasa.
gov/). Cloud cover and a dynamic row anomaly problem of OMI were responsible for a
significantly high rate of missing values of daily data. The “row anomaly” occurred due
to the technical issues of the OMI, which has produced invalid data in the center-right
part of each swath of observations since 2008 [32]. Within a city, the high missing rate

https:// earthdata.nasa.gov/
https:// earthdata.nasa.gov/
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might cause low availability of OMI NO2 tropospheric column density data at a daily level.
Therefore, seasonal resampling was done by averaging all daily OMI NO2 tropospheric
column density data falling inside a 40 km × 40 km grid to fill the gap caused by missing
data and smooth the noise [33]. The satellite data were then interpolated to the fixed
monitoring stations using an inverse distance weighted (IDW) method.

2.2.3. Other Predictors
Land Use Parameters

Land use data (agricultural, forest, grassland, waterbody, urban and built up, and un-
used land) from 2014 were interpreted from the Landsat TM5 dataset (https://earthexplorer.
usgs.gov/) with a 30 m spatial resolution (Figure 2). Specifically, agricultural land included
dry land and paddy fields; forest land included dense forests, shrub forests, loose forests,
and other forests; grassland included highly-covered grassland; waterbody included rivers,
lakes, beaches, bottomlands, and reservoirs; urban and built up land included urban and
rural settlements and other built-up land; unused land included bare rock and sand. In
Suzhou, the major land use types were urban and built-up land, agricultural land, and
waterbody; and agricultural land mainly consisted of paddy fields. To optimize the cor-
relation between NO2 measurements and land use predictors, different buffer distances
were applied, from 100 m to 5000 m, at 100-m intervals, around the 20 fixed monitoring
sites [10,17,36]. The areas of each land use type were then calculated within these buffer
zones separately.
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Road Network

Lengths of major roads and distances to the nearest major road were calculated as indi-
cators of traffic emissions. Types of roads included expressways, national roads, provincial
roads, urban expressways, county roads, town roads, and other roads. Then, expressways,
national roads, provincial roads, and urban expressways were merged as major roads.
Within the buffers from 100 m to 5000 m (at 100 m intervals) around the 20 fixed monitoring
sites, the lengths of major roads were then calculated [6,17]. Distance from monitoring sites
to the nearest major road, inverse of the distance, and logarithmic transformation of the
inverse distance were also calculated as indicators of traffic emissions [6,10].

Population Density

Population density data were obtained from the Oak Ridge National Laboratory
(ORNL)’s LandScan 2014 global database at 30” × 30” resolution in raster format (http:
//www.ornl.gov/sci/landscan/), which were then interpolated to the NO2 monitoring
stations using the IDW method. The population data, with an ESRI binary raster format, is
approximately at a 1 km × 1 km resolution and each grid represents an average population
number within the grid at an annual level (https://landscan.ornl.gov/documentation).
Figure 3 shows the spatial distribution of the population in Suzhou in 2014, suggesting
that more people tended to live in the center of five urban districts and four satellite cities
in Suzhou.
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NOx Emissions

NOx emission inventory data were collected from the Multiresolution Emission Inven-
tory of China (MEIC, http://www.meicmodel.org) at a spatial resolution of 1 km × 1 km.
The industrial NO2 emissions from power plants and non-power plants were computed
separately within buffer zones of 1 km to 10 km, at 1-km intervals, around each monitor-
ing site.

2.3. Model Development and Evaluation

A traditional LUR model was developed, as the first step, to select the most optimized
predictors from all parameters with a linear regression model [6,10,20,36]. Since the OMI
NO2 tropospheric column density was aggregated at a seasonal level to fill the gap caused
by the high missing rate of the satellite data [32], this model was developed at a seasonal
level [37,38]. First, we set every potential variable a prior direction. Second, manual
backward supervised regression was conducted based on NO2 seasonal concentrations to
select the most optimized predictor variables. Predictors were kept in the model if they
satisfied the criteria proposed by previous studies [6,10,17]: (1) the variables improved
the model R2 by at least 1%; (2) the effect directions of the variables were consistent with
the prior directions; (3) the variables that were already in the model did not change their
effect directions; (4) the variable would be excluded from the model if the p value was
less than 0.1. This process continued until there were no more variables meeting the
criteria. Variance inflation factors (VIFs) were calculated as an indicator of multicollinearity.
Variables with VIF values greater than three were removed from the satellite-based LUR
model and this step was repeated.

