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Abstract: Land cover classification is one of the most fundamental tasks in the field of remote sensing.
In recent years, fully supervised fully convolutional network (FCN)-based semantic segmentation
models have achieved state-of-the-art performance in the semantic segmentation task. However,
creating pixel-level annotations is prohibitively expensive and laborious, especially when dealing
with remote sensing images. Weakly supervised learning methods from weakly labeled annotations
can overcome this difficulty to some extent and achieve impressive segmentation results, but results
are limited in accuracy. Inspired by point supervision and the traditional segmentation method
of seeded region growing (SRG) algorithm, a weakly towards strongly (WTS) supervised learning
framework is proposed in this study for remote sensing land cover classification to handle the
absence of well-labeled and abundant pixel-level annotations when using segmentation models. In
this framework, only several points with true class labels are required as the training set, which are
much less expensive to acquire compared with pixel-level annotations through field survey or visual
interpretation using high-resolution images. Firstly, they are used to train a Support Vector Machine
(SVM) classifier. Once fully trained, the SVM is used to generate the initial seeded pixel-level training
set, in which only the pixels with high confidence are assigned with class labels whereas others are
unlabeled. They are used to weakly train the segmentation model. Then, the seeded region growing
module and fully connected Conditional Random Fields (CRFs) are used to iteratively update the
seeded pixel-level training set for progressively increasing pixel-level supervision of the segmentation
model. Sentinel-2 remote sensing images are used to validate the proposed framework, and SVM
is selected for comparison. In addition, FROM-GLC10 global land cover map is used as training
reference to directly train the segmentation model. Experimental results show that the proposed
framework outperforms other methods and can be highly recommended for land cover classification
tasks when the pixel-level labeled datasets are insufficient by using segmentation models.

Keywords: land cover classification; convolutional neural network; segmentation model; weakly
supervised; seeded region growing; fully connected Conditional Random Fields

1. Introduction

Land cover classification of remote sensing images plays an incredibly important
role in the study of ecological environment change, disaster recovery, urban planning or
precision agriculture [1,2]. With the development of remote sensing technology, we have
access to massive remote sensing databases that no manual method could handle, such as
the USGS (United States Geological Survey) Earth Explorer, ESA (European Space Agency)
Sentinel Mission or CHEOS (China High-resolution Earth Observation System). Therefore,
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developing reliable and efficient methods for automatic land cover classification of these
images is of prime importance.

A variety of algorithms have been introduced for land cover classification, including
support vector machine (SVM) [3], random forest [4] and artificial neural networks [5].
These methods have achieved better classification results, but today they fail to reach
the state-of-the-art performance, mainly because of their limited representation capability
compared to feature learning approaches. In recent years, deep learning models, and
especially convolutional neural networks (CNNs), have lead feature learning into a new
era in computer vision [6–8]. Numerous attempts have been made to introduce CNNs into
the field of remote sensing such as scene classification [9–11], object extraction [12,13] and
change detection [14,15] as well as land cover classification [16–19]. These kind of meth-
ods improve the land cover classification results. However, they ignore the relationship
betweenpatches, and boundary and outline distortions always exist among land covers of
classification results [20]. Meanwhile, the problems of redundant re-computation [21] and
low efficiency result in difficulty in efficient land cover classification.

The emergence of fully convolutional network (FCN) [22] overcomes the problems
of CNN-based methods and has become a powerful and promising scheme in the field
of semantic segmentation. Based on FCN, many semantic segmentation models have
been proposed for remote sensing classification in recent years and have obtained sate-
of-the-art performances compared with traditional methods [23–26]. Different from the
image-level training samples for CNN-based methods in which one single class label
is assigned to the whole input image, the training samples of segmentation models for
the dense classification task are pixel-level, in which the input image has the same size
as the reference data, and each pixel in the input image should be assigned to a class
label. Collecting large-scale accurate pixel-level annotation becomes time-consuming and
typically requires substantial financial investments.Even though there are abundant well-
annotated datasets such as ISPRS benchmark [27], DeepGlobe [28], SEN12MS [29] and
GID [30], which can provide great convenience for the research of land cover classification.
When mapping a new type of remote sensing images in real-world applications, these
annotations are out of operation. Fortunately, the existing numerous large-scale or even
global land cover maps can provide adequate reference data and make it possible for land
cover classification using segmentation models. For example, Isikdogan [31] used the global
land cover facility (GLCF) [32] product as reference data to train a deep fully convolutional
neural network model for water body mapping, and it performed significantly better than
traditional approaches. In the work of Scepanovic [33], coordination of information on the
environment (CORINE) land cover data was used as reference for land cover mapping
with sentinel-1 SAR (Synthetic Aperture Radar) imagery. Chantharaj [34] used the dataset
from Geo-Informatics and Space Technology Development Agency as true labels to train
segmentation models for the classification of Landsat-8 remote sensing images. However,
the resolutions of those maps typically range from 30 m to 1000 m per pixel [35], which
may be not consistent with the classified images, and the classification system in practical
applications may be different from that of those maps. In addition, a large number of noisy
labels are potentially available in those products, which will have negative influences on the
classification performance. Many methods, such as formulating robust loss function [36],
adding a noising layer in the neural network to learning the noise distribution [37] or
“co-teaching” robust training paradigm [38], have been proposed for robust learning from
noisy data, but they are mainly concentrated on the machine learning research. Literature
related to robust learning from noisy data for remote sensing land cover classification using
segmentation models is still rather scarce. Two robust loss functions are proposed to deal
with omission noise and registration noise in [39] for road detection from aerial images.
However, they are not suitable for dealing with more complex noise distribution in the land
cover classification. All these hinder the wide range of applications when using existing
land cover maps as reference data for land cover classification.



Remote Sens. 2021, 13, 394 3 of 18

Recently, weakly supervised learning has become a promising direction due to its
need for only weakly labeled or even unlabeled data, which can be easily collected in large
amounts and significantly reduce manual labeling. Many forms of weakly supervision
are explored in the machine learning community, such as image-level labels [40], point-
level [41], bounding box [42], scribbles [43], etc. Inspired by these techniques in machine
learning, many image-level weakly supervised methods have been introduced into remote
sensing classification research due to its significantly less annotation effort. In paper [44],
the authors used the mainstream weakly supervised semantic segmentation methodology
developed in natural scene images to map satellite images. They, however, achieved poor
performance, and more work is needed for developing alternative methodologies to gener-
alize them to satellite images. Considering the difference between computer vision datasets
and remote sensing ones, a weakly supervised feature-fusion network was proposed in [45]
for binary segmentation of remote sensing images and achieved comparable results to fully
supervised methods only using image-level annotations. A hierarchical weakly supervised
learning method was designed in [46] for pixel-level semantic residential area extraction
in remote sensing images based on image-level labels, and results showed the superiority
of the proposed method. Due to the absence of localization information, image-level su-
pervised learning can hardly reach the performance of fully supervised methods. At the
same time, the image-level labels also are needed to determine the presence or absence
of classes in every training sample, which are still time-consuming, especially for remote
sensing images.

