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Abstract: This study presents a demonstration of the applicability of machine learning techniques for
the retrieval of crop height in corn fields using space-borne PolSAR (Polarimetric Synthetic Aperture
Radar) data. Multi-year RADARSAT-2 C-band data acquired over agricultural areas in Canada,
covering the whole corn growing period, are exploited. Two popular machine learning regression
methods, i.e., Random Forest Regression (RFR) and Support Vector Regression (SVR) are adopted
and evaluated. A set of 27 representative polarimetric parameters are extracted from the PolSAR
data and used as input features in the regression models for height estimation. Furthermore, based
on the unique capability of the RFR method to determine variable importance contributing to the
regression, a smaller number of polarimetric features (6 out of 27 in our study) are selected in the
final regression models. Results of our study demonstrate that PolSAR observables can produce corn
height estimates with root mean square error (RMSE) around 40–50 cm throughout the growth cycle.
The RFR approach shows better overall accuracy in corn height estimation than the SVR method in
all tests. The six selected polarimetric features by variable importance ranking can generate better
results. This study provides a new perspective on the use of PolSAR data in retrieving agricultural
crop height from space.

Keywords: crop height; RADARSAT-2; corn; Synthetic Aperture Radar (SAR); PolSAR; machine
learning; RFR; SVR; agriculture

1. Introduction

Crop height is an important agronomic descriptor related to crop type, biomass
estimation, phenological stage, potential yield, detection of growth anomalies (e.g., diseases,
pests, weather disasters, and cereal lodging), and precision fertilization [1–3]. Traditional
methods to monitor crop height by visual inspection require a huge workforce over large
areas [4]. Synthetic Aperture Radar (SAR), with its capability of imaging in day and night
and all weather conditions and its sensitivity to the geometric and physical properties
of the target, has shown to be an effective remote sensing technique in crop biophysical
parameter retrieval at regional and global scales. For crop height estimation with SAR
observations, the approaches can be generally categorized into three types: backscattering
model methods, interferometric SAR (InSAR) methods, and data-driven empirical model
methods [1].
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The backscattering models for crop height retrieval include both physical models and
semi-empirical models. The physical model developed for crop height usually adopts a
discrete approach, such as the Radiative Transfer Theory Model (RTM), which is able to
simulate the backscattering coefficient for crop targets from the perspective of fine elec-
tromagnetic scattering as a function of various geometric and physical parameters of the
plant, such as canopy height, dielectric constant, number of layers and leaves, leaf angle
and size, stem width, and so on [5–12]. The physical scattering model usually depends on
the polarization and crop type. Due to the complexity of the physical scattering model,
crop height estimation may require computationally expensive Monte Carlo simulations
to relate the SAR measurements to parameters describing the entire canopy’s physical
characteristics [1]. Moreover, the inversion process of model parameters often leads to
ill-posed problems due to a high-dimensional parameter space [1,4,13,14]. Although the
merging of a metamodel (e.g., the polynomial chaos expansion (PCE)) with the backscat-
tering model enables a significant reduction of the computational cost and the complexity
involved in the inversion scheme, the growth stage needs to be identified in advance
to narrow the solution space [4,13,14]. For vegetation, the most popular semi-empirical
model is the Water Cloud Model (WCM) proposed by Attema and Ulaby [15]. Due to
its simplicity and practicability, the WCM has been extensively applied to soil moisture
estimation and to the retrieval of various vegetation biophysical variables, such as leaf area
index (LAI), aboveground biomass, and vegetation height [16–18]. However, the retrieval
results from the original WCM often show low accuracies attributed to many assumptions
and simplifications involved in the model. In past studies, many modifications of the
WCM have been developed by considering more complex scattering mechanisms or more
vegetation geometrical properties. Moreover, there were some studies reporting calibration
of the model coefficients of the WCM for specific areas, vegetation types, or SAR sensors
based on some ground measurements [19].

The InSAR method exploits the interferometric phase between two co-registered SAR
images acquired in the same polarization to capture the height of the scattering phase cen-
ter [20], which is approximately considered as the crop surface height in agricultural areas,
like a digital surface model. Then, an external digital terrain model (DTM), also called
vegetation-free digital elevation model (DEM), is required to derive the crop height itself [1].
In order to obtain accurate crop surface height, it needs some strict conditions in general.
For example, the available SAR data is expected to work with short wavelengths and ap-
propriate polarization to enable the scattering phase center to be located as close as possible
to the top of the canopy. For the same purpose, a structurally dense crop is required as well.
Since the crop height is usually very low with respect to forest height, a relatively large
spatial baseline is required to reduce the height of ambiguity. Moreover, a short enough
revisit time is expected to obtain high coherence since crop height is assumed unchanged
within this time interval. In addition, the quality of the DTM data used to remove the
underlying topography from crop surface height is also an unignorable factor. Although
recently, single-polarization InSAR data at the L- and P-band have proven its capability
to generate a comparable performance in DTM inversion in forest areas with respect to
the traditional PolInSAR method with fully polarimetric SAR data [21], currently, the
accurate DTM product over a vegetation area is mostly generated from other measurement
technologies, such as light detection and ranging(LIDAR), polarimetric SAR interferometry
(PolInSAR) [22–24], SAR Tomography (TomoSAR) [25], and field topographic mapping.
The PolInSAR method combines the interferometric and polarimetric information to bet-
ter separate the different scattering phase centers in the vegetation volume, which has
been demonstrated to be useful for estimating vegetation structural parameters [26,27].
For vegetation height estimation, the PolInSAR technique has been validated in a vari-
ety of forest types with many airborne and few spaceborne datasets at different radar
frequencies [22,23,28–39]. The performance is constrained by two key aspects: temporal
decorrelation and spatial baseline. A shorter revisit time is expected to provide higher
coherence, which is related to the quality of the interferometric phase [40]. A relatively
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large baseline is expected to provide enough sensitivity of height measurement. Since crops
grow faster and have shorter heights than forests, the availability of PolInSAR data for crop
height estimation is more constrained than for forest height inversion [1–3]. Until now, few
successful examples of crop height retrieval with the PolInSAR method are restricted to
data acquired in indoor experiments [41,42] and airborne campaigns [43,44]. With regard
to spaceborne datasets, several authors have reported successful results with a dataset
over paddy rice fields acquired from the science phase of the TanDEM-X mission (bistatic
configuration) from April to September 2015, being the baselines especially adjusted to ten
times the regular configuration, i.e., around 2–3 km [1,3]. Although the PolInSAR method
shows the capability to produce accurate estimates of crop height, currently the available
PolInSAR datasets for crop height monitoring are very limited.

