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Abstract: Passive seismic experiments have been proposed as a cost-effective and non-invasive
alternative to controlled-source seismology, allowing body–wave reflections based on seismic in-
terferometry principles to be retrieved. However, from the huge volume of the recorded ambient
noise, only selected time periods (noise panels) are contributing constructively to the retrieval of
reflections. We address the issue of automatic scanning of ambient noise data recorded by a large-N
array in search of body–wave energy (body–wave events) utilizing a convolutional neural network
(CNN). It consists of computing first both amplitude and frequency attribute values at each receiver
station for all divided portions of the recorded signal (noise panels). The created 2-D attribute maps
are then converted to images and used to extract spatial and temporal patterns associated with
the body–wave energy present in the data to build binary CNN-based classifiers. The ensemble of
two multi-headed CNN models trained separately on the frequency and amplitude attribute maps
demonstrates better generalization ability than each of its participating networks. We also compare
the prediction performance of our deep learning (DL) framework with a conventional machine
learning (ML) algorithm called XGBoost. The DL-based solution applied to 240 h of ambient seismic
noise data recorded by the Kylylahti array in Finland demonstrates high detection accuracy and the
superiority over the ML-based one. The ensemble of CNN-based models managed to find almost
three times more verified body–wave events in the full unlabelled dataset than it was provided at
the training stage. Moreover, the high-level abstraction features extracted at the deeper convolution
layers can be used to perform unsupervised clustering of the classified panels with respect to their
visual characteristics.

Keywords: interferometry; ambient noise; convolutional neural network; deep learning; detection;
data selection; body–wave; passive seismic monitoring

1. Introduction

The demand for cost-effective exploration technologies that could characterize geolog-
ical structures with minimum impact on the environment has drawn considerable attention
to seismic imaging methods employing uncontrolled sources. It is possible to mimic, to
some extent, controlled-source seismic data at the site where a passive seismic experiment
is carried out by applying seismic interferometry (SI) to ambient noise recordings [1]. As
long as the wavefield is diffuse, ambient noise SI (ANSI) allows the impulse response of
a medium to be extracted from the noise recorded at two receivers based on their aver-
aged cross-correlation as if one of them was a source [2–4]. SI by cross-correlation, as an
alternative to active-source reflection seismic surveys, has been successfully applied in
numerous studies ranging from subsurface imaging [5–12] for monitoring purposes [13,14].
If the required condition of diffuse wavefield is met, the recovered response is regarded to
represent empirical Green’s function (EGF) accounting for both surface and body wave
propagation in the medium between two receivers [15]. The EGF can be retrieved either
from multiply scattered waves by stacking all short-duration cross-correlation functions
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(CCFs) over a sufficiently long period of time [15] or from waves produced by some specific
uncontrolled sources [16]. The latter approach offers a solution without the need to conduct
long-term data acquisition. The main idea is the selective stacking of CCFs that are coherent
to each other, for instance, only those related to body or surface waves, and rejecting the
time segments dominated by sources located outside the stationary-phase regions [17].

Concurrent development of acquisition techniques, such as a new generation of
accelerometers based on a micro-electromechanical system (MEMS) [18] or fiber optic-
distributed acoustic sensing (DAS) [19], has lowered the cost of low-power sensors and
made it more feasible to deploy arrays that are dense enough to collect high-frequency
seismic data free from spatial aliasing. However, as the number of simultaneously record-
ing sensors (channels) is growing, the volume of data starts to surpass the processing
capabilities of techniques that require human interaction [20]. The rapid increase in the
number of large seismic datasets [21] requires new strategies and methods that would make
it feasible to automate the execution of processing workflows and reduce the turnaround
time. In the case of ambient noise recordings focused on body–wave reflection retrieval, the
selective-stacking approach can be automated and improved by introducing the algorithms
that could sift through massive volumes of continuous data in order to identify coherent
noise sources, which contribute constructively to the stacked EGFs. The automatic detec-
tion of noise records (noise panels) containing body–wave energy (hereinafter referred to as
body–wave events) evaluated using large-N (i.e., large receiver number) array was already
tackled by Chamarczuk et al. [22], who applied support vector machine (SVM), a super-
vised machine-learning (ML) algorithm, in combination with a cross-correlated wavefield
evaluation in the tau-p (intercept time—slowness) domain and predefined body–wave
velocity limits. Recently, deep learning approaches have been also utilized for detection
purposes in passive seismic recordings. However, they are restricted only to the extraction
of surface waves from DAS data [23–25] or earthquake-induced seismicity [26–35]. The
other demonstrated solutions for data selection are mostly semi-automatic and/or per-
formed on preprocessed and cross-correlated data, which in turn requires extra operator
workload and computational cost. Examples of these methods are based on instantaneous
phase coherence [36], statistical time-series classification [37], illumination diagnosis [38],
asymmetry of CCFs [39], local similarity function [40], or on signal-to-noise ratio (SNR)
criterion [41–44].