Inspired by the point supervision [41] and selecting RoI (Region of Interest) as training
set for training traditional machine learning methods, points with true class labels are
selected as the training set in this paper for remote sensing land cover classification using
semantic segmentation methods. They can be more easily acquired through field survey
or visual interpretation using high-resolution images compared with pixel-level annota-
tions and image-level datasets. A weakly towards strongly (WTS) supervised learning
framework is proposed to better exploit these labeled points for remote sensing image clas-
sification. In short, to describe the proposed framework, a points training set is first used
to generate the initial seeded pixel-level training set using Support Vector Machine (SVM).
Then, the initial seeded training set is used to train the segmentation model. Once fully
trained, the seeded region growing (SRG) [47] module and the fully connected Conditional
Random Field (CRF) are used to progressively update these seeded training sets. Alter-
natively, the processes of training the segmentation model and updating seeded training
set are performed for progressively refining pixel-level supervision of the segmentation
model. Figure 1 presents the dynamic evolution of one training sample in seeded training
set of the WTS framework. In summary, the superiority of the proposed WTS framework is
indicated by the following:

1. Easy implementation. As is well known, a large annotated dataset is indispensable
for deep learning research. In this study, pixel-level annotations are required for train-
ing semantic segmentation models, which is prohibitively expensive and laborious,
especially in the field of remote sensing. However, only several point samples with
true class labels as training set are needed in the proposed WTS framework. They can
be easily acquired through field survey or visual interpretation using high-resolution
images, which makes the land cover classification easy to implement when using
segmentation models.

2. High flexibility. Because of the absence of abundant well-annotated datasets, using
current large-scale or global land cover classification products as reference data is
a reliable solution. However, the land cover classification system is fixed in these
products, and some classes are not included in them when facing some practical
applications. In the proposed WTS framework, we can select the training samples
according to the pre-defined classification system, which can improve the flexibility
of our framework.
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3. High accuracy. In the generation of the initial seeded pixel-level training set using
SVM, only pixels with high confidence are assigned with class labels, and then
they are used to train the segmentation model. Furthermore, the SRG module and
the fully connected CRF are used to progressively update training set for gradually
optimizing their quality. All these make our framework achieve excellent classification
performance.

Figure 1. The dynamic evolution of one training sample in several iterations of the proposed weakly
towards strongly (WTS) framework. It can be found that the quality of the training sample is gradually
improved with the optimization process. (Seedi denotes the seeded training set of i iteration, while
Seed0 denotes the initial seeded training set. The white areas represent the unlabeled points).

The rest of this paper is structured as follows. The study area and experimental data
are described in Section 2. Section 3 illustrates the proposed WTS framework in detail.
Section 4 presents the experimental setup and the comparison of classification results. The
influences of the experimental setting on classification results are analyzed in Section 5.
Finally, Section 6 provides the conclusion and the future work.

2. Materials
2.1. Study Area and Remote Sensing Data

The study area is located in the region of northwest France. To cover the study area,
two Sentinel-2B level-2A remote sensing images on 19 September 2019 were selected as
the experimental data. As shown in Figure 2, the study area was divided into three parts
for training, validation and testing of land cover classification methods. Sentinel-2B is one
of two Sentinel-2 satellites and carries a multispectral instrument (MSI) with 13 spectral
channels in the visible, near infrared (VNIR) and short wave infrared spectral range (SWIR)
at 10 m, 20 m and 60 m spatial resolution. Table 1 describes the detailed parameters of
the Sentinel-2B bands used in this study. The bands with 10 m spatial resolution are all
re-sampled into 20 m using bilinear interpolation for consistency with the other bands.

Figure 2. Overview of the study area and location of areas for training, validation and testing.
(The base is Sentinel-2B band 4,3,2 true color composite image).
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Table 1. Technical specification of Sentinel-2B bands used in this study.

Band Number Spectral Region Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)

2 Blue 492.1 98 10
3 Green 559 46 10
4 Red 665 39 10
5 Vegetation Red Edge 703.8 20 20
6 Vegetation Red Edge 739.1 18 20
7 Vegetation Red Edge 779.7 28 20
8 NIR 833 133 10
8a Vegetation Red Edge 864 32 20
11 SWIR 1610.4 141 20
12 SWIR 2185.7 238 20

2.2. Points Training Set

In this study, five classes including artificial surface, barren land, cropland, forest and
water were defined as the land cover classification scheme. A total of 16,844 points were
assigned with true class labels as training set by visual interpretation and viewing the
high-resolution images from Google Earth. Detailed descriptions of training samples are
illustrated in Table 2.

Table 2. Land cover classification scheme and training set size.

Class Short Description Number of Points Area (km2)

Artificial Surface Artificial covers such as urban areas, rural cottages and roads. 3332 1.3328

Barren Land Surface vegetation is hardly observable, such as urban areas with
little constructed material, bare mines and beaches. 3309 1.3236

Cropland Human planted land that generally has regular distribution
patterns including cultivated land and fallow land. 3726 1.4904

Forest Trees observable in the landscape, such as broadleaf forest,
needleleaf forest and shrubland 3467 1.3868

Water Water bodies such as rivers, lakes, reservoirs and ponds. 3010 1.2040

3. Methodology

In this section, the details of the proposed weakly towards strongly supervised learn-
ing framework are given. Firstly, we introduce general steps of the WTS framework. Then
the initial seed generation, segmentation model, seeded loss, fully connected CRF and
seeded region growing in the WTS framework are described in detail.

The overview of the proposed weakly towards strongly supervised learning frame-
work is illustrated in Figure 3, and general steps can be described as follows.

(1) Initial seed generation: Use points training set (as described in Section 2.2) to generate
the initial seeded pixel-level data set (denoted as seed0) including training set and
validation set using SVM, in which only confident points are treated as seed points.

(2) Train the segmentation model: Use seedi (seed0 when firstly training) to train the
segmentation model, and seeded loss is used to update the model parameters.

(3) Update seed: Take images of seedi as the input of the fully trained segmentation
model from Procedure (2) to produce the probability maps, then the fully connected
CRF and SRG are used to update seedi to get the updated seedi+1 based on the input
images and output probability maps.