Another available option to estimate crop height is the data-driven empirical model
method, which in this study refers to the use of a regression approach to train an empirical
model between some PolSAR observables and crop height. The unknown crop heights
in a scene are predicted by the trained regression model and the corresponding PolSAR
observables. A large number of previous studies have been reported to investigate the
correlations between PolSAR observables (e.g., backscattering coefficients, polarimetric
decomposition parameters, radar vegetation index, and correlation coefficients), and crop
parameters (e.g., LAI, PAI, biomass, phenological stages, canopy coverage, and crop height)
over different crop fields at different radar frequencies [45–54]. These research results
have shown the potential of PolSAR observables for crop parameter retrieval. However,
to date, there are few studies reporting crop height retrieval based on regression with
PolSAR observables [55–57]. In these studies, due to the limitation of images available and
field data collected, the volume of available observed samples for training is in general
relatively small. The crop types studied are also limited, such as sunflower, wheat, and
canola. Moreover, the number and types of selected PolSAR observables are limited,
and an empirical relationship model or linear/polynomial regression model is usually
chosen [55–57].

Due to the aforementioned limitations of the backscattering model methods and in-
terferometric SAR methods in practice, this study is focused on data-driven empirical
model methods. More specifically, the present study aims at providing a comprehensive
demonstration and validation of crop height retrieval of corn by exploiting a large num-
ber of PolSAR observables and ground measurements with machine learning regression
methods. A large dataset formed by multi-temporal C-band RADARSAT-2 (launched
by the Canadian Space Agency) images and quasi-synchronous in situ measurements of
crop height along three years over two geographically close study sites in Canada, with
similar agricultural practices and climatic conditions, are exploited here. Corn has been
chosen as the target crop for this experiment because it has significant socio-economic
interest for humans’ staple food, a raw material of ethanol and animal feed, and it is
the cereal with the highest production worldwide. Moreover, the height range of corn
during the whole growing period is relatively large, reaching over 3 m in our study at
the final stage, which results in more radar signature differences within the time-series
SAR acquisitions. In addition, radar response to corn with RADARSAT-2 data have been
well studied in previous literature [42,45,46,48,50,58–60]. Two typical machine learning
regression methods, i.e., Random Forest Regression (RFR) and Support Vector Regression
(SVR), are adopted for model training instead of linear regression. Moreover, the unique
ability of the RFR method to provide variable importance contributing to the regression
can help us understand the results and further investigate the performance after filtering
the selection of input PolSAR observables.

2. Materials and Methods
2.1. Study Site and Dataset

As shown in Figure 1, two geographically close sites both located in Southwestern
Ontario, Canada, were selected. One site was located in the west of London, and the other
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one was near Stratford. Both study sites were agricultural areas including mainly crop
fields, a few buildings, and forests. Corn, wheat, and soybean were the dominant crop
types in both study sites. There was also some alfalfa, hay, and grass growing in these areas.
Both study sites were suitable for cultivating crops because of abundant precipitation, mild
weather, and productive soil, with relatively flat topography. In both study areas, corn and
soybean were seeded in May and harvested in October of the same year. In contrast, the
winter wheat growing period crossed over two years, seeded in October and harvested in
July of the following year. It should be noted that in both study areas, crop rotation did
not need to be done in the same field. The farmers’ practice was to retain residuals for
soil conservation. Therefore, one crop field may harvest residuals from another crop field
from a previous year. For example, the cornfields may have residuals of wheat or soybean.
All cornfields employed for height inversion and the locations of the sample points for
collecting ground measurements are marked in green and red in Figure 1, respectively.

Figure 1. Locations and Pauli RGB images of the two study sites (Stratford and London). (a) Geographical locations of the
two study sites; (b) Pauli RGB image acquired on 26 June 2013 at the Stratford site; (c) Pauli RGB image acquired on 23 June
2015 at the London site; (d) Pauli RGB image acquired on 1 July 2018 at the London site. All boundaries of cornfields and
sample points for collecting ground measurements are highlighted in green and red, respectively. (RADARSAT-2 Data and
Products © MacDonald, Dettwiler and Associates Ltd. (2013, 2015, 2018)—All Rights Reserved. RADARSAT is an official
trademark of the Canadian Space Agency).
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In total, 19 scenes of Fine Quad-Pol Wide (FQW) RADARSAT-2 data acquired in 2013,
2015, and 2018 were employed in this study. More specifically, eight scenes were acquired
over the Stratford site in 2013 covering the whole corn growing period. Four scenes in 2015
and seven scenes in 2018 were acquired over the London site, which mainly covered the
late growth stages. Table 1 shows the acquisition dates, beam modes, incidence angles,
resolutions, and orbits of all RADARSAT-2 images.

Table 1. RADARSAT-2 Images and Ground Data Acquired for 2013, 2015, and 2018.