In this study, we employ the convolutional neural network (CNN) with the specific
Visual Geometry Group (VGG) building blocks introduced in [45] to develop a predictive
model for the near real-time body–wave event detection in passive seismic data. We exploit
the fact that coherent signals have certain identifiable temporal and spatial characteristics
as the signals move across the array. These characteristics can be well represented by the
basic frequency and amplitude attribute maps computed sequentially for the whole array
in consecutive short time segments (noise panels) and used as feature providers for training
and prediction purposes with a CNN algorithm. Once the model is learned, it allows for
the fast and robust binary classification of noise panels on the basis of their body and
surface energy image content prior to the cross-correlation operation. We also show that
the deep features of the input images extracted by keeping the activation values of the last
pooling layer might be utilized for grouping the identified body–wave events according
to the similarity of their visual characteristics. The verified application of our approach is
limited to the high-density seismic surveys, but if that is not the case, the proposed model
creation scheme can be still potentially adapted in other settings. What is more, we provide
our codes publicly via the Jupyter notebooks and the GitHub platform to facilitate the
reproduction of our results (see link in Supplementary Materials).

The paper is organized as follows. First, we introduce the dataset and signal processing
techniques for deriving the attribute maps. Then, we describe the model building process
with special emphasis on the implementation of VGG architecture. Subsequently, we
apply the proposed CNN-based models to the field data recordings and confront its
performance with the gradient-boosting classifiers trained on the flattened attribute maps.
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Finally, we demonstrate unsupervised clustering of neuron activations and conclude on the
effectiveness of the proposed CNN-based approach in terms of automatic event detection.

2. Dataset and Attribute Maps

The Kylylahti large-N array (see Figure 1a for the layout) was deployed in the vicinity
of the polymetallic underground Kylylahti mine in Polvijärvi (Eastern Finland) as a part
of the COGITO-MIN project. Its primary purpose was to advance the development of
ANSI imaging techniques for mineral exploration and provide a baseline for testing novel
array-processing techniques. The Kylylahti array was formed by 994 receiver stations
distributed regularly over a 3.5 × 3 km area with 200 m line spacing and 50 m receiver
interval. Surface conditions varied from exposed bedrock to swamps. Each receiver station
consisted of a Geospace GSR recorder and 6 × 10-Hz geophones bunched together and
buried whenever possible, and it was recording at a 2-millisecond sample rate for about
20 h/day. In this work, we analyze the dataset containing 240-h long time series resampled
to 4 ms, which sums to almost 214 billion samples for all available stations. The time series
acquired by the sensors are arranged in a two-dimensional data array, with a dimension
of time (samples) and a dimension of space (channels). The measurement channels are
numbered from 1 to 994 in a line-wise manner starting with the first seismic sensor unit
in the profile L01 and ending with the last seismic sensor in the profile L19. Besides the
advantage of high-resolution imaging obtained by the measurements that are densely
spaced both in the inline and crossline directions, like in the case of the Kylylahti array,
these datasets can be also potentially treated as images for deep learning purposes if they
are appropriately represented.
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Figure 1. (a) Map of the study region. Red and black dots are the receivers forming the Kylylahti array. To maintain
an equal number of receiver stations per seismic line, some of the receivers (depicted in red) are skipped and do not
contribute to the computation of attribute maps. The red dashed line represents the contour enclosing all the receiver lines
of the array (labeled as L01–L19). The inset shows an outline map of Finland and the location of the plotted region (red
square). (b) Matrix representation of the subsampled Kylylahti array. Each of the selected receiver stations is mapped to the
corresponding cell number (hereafter referred to as a receiver identification number). The rectangular shape of cell tiles is
caused by duplication of each row (receiver line). It is needed to match the number of columns (receivers) and preserve the
aspect ratio of a square.
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To tackle the task of automatic pattern recognition in seismic signals using a CNN
algorithm, it is required to transform the analyzed signals from their non-image form to
image frame type data. Although the most straightforward way of achieving that is the
direct plot in the time–space domain of the noise recorded along the seismic lines, it might
be quite cumbersome to accomplish, especially for passive seismic experiments due to a
relatively small number of receiver stations per line, as compared to active surveys, and
the implied lack of controlled sources illuminating the subsurface or interference factors.
In many cases, the image patterns evaluated along the single receiver line might be not
evident or ambiguous due to their complexity. Thereby, the training dataset constructed
from the straightforward visual representations of combined uncorrelated ambient noise
measurements could lead to biased prediction models that do not perform well in practice.
Here, we address the issue of generalizability by combining the individual seismic trace
characteristics into the map-like representation of noise panels. The resulting maps not
only reduce the redundant and incoherent information contained in passive seismic data
but also provide a comprehensive approach for the simultaneous analysis of signals across
a dense seismic array. First, we segment a continuous recording at a receiver station into
separate intervals (here we use 10-s long ones), and apply signal transformations (Figure 2)
to derive their single value characteristics suitable for populating the two-dimensional data
structure called an attribute matrix. This procedure is repeated for all selected receivers
in the seismic array. The selection is necessary in order to match the number of attribute
values (matrix columns) to the number of seismic lines (matrix rows) or multiples of their
quantity. In such a way we get the square matrix that can be directly saved as an image,
referred to as an attribute map. In the case of the Kylylahti array, we select 722 receivers
(out of 994) (Figure 1a) for the calculation of attribute values representing frequency and
amplitude information extracted from segmented seismic signals (Figure 2). To reveal the
frequency characteristics, we compute the amplitude spectra of these fragmented signals
and then sum the resulting amplitudes in the following frequency ranges: 10–20, 20–30, and
30–40 Hz (Figure 2d,g). The inspection of manually detected body–wave events showed
that their bandwidth overlaps mostly with these defined frequency bands. We also tested
narrower intervals, like, for instance, bins spaced every 5 Hz from 10 to 50 Hz, but the
corresponding frequency maps turned out to be too similar to each other to deliver a
meaningful improvement in detection capabilities over the prediction model utilizing only
three 10-Hz-wide intervals.