In the second step, a linear mixed effects model was developed (see Equation (1)) by in-
volving random effects of OMI NO2 tropospheric column density [23,37]. The advantage of
employing this model was to include the variability of associations between NO2 concentra-
tions and OMI NO2 tropospheric column density over time. Similar satellite-based models
had been developed for predicting PM2.5 concentrations in a national assessment [37]
and PM10 concentrations within a city in Shanghai [23]. In this model, the OMI NO2
tropospheric column density had both random effect and fixed effect coefficients, which
represented seasonal variability in the association between NO2 measurements and OMI
NO2 tropospheric column density and the average effect of satellite measurements on the
ground NO2 measurements for the whole year, respectively [23,37]. The model structure
can be summarized as:

NO2,st = (β0 + β0’) + (β1 + β1’) OMIst + βisXis + εst (1)

where NO2,st indicates the mean observed NO2 concentrations (µg/m3) at the fixed station
s in season t; OMIst is the only independent variable with both fixed and random effects,
which represents OMI NO2 tropospheric column density data at the fixed station s in
season t; β0 and β0’ are the intercepts of the fixed and season-specific random effects for
the model, respectively; β1 and β1’indicate the fixed and season-specific random slopes for
OMIst, respectively; Xis represents a series of predictors, which are selected by satisfying
the criteria from the first step; and βis represents the fixed slope for predictor i at the fixed
station s; and εst is the error term at the fixed station s in season t.

In the third step, 10-fold cross validation (CV) was applied to evaluate the model
performance [17,37]: 90% of the data were randomly selected for model development,
which was used to predict NO2 concentrations of the remaining 10% of the data; and
this process was repeated 10 times. Root mean squared error (RMSE) was calculate as
the standard deviation of the residuals. RMSE and R2 were used to evaluate the model’s
performance by comparing measured and predicted NO2 concentrations during model
development and 10-fold CV, respectively. The relative prediction error (RPE, defined as
RMSE divided by the mean NO2 measurements) from 10-fold CV was then calculated to
evaluate prediction accuracy.

http://www.meicmodel.org
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In the fourth step, seasonal prediction maps of NO2 concentrations in Suzhou were
produced based on the satellite-derived LUR models, at a 100 m × 100 m resolution at a
seasonal timescale. In addition, we further calculated annual-mean and seasonal-mean
population-weighted NO2 concentrations in Suzhou [39] (see Equation (2)).

CPop = ∑Popi × Ci/∑Popi (2)

where CPop indicates the annual-mean or seasonal-mean population-weighted NO2 expo-
sure concentrations in Suzhou; Popi represents the population density of grid i; and Ci
indicates the estimated annual-mean or seasonal-mean NO2 concentrations of grid i.

Figure 4 shows the workflow for the development of the satellite-derived LUR model
in our study. Statistical analyses were performed with nlme packages (https://www.
rdocumentation.org/packages/nlme/versions/3.1-151/topics/nlme) of R3.6.1.
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3. Results
3.1. Descriptive Statistics Analyses

In 2014, the annual-mean NO2 was 46.23 µg/m3 in Suzhou, with the lowest concen-
tration of 36.52 µg/m3 recorded in summer and the highest concentration of 53.22 µg/m3

in winter, as measured at fixed monitoring sites. Among all predictors, the Pearson’s corre-
lation coefficient between seasonal OMI NO2 tropospheric column density and seasonal
NO2 measurements was highest with the value of 0.65.

3.2. Model Development and Evaluation

After variable selection, as the results of the first step, the satellite-derived LUR model
included four predictors: NO2 tropospheric column density from OMI, population density,
log transformed inverse of nearest distances to major roads (Log_distance), and NO2
non-power plants emissions within a 10-km buffer zone (Table 1). The R2 and RMSE of
this model were 0.63 and 5.76 µg/m3, respectively. The R2 and RMSE of the 10-fold CV
were 0.59 and 6.09 µg/m3, respectively. The VIFs of the four variables were all less than 2,
showing weak multicollinearity among them.