(4) Iterate until convergence: Treat seedi+1 as a new data set to iterate Procedures (2)
and (3) until seed points within the data set no longer change.

(5) Classification stage: Use the final trained segmentation model to classify test images
to get the classification results.
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Figure 3. Overview of the proposed weakly towards strongly supervised learning framework.

3.1. Initial Seed Generation Using Points Training Set

As patches are required for fully convolutional semantic-segmentation trainings, single
training points can not be used as is. To deal with this, SVM is selected to transform the
points training set into a “patch-patch” pixel-level data set, which is defined as the initial
seed in this paper. The procedures of the initial seed generation are shown in Figure 4.
Firstly, the points training set is used to train SVM. Then, patch images with size of
256 × 256 are clipped from training/validation images and fed into the fully trained SVM
to get the class probability maps, which are computed based on the isotonic regression.
In order to ensure the diversity of training samples, patch images are clipped by two
ways: clipping by sliding the patch window with no overlap and clipping randomly in
training/validation area. Finally, a probability threshold is defined for filtering pixels of
the output class probability maps to get the initial seed. If the maximum class probability
is higher than the threshold, the pixel is defined as seed point and is assigned as the
corresponding class label; otherwise the pixel is treated as the unlabeled point. Note
that the patch images with no seed points are not considered. The probability threshold
determines the sparsity and quality of seed points and is a vital hyper-parameter in this
study. Its influence on the classification results will be analyzed in Section 5.1. To sum up,
10,000 and 2500 “patch-patch” samples are generated separately as the initial training seed
and initial validation seed from the training area and validation area. In order to get a
robust classification result, the initial seed generation is repeated five times in parallel to
get five different training/validation sets. The accuracy evaluation results in this paper are
obtained by averaging the results of five parallel experiments. In addition, as we know, the
diversity of training samples is one of the most important factors that influence classification
results. The study area in this paper is relatively small, and spectral distribution differences
in the study area are not obvious. Thus, clipping training samples only from the training
area is enough to ensure the diversity of training samples. This is different from dealing
with large territories because of the big spectral distribution differences among different
areas. In this case, the selecting and clipping operations of patch images should be evenly
distributed over the whole large study area.

3.2. Semantic Segmentation Model

In order to achieve dense prediction, FCN [22] was proposed, which is a modification
of the CNN architecture and has made promising improvements in the performance of
semantic segmentation. In the FCN, all fully connected layers are replaced by convolu-
tional layers. This modification enables the model to take inputs of any arbitrary size and
produce corresponding-sized output instead of a single label with efficient inference and
learning. FCN is the pioneering work of semantic segmentation, which defines a general
framework for dense pixel-wise prediction. Based on the FCN, various semantic segmen-
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tation models have been designed to improve segmentation performance in recent years,
such as SegNet [48], DeepLab [49], U-Net [50] and FC-DenseNet [51]. All of them aim to
extract and combine multi-scale context information or enhance feature discriminability
for implementing precise segmentation. Considering the popularity in the remote sensing
field, U-Net is selected as the segmentation model to be studied in this paper, and the
architecture of U-Net is shown in Figure 5.

Figure 4. Procedures of the initial seed generation.

Figure 5. The architecture of U-Net.

The U-Net stems from the FCN model but was modified in a way that it yields better
segmentation in medical images. As shown in Figure 5, this architecture is symmetric and
consists of three sections—encoder, bottleneck and decoder—which gives it the U-shaped
network. The encoder converts the input image into compact representation by many
contraction blocks. The bottleneck plays a role of the bond between encoder and decoder.
The core of this architecture lies in the decoder, which recovers the representation to a
pixel-wise classification output with the same size as the input image. Similar to encoder,
it also consists of several expansion blocks. In addition, the skip connections are applied
between the encoder and the decoder to provide local information to the global high-level
features while upsampling. It is worth noting that the cropping operation in original U-Net
was not used in this study.

3.3. Seeded Loss

Because many pixels in the seeded training set are unlabeled, the seeded loss [52] is
used to guide the weakly supervised learning of segmentation models, for only matching
the seed points while ignoring the rest pixels of the image. The seeded loss could be defined
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as a cross-entropy between the seeded annotations and the probability maps generated by
the segmentation model, and the formula is as follows.

lseeded = − 1
∑c∈C|Sc| ∑

c∈C
∑

u∈Sc

log pu,c (1)

where C is the class set used in this study, Sc is a location set of seed points of class c and
pu,c is the probability value of the pixel of class c at position u.

3.4. Fully Connected CRF

In the training phase of the segmentation model, the seeded loss was used to optimize
the prediction, resulting in high accuracy in the seed points but low confidence in other
regions. To this end, the fully connected CRF [53] was firstly used in the phase of updating
seed to optimize the output probability maps of the segmentation model. Fully connected
CRF is a graphical model and has been successfully used in the semantic segmentation task
due to its qualitative and quantitative performance to improve localization. Suppose that
the x is the class assignment for pixels, the following energy function is employed in the
fully connected CRF model:

E(x) = ∑
i

ψu(xi)∑
ij

ψp(xi, xj) (2)

The ψu(xi) is the unary potential and is computed as ψu(xi) = − log pxi , where pxi

is the class probability at pixel i of the segmentation model output. Function ψp(xi, xj)

is the pairwise potential and has the form ψp(xi, xj) = µ(xi, xj)∑K
m=1 ωmkm( fi, f j), where

µ(xi, xj) = 1 if i 6= j, otherwise µ(xi, xj) = 0. Each pixel in the image is fully connected
with others no matter how far from each other to build the pairwise term. Parameter
ωm is the weighted parameter, and km stands for the Gaussian kernel, which depends on
the features ( fi, f j) of pixel i and pixel j. Parameter K is the number of Gaussian kernels.
Notably, the bilateral kernel is adopted, which is defined in terms of the spectral vectors Ii
and Ij and positions pi and pj:

k( fi, f j) = −ω1 exp(

∣∣pi − pj
∣∣2

2σ2
α

+

∣∣Ii − Ij
∣∣2

2σ2
β

)−ω2 exp(

∣∣pi − pj
∣∣2

2σ2
γ

) (3)

where the first kernel depends on both pixel positions and spectral vectors, and the second
kernel only depends on the pixel positions; σβ, σω and σγ are hyper parameters and
control the scale of the Gaussian kernels. In this study, the unary potentials are computed
based on the probability maps of the segmentation model, while the original image pixels
are used to infer pairwise potentials. The fully connected CRF model is amenable to
efficient approximate probabilistic inference. The influence of fully connected CRF on
the classification results will be analyzed in Section 5.2 to validate its importance in the
proposed framework.