Prior to the extraction of the remaining attributes used in this study, the input signals
are normalized by the root-mean-square (RMS) value to equalize the amplitude. It allows
for the comparison of signals recorded by various receiver stations at different times
during the measurement period. Analogously to the frequency attributes, we derive three
amplitude characteristics from each RMS-scaled signal. The first one is the maximum
absolute value (Figure 2b, a) and two others determine the number of samples of the signal
envelope that fall in the percentile range 0–33th and 33–66th (Figure 2c,f). The envelope
amplitudes above the percentile 66th correspond mostly to the signals without coherent
energy, and thus this range can be skipped. We employ the envelope in our analysis to
better discriminate between the coherent and the incoherent signals depicted as gray and
black lines in Figure 2c, respectively.
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Figure 2. Computation of attribute values for a single trace in a noise panel (defined as recording segment of 10 s for a
single receiver station). (a) Unscaled input signals. The gray and black curve represents the signal with identified coherent
wave arrivals and random background noise, respectively. The following subfigures are displayed using the same colour
convention. (b) The absolute values of the RMS-scaled signals of (a). (c) The envelope values of the RMS-scaled signals
of (a). The colour shading corresponds to the three amplitude ranges. (d) The amplitude spectra. The colour shading
corresponds to the three frequency ranges. (e) The maximum values of (b) are shown as star markers. (f) The histograms of
samples in (c) that fall in each specified amplitude range. (g) The bar plots describe the amplitude spectra of (d) summed in
each specified frequency range. (h) The feature matrix, derived from (e–g).

Once a single noise panel is characterized by the attributes (Figure 2h) computed for
all selected receiver recordings, they are mapped to the corresponding cell number in the
attribute matrices and plotted with a chosen colour palette. The resulting attribute maps are
then used to form the training dataset and to serve as an input to the final prediction model.
As shown in Figure 3, the attribute maps generated for the ten hand-picked body–wave and
non-body–wave panels provide a robust spatio-temporal descriptor of the multi-scattered
energy in passive seismic data.
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in which derivation of the attribute values (ATVs) is shown in Figure 2. The attribute maps on the left are the examples
of the body–wave image class in the labeled training set while the attribute maps on the right demonstrate the “noise”
image class.