Table 1. The traditional land use regression (LUR) model for predicting NO2 concentrations.

Variables β SE p Value

Intercept 33.57 5.13 <0.001
NO2 tropospheric

column density 0.85 0.11 <0.001

Population density 0.00016 0.0001 0.043
Log_distance 2.92 1.38 0.038

Non-power emissions
within 10 km buffer zone 0.0001 0.00003 0.002

The results of the second step, including the estimated coefficients of fixed effects
of the four predictor variables, are shown in Table 2. All predictors were positively and
significantly associated with measured NO2 concentrations, with p values less than 0.05.
The absolute contribution (IQR × β), for each influencing predictor, was calculated as the
regression coefficient (β) of fixed effects multiplied by the inter-quartile range (IQR) of
the corresponding predictor. The results indicated that the non-power emissions within a
10-km buffer zone and OMI NO2 tropospheric column density contributed most to NO2
concentrations, because they had higher IQR × β values (Table 2).

Table 2. The fixed effects of the satellite-derived LUR model for predicting NO2 concentrations.

Variables β SE p Value IQR × β 1

Intercept 39.617 7.348 <0.001
NO2 tropospheric column density 0.618 0.293 0.039 4.389

Population density 0.00016 0.0001 0.029 1.976
Log_distance 3.240 1.272 0.013 1.546

Non-power emissions within 10-km buffer zone 0.0001 0.00003 <0.001 4.792
1 represents the regression coefficient (β) of fixed effects multiplied by the inter-quartile range (IQR) for each predictor at 20 monitoring sites.

The R2 and RMSE of the seasonal satellite-derived LUR model were 0.70 and 5.24 µg/m3,
respectively. The R2 and RMSE of the 10-fold CV were 0.61 and 5.91 µg/m3, respectively,
for the seasonal model (Figure 5). The RPE from 10-fold CV was 12.78%, which indicated
a relatively high predicting accuracy at the seasonal level. The linear mixed effects model
performed better than the traditional linear regression model, suggesting the importance of
considering the seasonal variability of the association between ground NO2 measurements
and OMI NO2 tropospheric column density.
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3.3. Spatiotemporal Trends of Predicting NO2 Concentrations

Predictive maps of NO2 concentrations with a spatial resolution of 100 m × 100 m
were produced at a seasonal timescale (Figure 6). The seasonal pattern of predicted
NO2 concentrations agreed well with field measurements. Mean NO2 concentration
was highest in winter (47.3 µg/m3) in Suzhou, which was 1.46 times higher than that
in summer. The spatial patterns of NO2 predictions were similar at different seasons
throughout the year. Maps with high spatial resolution showed that severe NO2 pollution
occurred along the major roads and declined significantly with increasing distance from
the road. Urban centers with high population density and an intensive road network also
experienced higher NO2 concentrations than that of the rural areas (Figure 6). For example,
in summer, the maximum NO2 concentration (58.99 µg/m3) that occurred in urban areas
was 2.77 times higher than the minimum value (21.33 µg/m3) in rural areas; and in winter,
the maximum concentration (76.93 µg/m3) was 2.03 times higher compared to the lowest
value (37.91 µg/m3) in rural areas. The results indicated that the NO2 concentration was
generally higher in urban areas than that in rural areas both in winter and summer.

The population-weighted annual mean NO2 concentration in 2014 was 44.94 µg/m3

in Suzhou, higher than the annual-mean predicted concentration of 41.4 µg/m3 and also
higher than the annual-mean NO2 standard of 40 µg/m3 defined in the Chinese National
Ambient Air Quality Standards (GB 3095-2012). In winter, 99% of the total population lived
in areas with NO2 concentrations exceeding 40 µg/m3 in Suzhou (Table 3).

Table 3. Population-weighted NO2 exposure concentrations.