3.5. Seeded Region Growing (SRG)

In initial seed generation, only the pixels with high confidence are defined as the initial
seed points, and they are relatively sparse. To have a denser supervision of segmentation
model for better classification performance, the unlabeled pixels should be grown based on
the seed points to generate more dense pixel-level annotations. A classical segmentation
algorithm named Seeded Region Growing is adopted to formulate this problem after the
process of fully connected CRF. The basis of seed points growing is the pixels in the small
homogeneous regions should have the same class.

In SRG, the initial seed points are firstly selected based on some simple criteria such as
color, texture and intensity. In this study, we used SVM to generate the initial seed points,
which was described in Section 3.1. Once placed, the regions are grown from adjacent
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unlabeled points of these seed points based on the similarity criterion. The following
similarity criterion was used to determine whether the unlabeled point should be merged
into the special region or not, which is based on the output probability maps of fully
connected CRF.

P(pu,c, θc) =

{
TRUE pu,c > θc (c = argmax pu,ć

ć
)

FALSE otherwise
(4)

where the P(pu,c, θc) is the similarity criterion; pu,c is the probability value of class c at
position u of probability maps; θc is the probability threshold of class c. In practice, the same
threshold was set for all classes. θc is set as 0.95 initially, then is added by 0.002 per iteration.

Once the similarity criterion is defined, the probability maps and seed points are fed
into SRG for growing regions. SRG is an iterative algorithm for visiting each class. At
the iteration of class c, we visit every pixel in the Sc and compute the P(pu,c, θc) of its
8-connected neighbor pixels. Then, a new set of labeled pixels are generated and they are
appended to Sc. After that, the new Sc is revisited, and Sc is updated again until the Sc
is changeless. Once all classes are iterated, the SRG is stopped and new seed points are
obtained, which will be used to train the segmentation model.

4. Results and Analysis
4.1. Experimental Setup
4.1.1. Implement Details

The Keras deep learning framework was used to implement all experiments. The
ResNet50 [6] architecture was used as the backbone to build U-Net, which was initialized
using the Gaussian distribution function in the initial training of WTS. U-Nets of other
iterations in WTS were initialized by using the fully trained model’s parameters of the
last iteration. Adaptive moment estimation (Adam) algorithm was selected to optimize
all models. The batch size was set as 10. All segmentation models were trained until the
training loss converged. All implements were evaluated on the Windows 7 operating
system with one 3.6 GHz 8-core i7-4790 CPU and 32GB memory. A NVIDIA GTX 1070 GPU
was used to accelerate computing. In addition, SVM was selected as the compared method.
The LIBSVM [54] was used to implement it. The radial basis function (RBF) was set as
the kernel function, and the hyper-parameters of SVM were optimized by using cross-
validation.

4.1.2. Evaluation Metrics

Overall accuracy (OA), kappa coefficient, precision, recall, F1 score and intersection
over union (IoU) were used to assess the quantitative classification performance. All of
them can be computed by calculating the confusion matrix, which is an informative table
that can allow a direct visualization of the performance on each class and can be used for
analyzing the errors and confusions between different classes easily. OA is defined as the
number of correctly classified pixels divided by total test pixels, which is the most intuitive
measure to reveal the classification performance of all test pixels. Kappa coefficient is
thought to be a more robust measure than a simple percent agreement calculation because
it takes into account the possibility of the agreement occurring by chance. Precision is the
ratio of correctly predicted pixels to the total predicted pixels, and recall is the ratio of
correctly predicted pixels to all pixels in the actual label. The F1 is the weighted average of
precision and recall. IoU measure is the proportion of intersection among the predicted
pixels and true pixels over their union. F1 and IoU are all effective metrics for evaluating
categorical accuracy. The formulas of them are as follows.

Precisioni =
Nii

∑C
j=1 Nji

(5)
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Recalli =
Nii

∑C
j=1 Nij

(6)

F1i =
2× Precisioni × Recalli

Precisioni + Recalli
(7)

IoUi =
Precisioni × Recalli

Precisioni + Recalli − Precisioni × Recalli
(8)

OA =
∑C

i=1 Nii

N
(9)

Kappa =
OA− pe

1− pe
(10)

pe =
∑C

i=1(Nii ×∑C
j=1 Nij)

N×N
(11)

where precisioni is the precision of class i, recalli is the recall of class i, F1i is the F1 of class i,
IoUi is the IoU of class i, Nij is the number of pixels that have class i but be classified into
class j, C is the total number of classes and C = 5 in this study, N is the total number of test
pixels. All these metrics are in the range of 0 to 1, except for Kappa with a range of −1 to 1.
A higher value indicates a better classification performance.

4.1.3. Test Set

For accuracy evaluation, though it is better to use all pixels in the test area, the
assignment of the true class label to each pixel is a complicated task. The grid point
sampling is an alternative method since it can ensure the spatial distribution of testing
points is uniform. However, it may lead to a serious class imbalance, and classes with small
proportions may be not selected when some classes account for the most area (such as the
cropland in the study area). Therefore, in this study, thousands of points with true class
labels were selected manually from the test area to evaluate the classification results. For a
fair evaluation, the following rules were followed when selecting testing points (taking the
cropland as an example). First, croplands in many parts of the test area should be selected,
not only focusing on a small part, to ensure a uniform spatial distribution. Second, all
types of croplands, including not only cultivated farmland but fallow farmland, should be
considered. Finally, more points should be selected at the border between cropland and
other land covers than the inside homogeneous cropland region. The true class label of
each point is defined by visual interpretation and viewing the high-resolution images from
Google Earth. The number of each class in the test set is as follows: artificial surface, 4600;
barren land, 2000; cropland, 5000; forest, 4000; water, 2000.

4.2. Experimental Results and Analysis
4.2.1. Results of WTS and Compared Methods

Classification results of WTS are obtained from the eight iterations in this section.
The probability threshold to generate initial seed was set as 0.7. SVM was selected to be
compared with WTS due to its popularity and efficient performance in remote sensing
classification applications. The training set of SVM was the same as WTS. Moreover,
global land cover map FROM-GLC10 [55] was used as reference data to train U-Net. The
corresponding classification results were also compared in this section. FROM-GLC10 is
acquired based on 10 m resolution Sentinel-2 data and achieved an overall accuracy of
72.76% at global scale. It was down-sampled to 20 m resolution to be consistent with images
used in this study. In FROM-GLC10, cropland, forest, grassland, shrubland, wetland, water,
tundra, impervious surface, barren land and snow/ice were used as the classification
system. Tundra and snow/ice were not included in the study area. In order to keep
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consistent with the classification system in this study as close as possible, and by analyzing
the class definition of two classification systems, the following merging rules of classes
in FROM-GLC10 were followed to get the final reference data: cropland and grassland
were merged as cropland; forest and shrubland were merged as forest; wetland and water
were merged as water; impervious surface was treated as artificial surface. OA, kappa
coefficient, F1 and IoU of all classes of all methods are gathered in Table 3. Classification
results of two representative areas are shown in Figure 6 for a better visual interpretation
and analysis.