Date Mode Incidence Resolution Orbit Fieldwork Date Number of Corn
Sample Points

Average Corn
Height (cm) Study Site

23 May 2013 FQ9W 27.2 ~ 30.5 5.1 × 4.7 Ascending 24 May 2013 4 5.75

Stratford

2 June 2013 FQ19W 37.7 ~ 40.4 4.7 × 4.7 Ascending 4 June 2013 16 10.06
16 June 2013 FQ9W 27.2 ~ 30.5 5.1 × 4.7 Ascending 16 June 2013 17 25.13

26 June 2013 FQ19W 37.7 ~ 40.4 4.7 × 4.7 Ascending 24 June 2013/
25 June 2013 17 59.87

10 July 2013 FQ9W 27.2 ~ 30.5 5.1 × 4.7 Ascending 10 July 2013 17 142.29
20 July 2013 FQ19W 37.7 ~ 40.4 4.7 × 4.7 Ascending 21 July 2013 11 214.35

3 August 2013 FQ9W 27.2 ~ 30.5 5.1 × 4.7 Ascending 3 August 2013 13 254.84

13 August 2013 FQ19W 37.7 ~ 40.4 4.7 × 4.7 Ascending 13 August 2013/
14 August 2013 17 260.78

23 June 2015 FQ10W 28.4 ~ 31.6 5.5 × 4.7 Ascending 23 June 2015 25 88.44

London

10 August 2015 FQ10W 28.4 ~ 31.6 5.5 × 4.7 Ascending 11 August 2015 6 266.61
3 September 2015 FQ10W 28.4 ~ 31.6 5.5 × 4.7 Ascending 3 September 2015 6 265.61
13 September 2015 FQ20W 38.6 ~ 41.3 5.1 × 4.7 Ascending 13 September 2015 6 276.72

1 July 2018 FQ10W 28.4 ~ 31.6 5.5 × 4.7 Ascending 4 July 2018 24 182.07
25 July 2018 FQ10W 28.4 ~ 31.6 5.5 × 4.7 Ascending 25 July 2018 32 252.76

1 August 2018 FQ5W 22.5 ~ 26.0 5.0 × 4.7 Ascending 2 August 2018 32 275.22
18 August 2018 FQ10W 28.4 ~ 31.6 5.5 × 4.7 Ascending 18 August 2018 32 267.77
25 August 2018 FQ5W 22.5 ~ 26.0 5.0 × 4.7 Ascending 25 August 2018 8 214.99

1 September 2018 FQ1W 17.2 ~ 21.2 4.8 × 4.7 Ascending 1 September 2018 32 267.04
15 September 2018 FQ9W 27.3 ~ 30.5 5.1 × 4.7 Descending 11 September 2018 32 267.22

For each year, ground measurements including crop height, crop type, ground photos,
soil moisture, and crop phenological stage were recorded. Due to the limitations of weather
conditions, human resources, and other reasons, the in situ fieldwork was sometimes
not conducted on the exact dates that the RADARSAT-2 satellite overpassed. Since the
maximum offset of time was only three days (which occurred on 1 July 2018), it was
reasonable to assume that the corn heights did not change from the dates of satellite
acquisitions to the ground campaign dates. As it is shown in Table 1, the final number of
sample points for each image was different because of limitations due to weather conditions,
human resources, and other logistical reasons. For the field campaign in 2013, 17 sample
points per day within a maximum of five corn fields were selected for collecting ground
measurements. Finally, 112 corn sample points over the Stratford site were collected. For
the ground campaign in 2015, 25 sample points per day at a maximum of four cornfields
were selected to conduct measurements. In total, 43 corn sample points over the London
site were collected. For the ground campaign in 2018, 32 sample points per day in a
maximum of four cornfields were exploited. In total, 192 corn sample points over the
London site were collected. In summary, a total of 347 corn sample points were collected
from the multi-year fieldwork campaigns. Three replicate height readings per sample point
were carried out in 2013 and 2015, while twelve readings were conducted in 2018. The
measured corn height had a wide range, with values between 3.5 cm and 333.75 cm. The
average value of corn height of the ground samples on each fieldwork date ranged from
5.75 cm to 276.72 cm.

2.2. Polarimetric Observables

For a fully polarimetric SAR system, the acquired single look complex (SLC) data in
H-V polarization basis can be represented by a 2 × 2 scattering matrix, i.e., [61,62],

S =

[
SHH SHV
SVH SVV

]
(1)
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where Sij (i, j = H or V) represents the scattering coefficient from transmitted polarization
i and received polarization j. The scattering matrix S is used to describe a “pure single
target” or deterministic target. For distributed targets, typical in natural media, the second-
order statistics (covariance matrix or coherency matrix) are usually exploited to conduct
polarimetric analysis. Under the assumption of reciprocal scattering (SHV = SVH), the
lexicographic basis vector and the Pauli basis vector, respectively, can be expressed as [61,62]

kl =
[

SHH
√

2SHV SVV
]T

(2)

kP =
1√
2

[
SHH + SVV SHH − SVV 2SHV

]T (3)

Then, the corresponding covariance matrix C and the coherency matrix T are given
as [61,62]

C =
〈

klk∗Tl

〉
=

1
2


〈
|SHH |2

〉 √
2
〈
SHHS∗HV

〉 〈
SHHS∗VV

〉
√

2〈SHVS∗HH〉 2
〈
|SHV |2

〉 √
2
〈
SHVS∗VV

〉
〈SVVS∗HH〉

√
2
〈
SVVS∗HV

〉 〈
|SVV |2

〉
 (4)

T =
〈
kPk∗TP

〉
= 1

2


〈
|SHH + SVV |2

〉 〈
(SHH + SVV)(SHH − SVV)

∗〉 2
〈
(SHH + SVV)S∗HV

〉〈
(SHH − SVV)(SHH + SVV)