3. Deep Supervised Learning

In this section, we present and describe both the training data set and the employed
CNN architecture for the body–wave event detection in the obtained image representations
of ambient noise recordings. We also discuss the model building process.

3.1. Training Dataset

To build a prediction model, a set of 1900 training examples is manually selected out
of 86,000 non-overlapping noise panels that are randomly evaluated. 14% of the selected
panels are labeled as the body–wave while the rest is classified as the background noise.
The disproportionate ratio of observations in each class, called the class imbalance, might
have a significant impact on a classifier by affecting both its convergence during the training
phase and generalization of a model on the unseen data [46]. To handle CNN training on
the imbalanced dataset, we choose the basic version of the oversampling method which
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simply duplicates samples from the minority class [47]. Here, we replicate the body–wave
class seven times to match the size of the noise class. Subsequently, each of the selected
panels is transformed into the six attribute maps, described in the previous section, and
saved as thumbnail red-green-black (RGB) images at the spatial resolution of 32 × 32 pixels
to form the final training set comprised of almost 20,000 images. In Figure 3, we show
some examples from both classes.

3.2. CNN Architecture

A Visual Geometry Group (VGG) net is a CNN architecture that was proposed in [47]
and designed for large-scale image classification. It was coincident with the idea of using
blocks (i.e., repeated structures in the network). The authors demonstrated that their
models can be applied to a wide range of tasks and datasets with a performance comparable
to the most efficient architectures in computer vision such as GoogleNet [48] or, not existing
at that time, ResNet [49]. In this study, we develop a new model from scratch that is based
on the VGG concept. We consider it as a sensible starting point due to its straightforward
architecture that can be easily implemented and modified to optimize its usefulness for our
defined detection problem. Variations of the VGG network architecture can be obtained
by differences in the number of convolutional layers and output channels in each block
and also by the number of implemented blocks itself. Since we train our model on the low-
resolution images that are seven times smaller than the images in the ImageNet challenge
dataset [50] used for the state-of-the-art performance test of the VGG models, we decide
to substantially reduce the complexity of the network. The reduction was also needed
to conduct series of computationally intensive prototyping experiments on a multi-core
central processing unit (CPU) cluster in an acceptable time frame. As shown in Figure 4,
the proposed CNN architecture contains an input layer of size 32 × 32 receiving a 3-
channel (RGB) image (attribute map) and hidden layers grouped into three VGG blocks
each defined as a group of convolutional layers that use filters with a small receptive field
of size 3 × 3 followed by a max-pooling (subsampling) layer. The pooling is performed
over a 2 × 2-pixel window with a stride 2 [45] in order to reduce the dimensionality of
the input representation (e.g., image or hidden-layer output matrix) without affecting the
important features [51]. The three VGG blocks have convolutional layers with 64, 128,
and 256 channels (filters), respectively, and each of the blocks is also accompanied by the
activation function (here we use a Rectified Linear Unit called ReLU) and the dropout
regularization that randomly sets input neurons to 0 with a specified rate (here set to 20%)
at each step during training time, which helps prevent overfitting [52]. The increasing depth
of the layers is common for CNN architectures as it influences the power of abstraction and
enables the extraction of a wider diversity of features in images. After flattening the output
of the last VGG block, the classification network was constructed using two consecutive
dense layers. The last fully connected linear layer uses the softmax activation function,
designed for the multi-class classification cases, that returns a score level vector with its
sum normalized to 1. These values can be interpreted as class probabilities and used for the
final classification based on predetermined thresholds (e.g., a default 0.5 value for two-class
problems) or the maximum probability criterion (e.g., for multi-class problems).

3.3. Building a Prediction Pipeline

To improve the training procedure, we propose the ensemble of two multi-headed
CNN models trained separately on the amplitude- and frequency-based attribute maps
(Figure 4, AM1–AM3 and AM4–AM6, respectively). Each of them is created by unifying
three independent sub-models (so-called heads) into the jointly trained framework, where
they cooperate to improve the learning outcomes. The input heads of sub-models can be
considered as the net branches using the same types of layers but with different weights
and initialization. The single sub-model reads the individual input sequence (i.e., a certain
sub-category of attribute maps) and returns the flat vector containing a summary of the
learned features from the sequence (Figure 4, AV1–AV6). These internal representations
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are combined after being interpreted by the first fully connected layer (Figure 4, FCL1)
and used to make a prediction in the softmax classification layer (Figure 4, FCL2). Both
classifiers’ predictions (Figure 4, pA and pF) are then again combined by averaging to
output the final prediction estimate (Figure 4, pavg).
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Figure 4. Flow diagram illustrating a deep learning-based solution model and the employed Visual Geometry Group
(VGG)-16 convolutional neural network (CNN) architecture.