Table 3. OA, kappa coefficient, F1 and IoU of all classes of WTS and compared methods. (The optimal results are marked in
bold. F1 and IoU are separated with symbol “/”, and the former stands for F1 while the latter stands for IoU).

Artificial Surface Barren Land Cropland Forest Water OA Kappa

SVM 0.7879 0.6492 0.7391 0.8689 0.9480 0.7965 0.7377
/0.6501 /0.4806 /0.5861 /0.7681 /0.9012

U-Net(FROM-GLC10) 0.5513 0.0070 0.7365 0.8602 0.8928 0.6943 0.5919
/0.3801 /0.0035 /0.5829 /0.7547 /0.8064

WTS 0.8103 0.7100 0.7793 0.8847 0.9623 0.8252 0.7738
/0.6810 /0.5503 /0.6384 /0.7932 /0.9273

From Table 3, it can be observed that WTS obtained the best results on all metrics.
WTS achieved OA of 82.52% and outperformed SVM by approximately 3%, which is a
considerable accuracy improvement on the land cover classification of remote sensing. The
U-Net that uses FROM-GLC10 as reference data obtained the worst result and achieved OA
of merely 69.43%, which is almost 10% lower than SVM. This is due to a number of factors
such as imaging time inconsistency between Sentinel-2B images and FROM-GLC10(2017),
classification system inconsistency and incorrectly labeled information in FROM-GLC10.
Thus, using the current land cover map can solve the problem of insufficiency of reference
data when using segmentation models, but it has limitations when meeting practical
applications. As for the categorical accuracy analysis, U-Net also obtained the worst results
on all classes except for cropland, which is a little higher than SVM. WTS increased the
F1 by more than 6% than SVM on barren land. Barren land was the hardest class to
identify among all classes in our study, which is always confused with artificial surface
and cropland. This is because the existence of buildings with high brightness among the
artificial surface and fallow farmlands among the cropland, which all have similar spectral
values with barren land. Due to different definitions of barren land in our study and FROM-
GLC10 and a small percent of barren land on the training set, U-Net only obtained 0.070 F1
on the barren land. Moreover, 2.24%, 4.02%, 1.58% and 1.43% F1 improvements were
achieved by WTS than SVM for artificial surface, cropland, forest and water, separately.
All these demonstrate the effectiveness of the proposed WTS framework on the land
cover classification. This good performance benefits not only from the ability of learning
multi-scale features of segmentation models, but also the constant seed updates based
on iterative process by SRG and fully connected CRF that can progressively optimize the
segmentation model.

As for qualitative comparison, the classification results in Figure 6 show that there
was more salt and pepper noise in the classification result of SVM, while the results of
U-Net and WTS looked more compact and continuous. This is because the segmentation
model had a large receptive field and could not only use the spectral information but also
multi-scale features of the neighborhood field. U-Net achieved bad results on artificial
surfaces. This is mainly because of many incorrectly labeled points in FROM-GLC10,
which had a significant negative impact on the results. In addition, as shown in purple
circles marked in Figure 6 for SVM, many fallow farmlands among the cropland were
misclassified as barren land. This misclassification existed in the results of WTS, but has
been greatly reduced, while U-Net could avoid this misclassification well. At the same
time, some croplands were also confused with artificial surfaces for SVM (shown in the
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yellow circles). All these confusions were due to the limitation of expression of the spectral
value. For the barren land shown in the white circle, SVM and WTS could extract well,
while U-Net misclassified them as artificial surfaces, which is caused by the class definition
difference. In our study, bare mines were treated as barren land, whereas they belong to
the impervious surface in FROM-GLC10. As for water and forest, all methods had great
performances via visualization interpretation.

Figure 6. Classification results visual comparison of SVM and compared methods.

4.2.2. Results in Different Iterations of WTS

As illustrated in the methodology section, WTS is an iterative process to progressively
update the training set and optimize the segmentation model. In order to demonstrate its
progressive optimization on classification performance, classification results in different
iterations of WTS are compared in this section; 0.7 was set for the probability threshold
to generate initial seed in WTS. Figure 7 shows the OA, kappa coefficient and F1 of all
classes at different iterations of WTS. Classification results of one selected area in different
iterations are shown in Figure 8.

(a) OA and Kappa. (b) F1 of all classes.

Figure 7. OA, Kappa coefficient and F1 of all classes at different iterations of WTS.
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For the overall classification performance, OA and kappa coefficient constantly in-
creased with the advance of the optimization process of WTS and gradually tended to be
stable in the later stage. The accuracy improvement was obvious in the front stage, and
gradually decreased. This demonstrates that WTS can continuously optimize the seeded
training set in the iterative process, which can be observed in Figure 1. As a result, the
classification performance can keep getting better. For the category accuracy, the F1 of
water and forest were basically not affected and were relatively stable. This is because these
two land covers are more homogeneous than others, and they are easy to be distinguished
even using only the spectral information. So in the initial seed generation phase using
SVM, most pixels of water and forest have been assigned as initial seed points given the
0.7 probability threshold. Thus, the seed update of the these two land covers can not
change too much. The hardest distinguished land cover, barren land, achieved the biggest
accuracy improvement of almost 0.05 on F1, further illustrating the effectiveness of WTS
on updating the training set. The accuracy improvements of artificial surface and cropland
were placed in the middle. Via visual interpretation in Figure 8, some fallow farmlands
were misclassified as barren land (shown in the purple circle marked areas) in the initial
iteration. With the iterative process, these misclassifications were gradually reduced, which
is consistent with the quantitative evaluation results. The classification performances of
water and forest were stable.

Figure 8. Classification results evolution in different iterations of WTS. (Iteration0 stands for the result that using the initial
seed as training set).

5. Discussion

In this section, the influences of probability of threshold to generate initial seed and
using the fully connected CRF on classification results are studied and discussed.