Parameter Annual Spring Summer Autumn Winter

Population-weighted
concentration (µg/m3) 44.94 46.33 35.64 46.59 51.21

Proportion (%) * 84 92 22 96 99

* Proportion: Proportion of population living in areas with NO2 concentrations exceeding 40 µg/m3.
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4. Discussion

Our study built a satellite-derived LUR model with OMI NO2 tropospheric column
density data to predict NO2 concentrations at seasonal timescales with a high spatial
resolution (100 m × 100 m) in Suzhou. The R2 values of model fitting and 10-fold CV were
0.70 and 0.61 at seasonal timescales, respectively, reflecting the relatively high stability of
the model.

Our seasonal satellite-derived LUR model performance was comparable with previous
satellite-based LUR models on NO2 concentration assessment at global, national, and
regional scales. For the global satellite-based LUR model, the R2 and MAE (mean absolute
error) for the model were 0.54 and 3.7 ppb at a 100 m×100 m resolution, respectively [20].
The adjusted R2 values of models with satellite data were 0.48–0.58 in 17 contiguous
countries of Western Europe [22]. The R2 of the model fitting and CV were 0.79 and 0.77
of the national satellite-derived LUR in the United States, respectively [19]. Similarly,
in China, Xu et al. and Yang et al. developed satellite-derived LUR models at national
and regional scales, respectively [21,31]. The R2 of 10-fold cross-validation (CV) was 0.78
for the national model in 2015 [31], and the R2 of model fitting was 0.61 for the regional
model [21]. Although increasing studies have used machine learning methods with satellite
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data to evaluate NO2 concentrations based on a large number of measurements from fixed
monitors at regional or national scales [40–43], the training data may be insufficient to
develop machine learning models within a city because of the limited number of fixed
stations in this study. The comparison suggested that our satellite-derived LUR model,
including satellite-retrieved NO2 tropospheric column density, population density, traffic
indicators, and NOx emission data, predicted ground NO2 concentrations with relatively
high accuracy based on the fixed stations in Suzhou.

In terms of NO2 concentration, our results exhibited significant spatial variability
within a city at a fine spatial resolution (100 m × 100 m), and found a distinctive decline
with increasing distance from the roads and significant differences between urban and
rural areas. The high variability within a city suggested that exposure assessments of
NO2 might be inaccurate if they just depended on measurements of a limited number
of fixed monitoring sites. This high spatial heterogeneity may be mainly dependent
on NO2 pollution-related sources, such as traffic and industrial emissions. Traffic and
industrial emissions are known as the main sources of NO2, contributing to the high
spatial heterogeneity of NO2 concentrations along roads and within a city. On one hand,
NO2 is emitted as a primary pollutant from these sources. On the other hand, NO2 is
also a secondary pollutant [1,2]. In our study, NO2 concentrations were significantly
higher along roads and declined gradually with increased distance from roads in Suzhou,
consistent with previous results of NO2 spatial heterogeneity along roads [8]. The variables
indicating traffic-related sources in our study were also frequently used in the previous LUR
models for NO2 concentrations assessment [6,17,36]. Additionally, industrial emissions, an
important influencing predictor for NO2 assessment in our model, had also been found to
be an important variable in the previous LUR models to predict ground NO2 concentrations
within cities such as in Shanghai and Tianjin [16,17]. A recent study observed a notable
decrease of NO2 concentrations during the Chinese New Year holiday in 2020 led by the
novel coronavirus (COVID-19) lockdown compared to those before or after this period
in Suzhou [44]. A sharp decline in traffic emissions and a slight reduction in industry
emissions caused by the shut-down policies might be the main contributors to the decrease
of NO2 concentrations during the lockdown period in Suzhou [44], suggesting that both
traffic and industrial emissions are crucial sources of NO2 in Suzhou. Additionally, our
results found that mean NO2 concentrations were higher in winter compared to that in
summer. This was consistent with the previous studies on the seasonal pattern of NO2
concentrations in China [24,45]. In winter, NO2-related emissions are stronger due to
more emissions from coal combustion for heating; while meteorological conditions are less
favorable and could impede the dispersion and transportation of NO2 pollution [44,46,47].
Both of these might be contributors to the higher NO2 concentrations in winter [44,46,47].
Our results in Figure 6 showed an approximately lower ratio between urban and rural
NO2 concentrations in winter compared to those in summer. This might be due to more
coal combustion for the heating of houses in rural areas in winter compared to that in
urban areas [48].