By using multiple heads, we allow each sub-model to extract various high-dimensional
spatial features within the two main categories of attribute maps (i.e., amplitude- and
frequency-derived ones). The ensemble averaging model integrating the strength of the
two constituent models, when subjected to the images unseen during the training stage,
generates probability estimates that are more accurate than those produced by the indi-
vidual models (see Section 4.2). Moreover, it can complete the prediction in a shorter time
due to the reduction in the number of predictive models (the frequency and amplitude-
based multi-headed models versus the mixture of the six single-headed individual models).
Figure 4 summarizes the prediction pipeline that was built in Python3 using the Keras neu-
ral networks library [53] running on the top of the TensorFlow [54] library as its interface.
The parameter configuration of the proposed CNN-based models is listed in Table 1. These
parameter values were iteratively adjusted to improve the model’s generalizability.
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Table 1. Parameters of the proposed CNN-based models.

Parameter Value/Type

Input image size 32 × 32 px × 3 channels (RGB)
Number of epochs 200

Batch size 16
Kernel initializer He uniform

Activation function ReLU
Classification function Softmax

Loss function Categorical cross-entropy
Dropout rate 0.2

Optimizer SGD
Learning rate 0.001
Momentum 0.9

4. Results

In the following subsections, we describe the metrics used for evaluating and compar-
ing both the CNN- and ML-based models. We also provide the summary statistics of the
overall prediction results achieved with the ensemble of CNN-based models and present
the outcome of the unsupervised deep embedded clustering that aims to categorize the
detected noise panels.

4.1. Metrics

In a binary classification problem, any prediction relative to labeled data can be either
positive or negative. The predictive accuracy of a ML algorithm is usually assessed based
on the difference between the observed (actual) and predicted values. Given a set of
instances (i.e., noise panels to be classified), a two-by-two confusion matrix (also called a
contingency table) can be constructed to represent the decisions made by the classifier. The
structure of this matrix is shown in Table 2 and it serves as a basis for calculating several
accuracy metrics.

Table 2. Confusion matrix structure for binary classification problems.

Predicted Class

Actual Class
True Negative (TN) False Positive (FP)
False Negative (FN) True Positive (TP)

To measure the overall diagnostic performance of a predictive classifier we consider
two commonly used methods: the F1-Score [55] and the area under the Precision-Recall
curve (AUC-PR). The latter has been reported as an alternative to Receiver Operator
Characteristic (ROC) curve for imbalanced classification with a severe skew in the class
distribution [56] where the positives (i.e., body–wave panels) are more relevant than
the negatives. The former belongs to the single threshold category of metrics and it is
defined according to the formula (1) as the weighted harmonic mean of precision (2)
and recall (3). Typically α takes the value 1 to signify the balance between precision and
recall. Precision expresses the proportion of correctly classified instances that are relevant
(called true positives and defined here as recognized body–wave panels) to the sum of true
positives and false positives (instances misclassified as relevant), while recall is the ratio
of true positives to the sum of true positives and false negatives (instances misclassified
as non-relevant). False positives and false negatives are represented in our case by non-
body–wave panels recognized as body–wave panels and body–wave panels recognized as
non-body–wave panels, respectively.

Fα=
(1+α)(precision ·recall)

(α ·precision)+recall
(1)
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precision=
TP

TP+FP
(2)

recall=
TP

TP+FN
(3)

The F1-Score and the similar metrics are based on a single threshold level (usually
equal to 0.5), where instances above the threshold are predicted as positive (relevant) and
the rest as negative (non-relevant). Unlike these metrics, the AUC-PR provides a score
interpreted as an overall model performance across all possible thresholds. While the PR
curve depicts precision as the function of recall, the AUC can be interpreted as the average
value of precision over the interval from recall = 0 to recall = 1.