5.1. Influence of Probability Threshold to Generate Initial Seed on Classification Result

The probability threshold to generate the initial seed is a vital hyper-parameter in the
proposed WTS framework. It controls the sparsity and quality of the initial seed. Thus,
the probability threshold was set as [0.5, 0.6, 0.7, 0.8, 0.9] to evaluate its influence on
classification results. Percents of all land covers and unlabeled points in the initial training
set based on different probability thresholds are listed in Table 4. When the probability
threshold increases, fewer pixels will be assigned as seed points but with higher quality.
Otherwise, the number of initial seed points is increasing, but the quality is going to get
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worse. This is because many misclassified pixels by SVM are also treated as seed points,
which will result in a negative effect on the classification performance.

Table 4. Percents (%) of all land covers and unlabeled points in the initial training set based on
different probability thresholds.

Probability
Threshold Unlabeled Artificial

Surface
Barren
Land Cropland Forest Water

0.5 6.14 8.63 3.62 61.55 19.06 1.01
0.6 18.70 6.20 2.22 55.67 16.26 0.95
0.7 31.32 4.10 0.95 49.39 13.35 0.90
0.8 45.20 2.06 0.39 41.37 10.14 0.84
0.9 63.32 0.14 0.17 28.99 6.64 0.74

Overall accuracies of classification results based on different probability thresholds
for generating initial seed are illustrated in Figure 9. It can be observed that the probability
threshold of 0.7 achieved the best classification performance. The worst performance
belonged to 0.9. The seed points had high confidence when given probability threshold of
0.9. However, as illustrated in Table 4, more than 63% pixels were unlabeled, and artificial
surface and barren land all only accounted for less than 0.2%. These limited training
datasets may not guarantee adequate training of the deep classification model. At the same
time, the extreme imbalance class distribution will further make a negative effect on the
classification result. The accuracy increased when going to the next iteration. This may
due to the SRG algorithm that updates the initial seed and leads to more points that can
be trained in the deep classification model. However, accuracy started to decrease when
the iteration increased and was even lower than the initial iteration. When the probability
threshold was set as 0.5, only 6.14% pixels were unlabeled, and the classification accuracy
was close to SVM. The accuracy improved in the later iteration, but it soon was stable. The
0.6 and 0.8 indicate similar good classification performances, but still worse than using
probability threshold of 0.7. Comprehensively, 0.7 was the optimal probability threshold
that could balance the sparsity and quality of training set well.

Figure 9. Overall accuracies of classification results based on different probability thresholds for
generating the initial seed.

5.2. Influence of Fully Connected CRF on Classification Results

In the procedure of updating seed in the proposed WTS, seeded region growing and
fully connected CRF were used. This is no doubt because the seeded region growing
algorithm plays the most important role on improving the training set. However, fully
connected CRF is also an indispensable module in WTS. In order to verify its validity on the
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classification result, a comparative experiment of WTS with and without fully connected
CRF was conducted in this section. The probability threshold to generate initial seed was
set as 0.7. Figure 10 shows the accuracy comparison of classification results.

Figure 10. Overall accuracies of classification results of WTS with and without fully connected CRF.

From Figure 10, it can be found that the accuracy increased very slowly when not
using fully connected CRF. This is because the segmentation model falls into a state of
“self-deception”. It is a state that can be understood as follows: when not using fully
connected CRF, the output probability map learned by the segmentation model is directly
fed into the SRG module to update training set. Then, the updated training set will be
further used to train the segmentation model. This means the segmentation model is
always trained by its self-learned knowledge. This will make it difficult to update the
parameters of the model. Therefore, the accuracy is almost unchanged. However, the fully
connected CRF will help the segmentation model to escape such a “self-deception” state as
it can optimize the output probability map based on the corresponding image. Therefore,
the fully connected CRF is a vital component in the proposed WTS framework. Figure 11
shows one training sample evolution of WTS with and without fully connected CRF, which
can also verify the effectiveness of fully connected CRF in visual interpretation.

Figure 11. One training sample evolution comparison of WTS with and without fully connected CRF. (“CRF” means using
fully connected CRF in WTS, and “No_CRF” means not using using fully connected CRF in WTS. The white areas represent
the unlabeled points).
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6. Conclusions and Future Work

In order to deal with the insufficiency of pixel-level annotations for training semantic
segmentation models, a weakly towards strongly (WTS) supervised learning framework is
proposed in this study for remote sensing land cover classification, which is inspired by the
weakly supervised learning method and seeded region growing traditional segmentation
algorithm. In the proposed framework, only several “point-point” style training samples
are required to generate the initial “patch-patch” seeded training set using SVM for training
segmentation models. Compared with pixel-level annotations, they are much less expen-
sive to be acquired. Then, the fully connected CRF and SRG modules are used to gradually
update the training set, which can progressively improve the pixel-level supervision of
segmentation models. The superiority of the proposed WTS framework has been verified
on Sentinel-2 remote sensing images. Experimental results show that the proposed WTS
framework is superior to SVM and the method of U-Netthat uses global land cover map
FROM-GLC10 as training reference data. WTS is a reliable and effective method for land
cover classification using segmentation models when the pixel-level labeled datasets are
insufficient. SVM is not a unique way to generate the initial seed; other classifiers such
as neural network and random forest can also be used. Analyzing current land cover
classification products and treating the class consistent points as the initial seed points is
also an advisable way. In future work, these works will be studied and compared to further
improve the quality of the initial seed. The U-Net segmentation model used in this paper is
also not unalterable, which just provides a benchmark and can be improved and replaced
by other segmentation models. In addition, the effectiveness of different bands of remote
sensing images on the classification results will be analyzed in future work for providing
more valuable information on land cover classification.

Author Contributions: Funding acquisition, L.Z. and P.T.; Investigation, W.Z.; Methodology, W.Z.
and L.Z.; Project administration, P.T.; Supervision, P.T. and T.C.; Validation, W.Z.; Visualization, W.Z.;
Writing—original draft, W.Z.; Writing—review & editing, L.Z., P.T. and T.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
grant 41701397 and grant 41971396.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors are grateful to the anonymous reviewers for their careful assessment,
valuable comments and suggestions that improved the quality of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shi, H.; Chen, L.; Bi, F.; Chen, H.; Yu, Y. Accurate Urban Area Detection in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett.

2015, 12, 1948–1952. [CrossRef]
2. Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote

Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [CrossRef]
3. Mountrakis, G.; Im, G.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens.

2011, 66, 247–259. [CrossRef]
4. Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification Using Google Earth Engine and Random Forest Classifier—The

Role of Image Composition. Remote Sens. 2020, 12, 2411. [CrossRef]
5. Zhou, L.; Yang, X. Training Algorithm Performance for Image Classification by Neural Networks. Photogramm. Eng. Remote Sens.