∗〉 〈
|SHH − SVV |2

〉
2
〈
(SHH − SVV)S∗HV

〉
2
〈
SHV(SHH + SVV)

∗〉 2
〈
SHV(SHH − SVV)

∗〉 4
〈
|SHV |2

〉
 (5)

Based on these polarimetric observation matrices, a large number of polarimetric
parameters can be extracted for crop monitoring applications [47,48,63,64]. According to
their wide usage in crop monitoring studies, a total of 27 polarimetric observables were
chosen in this study, as listed in Table 2. First, as the basic products provided by a fully
polarimetric SAR system, radar backscattering coefficients in co-polar channels (HH, VV)
and cross-polar channel (HV) were chosen, which corresponded to the diagonal elements
(C11, C22, C33) in the covariance matrix. Due to their clear physical interpretation in terms
of scattering mechanisms, radar backscattering coefficients in the Pauli channels were
considered, which could be extracted from the coherency matrix (T11, T22). The widely
used total backscattering power, SPAN, was also selected, which was extracted from the
sum of the diagonal elements in either the covariance matrix or the coherency matrix
(C11 + C22 + C33 or T11 + T22 + T33). The correlation and phase between polarimetric
channels (in both the linear and the Pauli basis) were also exploited, which provided addi-
tional information about the scattering from the scene. In past studies, these observables
have proven very useful for crop phenology monitoring and crop state detection based on
multi-temporal analysis of the radar polarimetric response [48,63,65–67]. They provided
four complex correlation coefficients, which resulted in eight real observables (ampli-
tudes and phases). Moreover, three backscattering ratios between different linear channels
(HH/VV, HV/HH, and HV/VV) were also considered, which had proven to be sensitive
to target characteristics. A widely used approach for generating polarimetric features is
polarimetric target decomposition, which can be generally categorized as either coherent
polarimetric decomposition or incoherent decomposition [61,62]. Due to the capacity to
describe distributed targets, incoherent polarimetric decomposition approaches are more
suitable for interpreting most nature targets [61,62]. They can be further divided into model-
based decomposition and eigenvector-eigenvalue based decomposition. As the pioneering
and one of the most popular model-based decomposition methods, the Freeman-Durden
three-component decomposition generates three scattering power parameters representing
surface, double-bounce, and volume scattering mechanisms, respectively (Freeman and
Durden, 1998), which were selected in this study. Additionally, three polarimetric parame-
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ters with clear physical meanings from the representative eigenvector-eigenvalue based
decomposition proposed by Cloude and Pottier were also used, including the polarimetric
scattering entropy H (the degree of scattering randomness in the scattering medium), the al-
pha angle α (the average dominant scattering mechanism), and the polarimetric anisotropy
A (the relative importance between the second and the third scattering mechanism) [68].

Table 2. List of 27 polarimetric observables selected in this study.

Polarimetric Observable Description

C11, C22, C33, Backscattering coefficients in the linear
polarization channels

T11, T22 Backscattering coefficients in the Pauli
polarization channels

SPAN Total backscattering power
|ρHHVV|, |ρHVVV|, |ρHHHV|, |ρHH+VV,HH−VV| Correlation between polarimetric channels

φHHVV, φHVVV, φHHHV, φHH+VV,HH−VV Phase difference between polarimetric channels
HH/VV, HV/HH, HV/VV Backscattering ratios

Ps, Pd, Pv

Scattering Power from different scattering
mechanisms derived from

Freeman-Durden decomposition

H, A, α Entropy, anisotropy, alpha angle from
Cloude-Pottier decomposition

|δ|, φδ, τ
Magnitude and phase of the particle scattering

anisotropy, the degree of orientation randomness
derived from Neumann decomposition

RVI Radar Vegetation Index

Another model-based decomposition, Neumann decomposition, is aimed at describ-
ing vegetation scattering by considering the morphological characteristics of vegetation
in scattering modeling [36,69,70]. It has shown the potential advantage of identifying
more types of volume scenes [71]. Moreover, two of its output parameters have proven
to provide physical meanings similar to Cloude-Pottier decomposition outputs [36,69,70].
A recent study has shown that the third parameter in the Neumann decomposition, the
phase of the particle scattering anisotropy, is more effective in improving the classification
accuracy with respect to the Cloude-Pottier decomposition [72]. Therefore, the three output
parameters from the Neumann decomposition were employed. In addition, the radar
vegetation index (RVI) [73] has shown high sensitivity to crop morphological features and
thus was also considered in this study.

For each RADARSAT-2 image, a series of preprocessing steps including calibration,
speckle filter, and geocoding was conducted. Sigma naught values were obtained by
the calibration. A 9 × 9 boxcar filter was applied to reduce the speckle noise. Then, a
coherency matrix was generated at each pixel. A Digital Elevation Model (PDEM) of
the Ontario province, Canada, with a spatial resolution of 30 m was used to geocode the
coherency matrix of each image in the Universal Transverse Mercator (UTM) geographic
reference. Afterward, 27 polarimetric features listed in Table 2 were extracted for each
image. The spatial resolution of all the polarimetric features was the same because they
followed the same processing. The final pixel spacing in the geocoded products was 10 m.
Furthermore, the corresponding feature vectors, for a total of 347 sample points during the
whole RADARSAT-2 acquisition period, were obtained based on the geolocation records of
sample points.