4.2. Prediction

We estimated the performance of the proposed model first on the training data set by
employing k-fold cross-validation (CV) implemented in the scikit-learn library [57]. It is a
common technique that randomly divides the input data set into k non-overlapping equal
subsets (here we select the value of k equal to 10) in which one part serves as an independent
test set that is held-back for evaluation, whereas the remaining folds are used collectively
for training a model. This process is repeated k times, i.e., until the model is not trained and
tested on all subsets. Then the average of the prediction scores, recorded in every run, is
calculated and treated as the reliable performance score. It should be noted here that while
the models are trained on the class-balanced training sets, the validation is performed on
the class-unbalanced (unseen) sets for the sake of clarity. Table 3 lists the average scores
that are derived across folds for both the F1 and AUC-PR metrics. In the same table, we also
report the scores for the ensemble of models trained with the extreme gradient boosting
algorithm (XGBoost) [58] on the same set of noise panels as the CNN-based counterpart
but represented in another form. Instead of images, the XGBoost reads a set of feature
vectors, which in our case are flattened attribute matrices, like the one shown in Figure
1b. We choose this specific ML algorithm for comparison purposes because of its broad
versatility in the modeling of nonlinear processes and overall high prediction efficiency
reported in many recent seismic research studies [59–63]. Additionally, confusion matrices
are summed over all cross-validation folds to get the overall (cumulative) confusion matrix
presented in Table 4. Both the F1 scores and the confusion matrices were determined based
on the classification threshold set to 0.5.

Table 3. Comparison of the prediction performance between the CNN- and XGBoost-based models
when applied to the same unseen data. To evaluate the accuracy of the classifiers we use 10-fold cross-
validation as well as F1 and AUC-PR metric scores that are recommended for the imbalanced data.

Amplitude-Based
CNN

Frequency-Based
CNN

Ensemble-Based
CNN

Ensemble-Based
XGBoost

F1 0.890 0.894 0.963 0.849
AUC-PR 0.961 0.964 0.997 0.939

Table 4. Cumulative confusion matrices calculated during the cross-validation for the CNN- and
XGBoost-based models.

Ensemble-Based CNN Ensemble-Based XGBoost

TN = 1653 FP = 16 TN = 1657 FP = 12
FN = 2 TP = 229 FN = 51 TP = 180

In the final prediction and evaluation stage, we employed the obtained ensemble of
amplitude- and frequency-based CNN models to classify the entire data set comprised of
86,000 noise panels. To do so, each of the noise panels undergoes the image conversion
process, described in Section 2, producing six images each time that are then taken as
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input to the predictive models. The summary statistics of the overall prediction results are
presented in the form of histograms in Figure 5. The graphs on the left- and right-hand side
show the probability distribution of the combined CNN predictions and the distribution of
the body–wave panels detected above the probability threshold equal to 0.8, respectively.
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4.3. Deep Embedded Clustering

In an attempt to group the detected body–wave panels according to their image char-
acteristics, we perform clustering of the intermediate CNN outputs (activations) that are
gathered for all predicted noise panels. These values (Figure 4, AV1–AV6) are extracted
immediately after the first fully connected layer (Figure 4, FCL1) as a half-product of the
prediction routine. They give a view into how the input (i.e., attribute map) is decomposed
into high-level features by building increasingly abstract representations with the subse-
quent network layers [64]. To facilitate the visualization and interpretation of clustering
results, we first reduce the dimensionality of the 86,000 activation sets from 768 to 2 di-
mensions with the t-distributed stochastic neighbor embedding method [65] measuring
pairwise local similarities between points in the high dimensional space. Although t-SNE
projections are stochastic and influenced by the user-defined perplexity parameter, we
choose the t-SNE specifically because of its widespread popularity and ability to preserve
distinct neighborhoods in projections without overlapping [66]. In this way, we obtain
a lower-dimensional t-SNE-embedded feature space, which can be easily visualized and
used to infer the optimal number of k-clusters, which is a prerequisite for the employed
k-means clustering algorithm [67]. As seen from Figure 6a, the projected samples of the
detected and verified body–wave panel representations (depicted as yellow points) are
accumulated at the bottom of the scatter plot and can be easily isolated from the other
non-relevant samples (black points). Figure 6b provides a closer look at the yellow points
that are assigned to the distinct groups obtained from the k-means cluster analysis with
the predefined k equal to 5. We also compare the activation values extracted from training
examples of attribute maps with the corresponding flattened attribute matrices before
their conversion to images (Figure 1b, an example of an attribute matrix before flattening).
In both cases, the batch of 1900 vectors of size 768 and 722, respectively, was mapped to
2-dimensional t-SNE space using the same settings (Figure 6c,d, respectively). On their
basis, the two scatter plots are generated to visualize how the CNN rearranges the attribute
representations of noise panels in the planar view.
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To further investigate the prediction and clustering results, we present in Figure 7 the
examples of the panels (unseen to the model during the training stage) classified as those
in which the body–wave event happened. They are grouped into five image classes based
on their spatial location in the t-SNE embedding (Figure 6b).