2010, 76, 945–951. [CrossRef]
6. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
7. Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmenta-

tion. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA,
23–28 June 2014; pp. 580–587. [CrossRef]

http://doi.org/10.1109/LGRS.2015.2439696
http://dx.doi.org/10.1109/LGRS.2017.2681128
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.3390/rs12152411
http://dx.doi.org/10.14358/PERS.76.8.945
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2014.81


Remote Sens. 2021, 13, 394 17 of 18

8. Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

9. Zhao, L.; Zhang, W.; Tang, P. Analysis of the Inter-Dataset Representation Ability of Deep Features for High Spatial Resolution
Remote Sensing Image Scene Classification. Multimed. Tools Appl. 2019, 78, 9667–9689. [CrossRef]

10. Zhang, W.; Tang, P.; Zhao, L. Remote Sensing Image Scene Classification Using CNN-CapsNet. Remote Sens. 2019, 11, 494.
[CrossRef]

11. Ma, D.; Tang, P.; Zhao, L. SiftingGAN: Generating and Sifting Labeled Samples to Improve the Remote Sensing Image Scene
Classification Baseline In Vitro. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1046–1050. [CrossRef]

12. Wang, C.; Bai, X.; Wang, S.; Zhou, J.; Ren, P. Multiscale Visual Attention Networks for Object Detection in VHR Remote Sensing
Images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 310–314. [CrossRef]

13. Chen, C.; Gong, W.; Chen, Y.; Li, W. Object Detection in Remote Sensing Images Based on A Scene-Contextual Feature Pyramid
Network. Remote Sens. 2019, 11, 339. [CrossRef]

14. Wang, Q.; Zhang, X.; Chen, G.; Dai, F.; Gong, Y.; Zhu, K. Change Detection Based on Faster R-CNN for High-Resolution Remote
Sensing Images. Remote Sens. Lett. 2018, 9, 923–932. [CrossRef]

15. Ji, S.; Shen, Y.; Lu, M.; Zhang, Y. Building Instance Change Detection from Large-Scale Aerial Images using Convolutional Neural
Networks and Simulated Samples. Remote Sens. 2019, 11, 1343. [CrossRef]

16. Mnih, V. Machine Learning for Aerial Image Labeling; University of Toronto: Toronto, ON, Canada, 2013.
17. MahdianPari, M.; Salehi, B.; Rezaee, M.; Mohammadimanesh, F.; Zhang, Y. Very Deep Convolutional Neural Networks for

Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery. Remote Sens. 2018, 10, 1119. [CrossRef]
18. Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing Fully Convolutional Networks, Random forest, Support Vector

Machine, and Patch-Based Deep Convolutional Neural Networks for Object-Based Wetland Mapping Using Images From Small
Unmanned Aircraft System. GISci. Remote Sens. 2018, 55, 243–264. doi:10.1080/15481603.2018.1426091. [CrossRef]

19. Kwan, C.; Ayhan, B.; Budavari, B.; Lu, Y.; Perez, D.; Li, J.; Bernabe, S.; Plaza, A. Deep Learning for Land Cover Classification
Using Only a Few Bands. Remote Sens. 2020, 12, 2000.10.3390/rs12122000. [CrossRef]

20. Pan, X.; Zhao, J. A Central-Point-Enhanced Convolutional Neural Network for High-Resolution Remote-Sensing Image
Classification. Int. J. Remote Sens. 2017, 38, 6554–6581. [CrossRef]

21. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for Large-Scale Remote-Sensing Image
Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 645–657. [CrossRef]

22. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the 2015
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
[CrossRef]

23. Persello, C.; Stein, A. Deep Fully Convolutional Networks for the Detection of Informal Settlements in VHR Images. IEEE Geosci.
Remote Sens. Lett. 2017, 14, 2325–2329. [CrossRef]

24. Wang, H.; Wang, Y.; Zhang, Q.; Xiang, S.; Pan, C. Gated Convolutional Neural Network for Semantic Segmentation in High-
Resolution Images. Remote Sens. 2017, 9, 446. [CrossRef]

25. Sun, W.; Wang, R. Fully Convolutional Networks for Semantic Segmentation of Very High Resolution Remotely Sensed Images
Combined with DSM. IEEE Geosci. Remote Sens. Lett. 2018, 15, 474–478. [CrossRef]

26. Fu, G.; Liu, C.; Zhou, R.; Sun, T.; Zhang, Q. Classification for High Resolution Remote Sensing Imagery Using A Fully
Convolutional Network. Remote Sens. 2017, 9, 498. [CrossRef]

27. Gerke, M. Use of The Stair Vision Library Within The ISPRS 2D Semantic Labeling Benchmark (Vaihingen); ResearcheGate: Berlin,
Germany, 2014. [CrossRef]

28. Demir, I.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang, J.; Basu, S.; Hughes, F.; Tuia, D.; Raska, R. DeepGlobe 2018: A
Challenge to Parse the Earth through Satellite Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 172–17209.

29. Schmitt, M.; Hughes, L.H.; Qiu, C.; Zhu, X.X. SEN12MS–A Curated Dataset of Georeferenced Multi-Spectral Sentinel-1/2 Imagery
for Deep Learning and Data Fusion. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, IV-2/W7, 153–160. [CrossRef]

30. Xin-Yi, T.; Gui-Song, X.; Qikai, L.; Huanfeng, S.; Shengyang, L.; Shucheng, Y.; Liangpei, Z. Learning Transferable Deep Models for
Land-Use Classification with High-Resolution Remote Sensing Images. arXiv 2018, arXiv:1807.05713.

31. Isikdogan, F.; Bovik, A.C.; Passalacqua, P. Surface Water Mapping by Deep Learning. IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens. 2017, 10, 4909–4918. [CrossRef]

32. Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A Global, High-Resolution (30-m) Inland Water Body Dataset for 2000: First
Results of A Topographic-Spectral Classification Algorithm. Int. J. Digit. Earth 2016, 9, 113–133. [CrossRef]

33. Scepanovic, S.; Antropov, O.; Laurila, P.; Ignatenko, V.; Praks, J. Wide-Area Land Cover Mapping with Sentinel-1 Imagery using
Deep Learning Semantic Segmentation Models. arXiv 2019, arXiv:1912.05067.