2.3. Machine Learning Method Used in This Study

Due to the high capacity of prediction, machine learning methods are frequently used
for classification and regression problems in remote sensing studies [74,75]. In particular,
support vector regression (SVR) and random forest regression (RFR) are two representative
examples in this domain and thus were considered for crop height retrieval in this study.
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2.3.1. Support Vector Regression (SVR)

SVR is the application of a well-known support vector machine model in regression,
which has been used in agricultural biophysical parameter estimation with remote sensing
data [76–78]. The core idea of SVR is to find an optimal approximating hyperplane to
distinguish the input vectors and the predictor variables based on training data, which
could be determined by solving a convex optimization problem. Theoretically, it is designed
to establish an optimal linear separator and hence is suitable for linear data distribution.
However, SVR can also handle nonlinear data distributions after embedded into a kernel
framework. With a kernel function, the training data are nonlinearly transformed from the
original space to a higher dimensional feature space. In this new space, the new data are
better conditioned to make use of a linear separator.

In this study, an IDL-based tool, named imageSVM developed as a non-commercial
product at the Geomatics Lab of Humboldt-Universität zu Berlin, specifically designed for
support vector machine classification and regression analysis of remote sensing data, was
used to carry out the SVR analysis. The radial basis function kernel, called the RBF kernel
or the Gaussian kernel, was adopted in the regression model. The kernel parameter, the
regularization parameter, and the Epsilon loss function parameter were required to be set
to parameterize the SVR. A cross-validation strategy to tune these three parameters was
used to reduce model overfitting.

2.3.2. Random Forest Regression (RFR)

Unlike SVR, RFR is an ensemble learning method, which uses the subset of the training
data to construct a set of decision trees and adopts various non-parametric predictive
models [79]. Like the morphological structure of a real tree, a decision tree includes a
root node, multiple internal nodes (splits), and various terminal nodes (leaves). Starting
from the root to a leaf, a set of decision rules is applied to subdivide the training data
into smaller subsets. The predictor variable is assigned as the leaf node. A strategy of
bootstrap sampling with replacement is used in RFR to create each individual decision
tree. The excluded samples, called out-of-bag samples, are used for model validation. The
final prediction is generated by averaging the results from individual decision trees to
obtain better prediction performance. In addition, a beneficial property of RFR is that it can
also provide estimates of variable importance in the regression, which allows for a better
understanding of the sensitivity of the input features to the predictor variable.

In this study, an IDL-based tool, imageRF [80], particularly designed for random forest
classification and regression analysis of remote sensing image data, was used to carry
out the RFR analysis. The number of decision trees was set to 200 based on the overall
consideration of the prediction accuracy and computation time. In the bootstrap sampling
for each decision tree, one-third of the training data were set as out-of-bag samples for
independent validation. The number of randomly selected features at each split node was
determined by the square root of all features.

2.3.3. Experimental Design

From Table 1, it is evident that the corn was very short on 23 May, 2 June, and 16
June in 2013. The main backscattering contribution came from the soil, influenced by soil
residual and tillage on these dates. The ground photos corresponding to these dates are
shown in Figure 2. For this reason, we first carried out the tests by excluding these three
observations. Consequently, 16 RADARSAT-2 images and 310 corn sample points were
used. In addition, we performed tests involving these three images and all sample points
(i.e., 19 RADARSAT-2 images and 347 sample points) and compared the results. In order to
construct a regression model, training samples were required for model calibration. For this
purpose, the sample points collected from multi-year fieldwork campaigns were randomly
divided into two parts. A portion of the samples was dedicated to training samples for
model calibration, while the remaining samples were assigned as testing samples for model
validation. In our study, 80% of samples were used for calibration and 20% for validation.
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It is a common fact that the calibration and prediction accuracies of the regression model
can be affected by features of training and testing samples including their distribution and
numbers. In order to simulate more random scenarios and investigate the uncertainty of the
accuracy, a strategy of bootstrap sampling with replacement was used. As some training
samples may have been recycled using this strategy, samples were generated multiple
times by random sampling to reduce bias in height estimation [81]. The entire sample
points including both short and tall corn heights were considered in the bootstrap sampling
method. In total, 10 realizations of random sampling (hereafter named as scenarios) were
carried out for generating different datasets for training and testing.
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3. Results.
3.1. Comparison between SVR and RFR

For each dataset, SVR and RFR were conducted. The statistical analysis of model
calibration and validation for each dataset with both regression algorithms is shown in
Table 3. As expected, results appear varied in different scenarios, which can be attributed
to the dependence of the regression model accuracies on the training and testing sets.
The results of RFR were generally better than the ones of SVR. RFR obtained overall
lower values of root mean square error (RMSE) and higher values of Pearson correlation
coefficient (R), despite an opposite behavior for scenario 8. For model calibration, the
differences between the performances of both regression algorithms were notable (average
RMSE = 22.36 cm for RFR and RMSE = 44.12 cm for SVR), whereas small differences were
observed for model validation (average RMSE = 50.40 cm for RFR and RMSE = 54.69 cm
for SVR).
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Table 3. Statistics of model calibration and validation for 10 different datasets with Support Vector Regression (SVR) and
Random Forest Regression (RFR) in case of using all 27 polarimetric variables.

Scenario

Model Calibration Model Validation

SVR RFR SVR RFR

RMSE (cm) R RMSE (cm) R RMSE (cm) R RMSE (cm) R

1 42.05 0.84 22.15 0.98 56.61 0.64 52.81 0.74
2 43.04 0.82 23.01 0.98 49.64 0.76 48.73 0.85
3 51.14 0.75 22.65 0.98 51.35 0.75 49.27 0.82
4 43.10 0.82 22.53 0.98 49.62 0.76 49.83 0.82
5 41.27 0.84 21.95 0.98 58.49 0.64 51.73 0.78
6 41.28 0.84 21.98 0.98 58.49 0.64 51.82 0.78
7 50.37 0.75 22.19 0.98 54.17 0.75 50.93 0.80
8 42.59 0.83 22.35 0.98 48.92 0.81 51.10 0.80
9 43.08 0.82 22.28 0.98 49.63 0.76 48.82 0.84
10 43.30 0.82 22.51 0.98 49.56 0.76 48.99 0.84