As another influencing factor for NO2 spatial heterogeneity, the spatial pattern of pop-
ulation density was highly consistent with that of NO2 predictions in Suzhou, suggesting
that population density can be used as an indicator of anthropogenic emissions that reflects
a series of emissions including traffic, industrial process, and heating sources [6]. High
population density not only intensified the NO2 pollution, but also resulted in an increased
exposure of populations to high NO2 levels. In this study, 84% of the population were
exposed to higher NO2 levels than the national annual-mean NO2 standards (40 µg/m3)
in Suzhou in 2014; while the proportion of the population exposed to concentrations ex-
ceeding the World Health Organization (WHO) annual NO2 standards (40 µg/m3) was
only 8% in Western Europe [39], which was much smaller than that in Suzhou. This might
be because a high population density and high concentrations of air pollution coexist in
Chinese cities. For example, many residential buildings are located along major roads
for the convenience of transportation, and residents living in these buildings might be
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both influenced by the traffic-related emissions and housing heating emissions, especially
during winter in the rural areas. Our results suggested that policy makers should take
effective interventions for these areas of higher NO2 concentrations, especially for urban
regions with the higher population density, which is an urgent need for the public health.

The satellite-based LUR model also expanded the temporal resolution and improved
the accuracy of seasonal NO2 predictions. Land use data, including land cover, road net-
work, and population data, used in traditional LUR models commonly have lower temporal
resolution, whereas the NO2 tropospheric column density data could represent temporal
variability of NO2 concentration with a strong correlation with ground NO2 concentration.
Previous studies mostly employed satellite data to expand the temporal resolution of the
LUR model for the assessment of NO2 concentrations to seasonal or monthly timescales at
national or regional scales [19,21,30]; however, few satellite-based LUR models on NO2 con-
centrations assessment have been developed at a city scale considering the local influencing
factors with a flexible timescale in China. In this study, we developed a satellite-based LUR
model in Suzhou to capture the fine gradients of NO2 concentrations at a spatial resolution
of 100 m × 100 m. More importantly, our predictions captured the significant seasonal
variability of NO2 concentrations within a city, which could not be achieved by traditional
LUR models. These findings suggested that the satellite-derived model could provide
exposure assessment of NO2 concentrations at a flexible timescale for epidemiological
studies and scientific evidence for protecting residents from NO2 pollution.

Our study has several limitations. First, the OMI NO2 tropospheric column density
for spatial prediction was relatively coarse (13 km × 24 km). Satellite-based NO2 data
with a higher spatial resolution could help improve the model performance in the future
when they are available. Second, our model was developed at a seasonal level rather than
a daily level. The cloud cover and row anomaly problem of OMI lead to missing data at a
daily level within a city; therefore, we resampled OMI data at a seasonal level to fill the
gap. Satellite-based NO2 data with a lower missing rate might help improve the temporal
resolution of our model in the future. Third, traffic counts are an ideal predictor to identify
the traffic emissions, but these were not accessible for this study. We used major road
lengths and distance to the nearest major road as surrogates of traffic counts to indicate
the influence of traffic emissions on NO2 concentrations. This was also applied as a traffic
variable in NO2 LUR models in the European Study of Cohorts for Air Pollution Effects
(ESCAPE) project and other studies of the development of NO2 LUR models [6,36].

5. Conclusions

In summary, the satellite-derived LUR model could predict seasonal NO2 concen-
trations at a 100 m × 100 m resolution with relatively high accuracy, at a city scale. This
model could capture the fine gradients both along the road and within the urban-rural
areas for each season based on the satellite data. According to the predictions, we found
that 84% of the city’s total population lived in areas with NO2 concentrations exceeding
the national annual standard of NO2 of 40 µg/m3 in Suzhou in 2014. Hence, reducing NO2
concentrations is urgently needed, especially for urban areas with a higher population
density. This model and its predictions could support policy developments in the control
of air quality and accurate exposure assessment for future epidemiological studies.
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