34. Chantharaj, S.; Pornratthanapong, K.; Chitsinpchayakun, P.; Panboonyuen, T.; Vateekul, P.; Lawavirojwong, S.; Srestasathiern, P.;
Jitkajornwanich, K. Semantic Segmentation on Medium-Resolution Satellite Images Using Deep Convolutional Networks with
Remote Sensing Derived Indices. In Proceedings of the 2018 15th International Joint Conference on Computer Science and
Software Engineering (JCSSE), Nakhonpathom, Thailand, 11–13 July 2018; pp. 1–6.

http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1007/s11042-018-6548-6
http://dx.doi.org/10.3390/rs11050494
http://dx.doi.org/10.1109/LGRS.2018.2890413
http://dx.doi.org/10.1109/LGRS.2018.2872355
http://dx.doi.org/10.3390/rs11030339
http://dx.doi.org/10.1080/2150704X.2018.1492172
http://dx.doi.org/10.3390/rs11111343
http://dx.doi.org/10.3390/rs10071119
http://dx.doi.org/10.1080/15481603.2018.1426091
https://doi.org/10.3390/rs12122000
http://dx.doi.org/10.3390/rs12122000
http://dx.doi.org/10.1080/01431161.2017.1362131
http://dx.doi.org/10.1109/TGRS.2016.2612821
http://dx.doi.org/10.1109/CVPR.2015.7298965
http://dx.doi.org/10.1109/LGRS.2017.2763738
http://dx.doi.org/10.3390/rs9050446
http://dx.doi.org/10.1109/LGRS.2018.2795531
http://dx.doi.org/10.3390/rs9050498
http://dx.doi.org/10.13140/2.1.5015.9683
http://dx.doi.org/10.5194/isprs-annals-IV-2-W7-153-2019
http://dx.doi.org/10.1109/JSTARS.2017.2735443
http://dx.doi.org/10.1080/17538947.2015.1026420


Remote Sens. 2021, 13, 394 18 of 18

35. Grekousis, G.; Mountrakis, G.; Kavouras, M. An Overview of 21 Global and 43 Regional Land-Cover Mapping Products. Int. J.
Remote Sens. 2015, 36, 5309–5335. [CrossRef]

36. Ghosh, A.; Kumar, H.; Sastry, P. Robust Loss Functions under Label Noise for Deep Neural Networks. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.

37. Sukhbaatar, S.; Bruna, J.; Paluri, M.; Bourdev, L.; Fergus, R. Training Convolutional Networks with Noisy Labels. arXiv 2014,
arXiv:1406.2080.

38. Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang, I.; Sugiyama, M. Co-teaching: Robust Training of Deep Neural Networks
with Extremely Noisy Labels. In Proceedings of the 2018 Neural Information Processing Systems, Montreal, QC, Canada,
2–8 December 2018; pp. 8535–8545.

39. Mnih, V.; Hinton, G.E. Learning to Label Aerial Images from Noisy Data. In Proceedings of the 29th International conference on
machine learning (ICML-12), Edinburgh, Scotland, 26 June–1 July 2012; pp. 567–574.

40. Papandreou, G.; Chen, L.; Murphy, K.P.; Yuille, A.L. Weakly-and Semi-Supervised Learning of A Deep Convolutional Network
for Semantic Image Segmentation. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago,
Chile, 11–18 December 2015; pp. 1742–1750.

41. Bearman, A.; Russakovsky, O.; Ferrari, V.; Fei-Fei, L. What’s the Point: Semantic Segmentation with Point Supervision. In
Proceedings of the 2016 European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 549–565.

42. Dai, J.; He, K.; Sun, J. Boxsup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation. In
Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1635–1643.

43. Lin, D.; Dai, J.; Jia, J.; He, K.; Sun, J. Scribblesup: Scribble-Supervised Convolutional Networks for Semantic Segmenta-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
27–30 June 2016; pp. 3159–3167.

44. Chan, L.; Hosseini, M.S.; Plataniotis, K.N. A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different
Image Domains. arXiv 2019, arXiv:1912.11186.

45. Fu, K.; Lu, W.; Diao, W.; Yan, M.; Sun, H.; Zhang, Y.; Sun, X. WSF-NET: Weakly Supervised Feature-Fusion Network for Binary
Segmentation in Remote Sensing Image. Remote Sens. 2018, 10, 1970. [CrossRef]

46. Zhang, L.; Ma, J.; Lv, X.; Chen, D. Hierarchical Weakly Supervised Learning for Residential Area Semantic Segmentation in
Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2019, 17, 117–121. [CrossRef]

47. Adams, R.; Bischof, L. Seeded Region Growing. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 641–647. [CrossRef]
48. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmenta-

tion. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]
49. Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional

Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [CrossRef]
[PubMed]

50. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015—18th International Conference Munich,
Germany, 5–9 October 2015; Proceedings, Part III; pp. 234–241. [CrossRef]

51. Simon, J.; Michal, D.; David, V.; Adriana, R.; Yoshua, B. The One Hundred Layers Tiramisu: Fully Convolutional Densenets
for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
Honolulu, HI, USA, 21–26 July 2017; pp. 11–19.

52. Kolesnikov, A.; Lampert, C.H. Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation. In
Proceedings of the 2016 European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 695–711.

53. Krähenbühl, P.; Koltun, V. Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials. In Proceedings of the 2011
Neural Information Processing Systems, Granada, Spain, 12–17 December 2011; pp. 109–117.

54. Chih-Wei, H.; Chih-Chung, C.; Chih-Jen, L. A Practical Guide to Support Vector Classification. BJU Int. 2008, 101, 1396–1400.
55. Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable Classification with Limited

Sample: Transferring A 30-m Resolution Sample Set Collected in 2015 to Mapping 10-m Resolution Global Land Cover in 2017.
Sci. Bull. 2019, 64, 370–373. [CrossRef]

http://dx.doi.org/10.1080/01431161.2015.1093195
http://dx.doi.org/10.3390/rs10121970
http://dx.doi.org/10.1109/LGRS.2019.2914490
http://dx.doi.org/10.1109/34.295913
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1016/j.scib.2019.03.002

	Introduction
	Materials
	Study Area and Remote Sensing Data
	Points Training Set

	Methodology
	Initial Seed Generation Using Points Training Set
	Semantic Segmentation Model
	Seeded Loss
	Fully Connected CRF
	Seeded Region Growing (SRG)

	Results and Analysis
	Experimental Setup
	Implement Details
	Evaluation Metrics
	Test Set

	Experimental Results and Analysis
	Results of WTS and Compared Methods
	Results in Different Iterations of WTS


	Discussion
	Influence of Probability Threshold to Generate Initial Seed on Classification Result
	Influence of Fully Connected CRF on Classification Results

	Conclusions and Future Work
	References