Average 44.12 0.81 22.36 0.98 54.69 0.73 50.40 0.81

In addition to the statistical indices shown in Table 3, Figure 3 illustrates the scatter
plots of measured and predicted corn height obtained with both SVR and RFR methods
in scenario 2, in which the regression produced the overall best accuracies. The RFR
results exhibited a higher correlation than the results from SVR in both model calibration
(see Figure 3a,c) and model validation (see Figure 3b,d). In detail, the model of RFR, in
general, yielded overestimated values for lower corn height, while underestimation was
observed for higher corn height (taller than around 225 cm). The SVR model generated
overestimation and underestimation results for either lower corn height or for higher corn
height, while a larger underestimation appeared for higher corn height.
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3.2. Normalized Variable Importance of RFR

As explained above, the Random Forest algorithm can provide the relative importance
of different input variables to the classification or regression accuracy. Therefore, this
interesting property of RFR was been also used for further analysis.

Since RFR was carried out under 10 different scenarios and 27 input polarimetric
observables were selected in our study, the output values of normalized variable impor-
tance of RFR regression for each scenario were variable. It is difficult and unfair to analyze
the variable importance using values from one specific scenario. For this reason, Figure 4
shows the ranking of the importance of each polarimetric observables in the regression
based on the average values of output normalized variable importance for the 10 scenarios.
For better visualization, the parameters belonging to the same or similar group are marked
with the same color. The contribution of the double-bounce component (Pd) from the
Freeman-Durden decomposition was the most important variable among the selected
27 polarimetric observables. It demonstrated a strong correlation between double-bounce
scattering and crop height. Moreover, considering the polarimetric decompositions used
in this study, parameters from the Freeman-Durden decomposition appeared to be more
relevant than parameters from the Neumann and Cloude-Pottier decompositions. The
reasons may be attributed to the nature of the Freeman-Durden decomposition models,
which are physically based rather than purely mathematical as in the Cloude-Pottier de-
composition. Hence, its applicability is more general than the Neumann decomposition
that assumes the dominance of volume scattering, which is not always the case for crops.
In particular, the contribution of the volume scattering component (Pv) from the Freeman-
Durden decomposition took second place in the variable importance ranking, just after
Pd. Notably, the polarimetric anisotropy contributed more entropy and alpha angle from
Cloude-Pottier decomposition.

The magnitude of the degree of orientation randomness of the particle scattering
anisotropy was the most important variable from the Neumann decomposition. Among
the backscattering coefficients, C22 played the most important role, which was highly
related to the volume scattering component Pv, and took third place in the ranking. C33,
which represented the VV polarization, showed less contribution and was placed in the last
position among the linear backscattering coefficients. T22 was the second most important,
and was highly related to the double-bounce scattering component Pd, which took fourth
place. The total scattering power SPAN ranked behind T22 but was still at the front
position. Among the backscattering ratios, HV/HH was the most important parameter,
and the corresponding contribution was significantly larger than the other two linear ratios.
Although co-polar correlation magnitude |ρHHVV | took up a middle position similar to RVI
in the ranking, most correlation magnitudes and polarimetric phases contributed less to
the regression and were found at the end of the importance list. From the aforementioned
analysis, it was clear to see that SAR parameters related to the double bounce and volume
scattering components (e.g., Pd, Pv, C22, T22) showed high sensitivity to crop height and
strongly drove height estimation for the RFR method. The reasons may be attributed to
the nature of the scattering mechanisms which interact differently with different plant
structures (e.g., stem, flower, leaf, tassel) as the crop development advances. For example,
double-bounce and volume scattering components vary significantly with crop growth
stages, which generally are low in the early stage and high in later development stages
(e.g., stem elongation, tassel, and stigmata emergence).
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4. Discussion
4.1. Tests with Fewer Polarimetric Observables

It is well known that using more features does not always generate better regression
accuracies because of redundant or correlated information. Therefore, it is interesting to
further check the regression accuracies in case fewer polarimetric observables can be used.
From the diagram of variable importance ranking shown in Figure 3, the contributions
of the first six polarimetric variables are obviously larger than the rest of the variables.
Therefore, additional RFR tests were conducted by using only the first six polarimetric
variables (i.e., Pd, Pv, C22, T22, HV/HH, and SPAN). At the same time, corresponding
SVR tests were also carried out for comparison purposes. The statistical analyses of model
calibration and validation for 10 different scenarios with SVR and RFR are presented in
Table 4. It is apparent that regression estimation accuracies of SVR and RFR improve
with respect to the previous results for each scenario in Table 3, even though sometimes
model calibration accuracies decrease slightly. As in the previous results, RFR provides
better accuracies than SVR in most scenarios. The differences between the two machine
learning regression methods are smaller in the case of using fewer polarimetric variables.
The average values of RMSE and R with RFR prediction are 47.76 cm and 0.79, while the
corresponding values are 47.90 cm and 0.78 with SVR prediction, respectively. The best
regression estimation results were produced in scenario 1 with RFR. The corresponding
values of RMSE and R reach 42.69 cm and 0.84, respectively. To further analyze the results
in scenario 1, the scatterplots of measured and estimated corn height with SVR and RFR
methods are presented in Figure 5. The patterns of model calibration are similar to the
ones shown in Figure 3. The overall distributions of RFR and SVR estimation results show
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similar patterns, in which overestimation is mostly observed for lower corn height, and
underestimation is observed for taller corn height. To analyze the SVR and RFR results at
different stages of corn growth and maintain sufficient samples for statistics, the simple
division method for growth stages of corn proposed in [48] was adopted. The corn height
of less than 150 cm is addressed as the early stage, and height that is taller than 150 cm
is defined as the later stage [48]. After calculation of values of RMSE and R, statistics of
model validation at an early stage and later stage for 10 different scenarios with SVR and
RFR are presented in Table 5. It is clear to see that the results of SVR and RFR are better at
the later stage than the ones at the early stage.