The visual inspection of the events divided into five clusters in Figure 7 suggest that
predicted noise panels are grouped based on the two dominant image characteristics:
(i) the SNR ratio of the body–wave events, and (ii) the presence of spurious arrivals that are
represented by incoherent and coherent noise events. These spurious arrivals are events
that are not associated with body–wave events and can be divided into three types: plane
wave surface waves (cluster no. 1, and 2), airwaves (cluster no. 3), and high-amplitude
bursts affecting up to several traces which are observed at whole time range (0–10 s) in
detected body–wave panels (clusters no. 1–5). The last type of spurious arrival is the
most frequent contribution observed in all panels, and thus it can be used as the “quality”
indicator of the clusters, where the cluster no. 0 contains the smallest number of those
arrivals, and for clusters with the increasing ordinal number, the contribution of these
local noise events becomes more evident. This suggests that the proposed clustering
methodology can be used as the provider of body–waves events required for SI reflection
imaging, and as the data quality estimator.
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5. Discussion

Our study shows that CNNs trained on the hand-crafted attribute maps work well
for the seismic event detection case. We generate these maps by exploiting typical seismic
attributes like trace amplitude or frequency. Although we did not consider more sophis-
ticated signal characteristics, we did investigate variations of the former ones obtained
across various amplitude and frequency ranges or summarized with multiple descriptive
statistics such as minimum, maximum, mean, median values, and standard deviation. To
select the most representative combination of attributes, we trained several diagnostic
CNN models that varied in terms of the number of the input heads (i.e., side branches
of CNN architecture that are merged in the deeper layers) and we assessed them based
on the learned high-level features. Given the fact that CNNs extract meaningful abstract
features directly from the raw inputs and autonomously assign close to zero weights to the
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irrelevant ones [68], we examined the activation values prior to the classification layer of
the models at the two possible states, i.e., prediction of body–wave and non-body wave
noise panels. We tried to retain those attributes that led to the activation values that allow
for a clear distinction between the states and exclude those that generate mostly similar
low-value activations irrespectively of an input. Based on the series of experimental tests,
we found that the ensemble of amplitude- and frequency-based CNN models trained on the
selected signal characteristics shown in Figure 2 provide the most optimal configuration.

In the present study, we analyzed the impact of the depth of CNN on performance
scores by implementing the ResNet architecture. However, in the juxtaposition with the
architecture presented in Section 3.2, the performance gain derived with the deeper one was
not significant enough to accept the net of bigger complexity. To supplement the models’
comparison, we also include the results of the prediction with the ensemble of XGBoost
models, which achieved slightly worse scores on the validation data than the CNN-based
counterpart (Table 3). The former detected over 21% less of the labelled body–wave panels.
What is more, the exposure to the remaining data revealed much inferior generalizability
of the XGBoost ensemble, probably due to the lack of ability to identify spatial patterns in
the data.

In Figure 5a, we visualized the probability distribution of the CNN predictions for the
entire unlabeled data set. Inferring from this summary we can notice that 1% of all noise
panels (almost 1000 examples) were assigned with a probability value larger than 0.8, which
we treat as the positively classified samples in this study. The conventional probabilistic
boundary at 0.5 is still reasonable but it starts passing through the false positive (the non-
event panels classified as the event ones). It is worth noticing that the training dataset was
selected only at the interval between the first and the 40th-panel bin (Figure 5b), while the
predicted events are more frequent in the second part, most likely related to the scheduled
active-source shooting at the nearby mining site. It proves that the proposed ensemble of
CNN-based models generalizes well to unseen data beyond the interval used for training.