Table 4. Statistics of model calibration and validation for 10 different datasets with SVR and RFR in case of using the top six
polarimetric variables in the variable importance ranking.

Scenario

Model Calibration Model Validation

SVR RFR SVR RFR

RMSE (cm) R RMSE (cm) R RMSE (cm) R RMSE (cm) R

1 46.42 0.79 22.33 0.97 45.45 0.79 42.69 0.84
2 49.14 0.76 22.69 0.97 48.04 0.78 47.81 0.79
3 45.84 0.79 21.91 0.97 50.75 0.74 48.07 0.78
4 45.73 0.79 22.04 0.97 46.20 0.80 48.12 0.79
5 45.34 0.81 21.53 0.97 53.89 0.72 50.68 0.74
6 48.69 0.77 21.28 0.97 51.57 0.73 51.29 0.73
7 45.81 0.80 22.42 0.97 45.38 0.81 46.14 0.82
8 45.82 0.80 22.44 0.97 45.38 0.81 47.07 0.81
9 45.71 0.79 22.31 0.97 46.14 0.80 47.72 0.79
10 45.74 0.79 22.36 0.97 46.22 0.80 48.01 0.79

Average 46.42 0.79 22.13 0.97 47.90 0.78 47.76 0.79
Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 5. Comparison between measured and estimated corn height with scenario 1 in Table 4: (a) calibration of the RFR 
model; (b) validation of the RFR model; (c) calibration of the SVR model; (d) validation of the SVR model. 

Based on the regression model, a corn height map can be generated on each date. For 
example, the map of estimated corn height on 15 September 2018 is presented in Figure 6. 
Locations of four cornfields and eight sample points in each field are marked on the map. 
The estimated corn height ranges between 80 and 295 cm. Considering most cornfields 
are at the late crop growing stage on that date, the results of estimated height are under-
estimated which is consistent with the previous analysis. In addition, the values of esti-
mated height somehow show variation among different fields, which can be attributed to 
the diversity of cornfield conditions, such as soil moisture and roughness, topography, 
precipitation, and fertilization. Table 6 shows the measured and estimated corn heights in 
32 sample points. The difference is very small at some points and large at other points. 
The calculated RMSE and R values are 32.61 cm and 0.59, respectively. 

Table 6. The measured and estimated corn heights of 32 sample points on 15 September 2018 based on RFR model predic-
tion. 

Field Name Corn Height (cm) 1 2 3 4 5 6 7 8 

C1 Measured 274.83 251.5 295.17 286.83 290.67 285.5 235.75 271.41 
Estimated 252.55 228.26 283.05 275.69 279.13 274.72 244.21 263.61 

C2 
Measured 273.92 301 371.58 260.42 241.08 283.17 298.75 283.92 
Estimated 255.66 259.90 255.99 255.32 244.74 273.18 282.48 227.11 

C3 Measured 255.75 251.67 219.83 248.08 162.5 220.67 253.5 204.33 
Estimated 258.35 261.41 228 232.20 199.91 254.53 248.51 261.60 

C4 Measured 276.25 288.50 290.75 288.08 296.58 298.92 306 284.25 
Estimated 270.46 280.46 246.22 252.87 255.87 284.98 268.49 262.39 

RMSE (cm) 32.61 
R 0.59 

Figure 5. Comparison between measured and estimated corn height with scenario 1 in Table 4: (a) calibration of the RFR
model; (b) validation of the RFR model; (c) calibration of the SVR model; (d) validation of the SVR model.



Remote Sens. 2021, 13, 392 14 of 19

Table 5. Statistics of model validation at two different growing stages for 10 different datasets with SVR and RFR in case of
using the top six polarimetric variables in the variable importance ranking.

Scenario

Model Validation

SVR (Height < 150 cm) SVR (Height > 150 cm) RFR (Height < 150 cm) RFR (Height > 150 cm)

RMSE (cm) R RMSE (cm) R RMSE (cm) R RMSE (cm) R

1 53.91 0.52 43.41 0.27 62.02 0.51 37.23 0.40
2 59.61 0.16 45.16 0.32 49.19 0.64 47.51 0.26
3 44.46 0.80 52.01 0.10 48.47 0.92 47.98 0.10
4 51.75 0.34 44.91 0.35 50.71 0.58 47.55 0.26
5 55.13 0.76 53.49 0.31 68.37 0.72 43.55 0.30
6 60.29 0.67 48.46 0.35 66.06 0.71 45.58 0.26
7 59.99 0.37 41.99 0.47 64.46 0.48 41.71 0.41
8 59.99 0.37 41.99 0.47 64.59 0.49 42.89 0.38
9 51.76 0.34 44.84 0.35 49.00 0.60 47.44 0.28
10 51.75 0.34 44.94 0.35 51.06 0.63 47.33 0.28

Average 54.86 0.47 46.12 0.33 57.39 0.63 44.88 0.29

Based on the regression model, a corn height map can be generated on each date.
For example, the map of estimated corn height on 15 September 2018 is presented in
Figure 6. Locations of four cornfields and eight sample points in each field are marked
on the map. The estimated corn height ranges between 80 and 295 cm. Considering most
cornfields are at the late crop growing stage on that date, the results of estimated height are
underestimated which is consistent with the previous analysis. In addition, the values of
estimated height somehow show variation among different fields, which can be attributed
to the diversity of cornfield conditions, such as soil moisture and roughness, topography,
precipitation, and fertilization. Table 6 shows the measured and estimated corn heights in
32 sample points. The difference is very small at some points and large at other points. The
calculated RMSE and R values are 32.61 cm and 0.59, respectively.

Table 6. The measured and estimated corn heights of 32 sample points on 15 September 2018 based on RFR model prediction.

Field
Name

Corn
Height

(cm)
1 2 3 4 5 6 7 8

C1
Measured 274.83 251.5 295.17 286.83 290.67 285.5 235.75 271.41
Estimated 252.55 228.26 283.05 275.69 279.13 274.72 244.21 263.61

C2
Measured 273.92 301 371.58 260.42 241.08 283.17 298.75 283.92
Estimated 255.66 259.90 255.99 255.32 244.74 273.18 282.48 227.11

C3
Measured 255.75 251.67 219.83 248.08 162.5 220.67 253.5 204.33
Estimated 258.35 261.41 228 232.20 199.91 254.53 248.51 261.60

C4
Measured 276.25 288.50 290.75 288.08 296.58 298.92 306 284.25
Estimated 270.46 280.46 246.22 252.87 255.87 284.98 268.49 262.39

RMSE (cm) 32.61
R 0.59

4.2. Tests with All Images Including Very Short Corn Height

In previous tests, the first three images in 2013 are excluded due to their very short
corn height. It is interesting to check the performance when all images, including very
short corn height, are used. Ten realizations of SVR and RFR tests were carried out again,
respectively. As in previous tests, 80% of samples were used for calibration and 20% for
validation. However, 19 RADARSAT-2 images and 347 corn samples were used this time.
The statistical analysis of model calibration and validation for each dataset with both
regression algorithms is shown in Table 7. As expected, the results still show variation
in different scenarios and the results of RFR are better than SVR. However, the values of
RMSE and R are worse than the results in Table 3 (using 16 RADARSAT-2 images with
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310 corn samples). The average values of RMSE and R for RFR in model validation are
54.55 cm and 0.83, and the values for SVR are 56.75 cm and 0.80, respectively. It somehow
indicates the limitation of this kind of regression methods, i.e., very short height will affect
the accuracy of estimation.
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Table 7. Statistics of model calibration and validation for 10 different datasets with SVR and RFR in case of using all
27 polarimetric variables and all 19 RADARSAT-2 images.

Scenario

Model Calibration Model Validation

SVR RFR SVR RFR

RMSE (cm) R RMSE (cm) R RMSE (cm) R RMSE (cm) R

1 48.63 0.87 22.38 0.99 58.81 0.80 54.41 0.84
2 48.53 0.86 22.63 0.99 58.75 0.82 55.62 0.86
3 50.05 0.86 22.22 0.99 59.87 0.75 54.56 0.83
4 50.45 0.87 22.78 0.99 54.37 0.76 52.98 0.78
5 49.09 0.87 22.20 0.99 55.16 0.79 54.73 0.84
6 48.27 0.87 22.18 0.99 57.64 0.83 57.62 0.84
7 49.13 0.86 23.05 0.99 53.44 0.85 53.15 0.88
8 49.95 0.86 22.43 0.99 54.86 0.76 50.65 0.82
9 48.51 0.87 22.14 0.99 56.53 0.81 55.59 0.82
10 49.23 0.86 22.47 0.99 58.05 0.78 56.20 0.83

Average 49.18 0.87 22.45 0.99 56.75 0.80 54.55 0.83

4.3. Limitations and Future Research

In this study, two common machine learning techniques used for scientific purposes,
i.e., RFR and SVR, were evaluated for crop height estimation of corn from multi-year
RADARSAT-2 polarimetric observables. There are some limitations to these methods.
Firstly, the methods depend on the availability of a large number of sample data and a
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good sample distribution. In our case, although the number of samples is large, corn
samples have more values of heights taller than 2 m and fewer values between 1 m and
2 m. This might affect the accuracy of model calibration and estimation. Secondly, the
output results somehow show overestimation and underestimation. The results show
worse performance at the early growth stages, especially in the case of estimating very
short crop height. Applying piecewise regression methods at different growing stages may
improve the results. Third, the PolSAR data are acquired in different modes with different
incidence angles, which might also influence the accuracy of estimation. Additionally,
field conditions such as soil moisture, irrigation, and fertilization, may also affect the
estimation results.

Future work will focus on testing these techniques for height estimation of other crop
types, such as wheat, soybean, and rice. Moreover, it is worth investigating how changes
in crop physiology associated with crop development and precipitation (or irrigation
regimes) could contribute to changes in the priority of different PolSAR parameters as the
crop matures along the full season. Tests and analysis with PolSAR data at other radar
frequencies (such as TerraSAR-X at X band, ALOS-2 at L band) over different sites will also
be investigated in future research.

5. Conclusions

This study presents a demonstration of crop height retrieval based on space-borne
PolSAR data with machine learning techniques. The techniques have been tested with
RADARSAT-2 data in cornfields covering the whole corn growing period. The potential
of two popular machine learning regression algorithms (SVR and RFR) was investigated,
including an identification of the relevant features by means of the normalized variable
importance of RFR. A set of 27 representative PolSAR observables was initially selected
and analyzed in this work. The results show a satisfactory prediction performance for corn
height mapping at a large scale, with RMSE around 40–50 cm considering the whole growth
cycle, with corn height over 3 m at late stages. The RFR approach overall outperforms the
SVR method in all tests. The best result is generated by the RFR method when selecting a
subset of six polarimetric features, with an RMSE of 42.8 cm, which indicates that fewer
selected polarimetric features can generate better results than using all features. Regarding
the analysis of the relative importance of all polarimetric features considered, results
highlight that parameters related to double-bounce and volume scattering are the most
important polarimetric features for corn height estimation. In addition, the HV/HH ratio
appears to be the most representative among all three backscattering ratios. Compared with
past studies on crop height retrieval with SAR data, this research provides a potentially
efficient method and a new perspective on the use of PolSAR data.
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