Deep learning opens a new possibility of exploiting high-level features extracted at
different layers of the designed net for clustering purposes as demonstrated in Section 4.3.
With the dimensionality reduction method, we were able to visualize how the samples
of the relevant class (i.e., body–wave panels) are reorganized when we compare the non-
image input features (Figure 6c) with the features learned by the CNN-based models
(Figure 6d). In terms of the practical implications, the clusters obtained in Figures 6b and 7
suggest that noise panels highlighted by t-SNE embedding represent the data useful
for SI reflection imaging, however, due to their different level of contamination with
other events, each cluster would require specific preprocessing approach before applying
cross-correlation. For instance, due to the presence of airwaves, and surface waves, the
preprocessing dedicated for clusters no. 1–3 will demand bandpass filtering in different
frequency ranges and/or filtering-out different parts of f-k transform associated with
varying moveouts of events that contaminate the body–wave energy. The removal of
spurious, high amplitude bursts identified in Section 4.3, and appearing in each body–wave
cluster shown in Figure 7 can be easily addressed with the trace energy normalization [1].
Nevertheless, the redundancy of the proposed solution evidenced by the similarity of the
events within individual clusters, suggests that preprocessing of predicted panels can be
automatized, and consequently our method can be used as the intermediate step towards
developing the fully automatized ML-augmented ambient noise imaging workflow.

6. Conclusions

We have developed a deep learning technique for automatic data selection in massive
ambient noise datasets recorded by a dense receiver array. It is designed to detect and
isolate the time periods dominated by the body–wave energy based on the spatio-temporal
characteristics of the signals that propagate across the seismic network. To provide these
learnable patterns in the image form that is suitable for training a convolutional neural
network, we preprocessed each noise panel in such a way that the constituent seismic
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traces are represented by the six single-value attributes computed in the frequency and
the time domain. The attribute values are then arranged in the corresponding attribute
matrix and saved as color thumbnail images (i.e., attribute maps). During an exploratory
data analysis, we selected almost 2000 training examples of the noise panels and we
labeled them according to their class (i.e., body–wave or not-body–wave panel class). By
addressing the problem of class imbalance with the oversampling method, we obtained
the final training data set comprising almost 20,000 labeled images. The ensemble of two
multi-headed CNN models trained separately on the frequency and amplitude attribute
maps demonstrates better generalization ability than each of its participating networks. To
fully benefit from the CNN learning process, we also showed that the high-level abstraction
features, extracted at the deeper layers, can be combined and used to perform unsupervised
clustering of the classified panels with respect to their image characteristics. We evaluated
the model ensemble performance by retrieving the labels of noise panels that were held
back from the training process using the 10-fold cross-validation technique. The proposed
ensemble of CNN-based models achieved excellent F1 and AUC-PR scores of 0.963 and
0.997, respectively. It also outperformed the XGBoost ensemble that was built analogously
but using models trained on non-image data (i.e., flattened attribute maps), and when
applied to the full unlabeled dataset, it managed to find almost three times more verified
body–wave events than it was provided at the training stage. The presented methodology
can be used not only to optimize data selection approaches for long-term passive seismic
studies but also allows an efficient real-time monitoring technique for revealing spatio-
temporal variations in multiple scattering media to be established. It may be especially
valuable for a range of applications, where the robust retrieval of body waves is crucial for
estimating trustful 3-D velocity structure and tracking its changes. The CNN-based solution
for body–wave detection in ambient noise recordings proved its ability to identify those
time segments in continuous data that contain the most usable energy for the reconstruction
of the seismic Green’s functions.

Supplementary Materials: The paper provides the database used in the current study and the
Jupyter Notebook python code for training the CNN models available online at GitHub (https:
//github.com/mmezyk/ansi_selector).
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Abbreviations

AM Attribute Map
ANSI Ambient Noise Seismic Interferometry
ATV Attribute Value
AUC-PR Area Under Curve—Precision-Recall
AV Activation Value
AW Air Wave
CCF Cross-Correlation Functions
CNN Convolutional Neural Network
CL Convolution Layer
CPU Central Processing Unit
CV Cross-Validation
DAS Distributed Acoustic Sensing
DL Dropout Layer
EGF Empirical Green’s Function
FCL Fully Connected Layer
FN False Negative
FP False Positive
MEMS Micro-Electromechanical System
ML Machine Learning
MPL MaxPooling Layer
PR Precision-Recall
RAF ReLU Activation Function
ReLU Rectified Linear Unit
RGB Red-Green-Black
RMS Root-Mean-Square
ROC Receiver Operator Characteristic
SAF Softmax Activation Function
SGD Stochastic Gradient Descent
SI Seismic Interferometry
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
SW Surface Wave
TN True Negative
TP True Positive
t-SNE t-Distributed Stochastic Neighbor Embedding
VGG Visual Geometry Group
XGBoost eXtreme Gradient Boosted Tree
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