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Abstract: Synthetic aperture imaging radiometers (SAIRs) are powerful passive microwave systems
for high-resolution imaging by use of synthetic aperture technique. However, the ill-posed inverse
problem for SAIRs makes it difficult to reconstruct the high-precision brightness temperature map.
The traditional regularization methods add a unique penalty to all the frequency bands of the
solution, which may cause the reconstructed result to be too smooth to retain certain features of the
original brightness temperature map such as the edge information. In this paper, a multi-parameter
regularization method is proposed to reconstruct SAIR brightness temperature distribution. Different
from classical single-parameter regularization, the multi-parameter regularization adds multiple
different penalties which can exhibit multi-scale characteristics of the original distribution. Multiple
regularization parameters are selected by use of the simplified multi-dimensional generalized cross-
validation method. The experimental results show that, compared with the conventional total
variation, Tikhonov, and band-limited regularization methods, the multi-parameter regularization
method can retain more detailed information and better improve the accuracy of the reconstructed
brightness temperature distribution, and exhibit superior noise suppression, demonstrating the
effectiveness and the robustness of the proposed method.

Keywords: imaging radiometry; synthetic aperture; reconstruction method; multi-parameter regularization

1. Introduction

Synthetic aperture imaging radiometers (SAIRs) are passive microwave sensors for
high-resolution imaging. Different from conventional real aperture radiometers, SAIRs
improve the spatial resolution by use of the synthetic aperture technique, which avoids
the difficulties of mechanical scanning such as the bulky volume and weight caused by a
real large-aperture antenna. At present, SAIRs have been applied in many fields includ-
ing remote sensing, atmospheric monitoring, and human security inspection [1–3]. The
typical SAIR instruments that researchers have developed include electronically scanned
thinned array radiometer (ESTAR) [4], microwave imaging radiometer with aperture syn-
thesis (MIRAS) [5], geostationary synthetic thinned array radiometer (GeoSTAR) [6], and
geostationary interferometric microwave sounder (GIMS) [7].

The measurement output of SAIRs is the visibility function samples in the frequency
domain, which need to be retrieved into a brightness temperature map in the spatial domain.
The reconstruction process from the visibility function to the brightness temperature image
has been proved to be an ill-conditioned inverse problem [8]. Currently, regularization
methods have become the dominant methods to solve the inverse problem of SAIRs and
get excellent results [9–11]. The aim of regularization is to obtain a stable and unique
solution by adding new restrictions or penalties on the inverse problem. Band-limited
regularization proposed by [8] obtains an appropriate solution by taking into account the
physical characteristics of the band-limited imaging instruments. Numerical regularization,
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such as truncated singular value decomposition (TSVD) and Tikhonov regularization [9],
obtains a suitable solution by making use of mathematical methods to add the penalties.
The active set method proposed previously [12] obtains a befitting solution by utilizing
prior information of the open oceans like the lower and upper bounds of the brightness
temperature distributions. However, there is still a large residual error on account of the
ill-posed problem and band-limited physical characteristic [13].

It should be noted that classical Tikhonov and TSVD regularization methods, which
have only one regularization parameter, add a single and uniform penalty to all the fre-
quency bands of the solution, namely the visibility function samples. This case may cause
the reconstructed result to be too smooth to be able to retain certain features of the origi-
nal brightness temperature map. In addition, the above single-parameter regularization
methods are based on the assumption that noise effects including the measurement error
and noise interference are uniformly distributed across all the visibility function samples.
However, in actual situations, the distribution of noise may be different in different parts
of the frequency domain.

In recent years, multi-parameter regularization has drawn a lot of attention as a
method to improve the performance of the regularized solution [14–17] and have been
used in some areas such as inverse electrocardiography [18], deblurring images [19],
dynamic light scattering [20], and force reconstruction problems [21]. Different from the
single-parameter regularization, multi-parameter regularization adds multiple different
penalties which can reflect multi-scale characteristics of the original solution. In this paper,
the multi-parameter regularization method is presented to obtain the optimal brightness
temperature map in SAIRs.

The rest of this paper is organized as follows. Section 2 introduces the imaging prin-
ciple of SAIRs. Section 3 presents the multi-parameter regularization method. Extensive
numerical experiments results are presented to prove the effectiveness of the proposed
method in Section 4. In the end, conclusions are drawn in Section 5.

2. Imaging Principle of SAIRs

Different from the real aperture radiometers, SAIRs measure the cross correlation,
namely the samples of visibility function, between the signals collected by two spatially
separated antennas. The relationship between the measured visibility function V(u) and
the brightness temperature distribution of the observed scene TB(ξ) is given by [22]

V(ukl) =
x

‖ξ‖≤1

Tm(ξ)r̃kl(
−uklξ

f0
)e−2jπuklξdξ (1)

where ukl is the spatial frequency coordinates associated with the antennas Ak and Al, and
ξ= (sin θ cos φ, sin θ sinφ) denotes the direction cosines in the Cartesian coordinates (θ and
φ are the traditional spherical coordinates). r̃kl(∆τ) stands for the fringe-washing function,
∆τ = −uklξ/f 0 represents the spatial delay, and f0 is the central frequency. Tm(ξ) is defined
as the modified brightness temperature

V(ukl) =
x

‖ξ‖≤1

Tm(ξ)r̃kl(
−uklξ

f0
)e−2jπuklξdξ (2)

where Ωk and Ωl stand for the beam solid angle of the antennas Ai and Aj, respectively, Tr
is the physical temperature of the receivers and assumed to be the same for all the receivers,
and Fk and Fl are the normalized voltage patterns of the antennas (the overbar denotes the
complex conjugate).

According to the Nyquist sampling criteria, Equation (1) can be expressed into the
matrix equation

V = GT (3)
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where G denotes the discrete modeling operator from the brightness temperature data
space to the visibility function data space. In an ideal situation, there exists the Fourier
transform relationship between the modified brightness temperature distribution and the
visibility function, and the operator G can be approximated by the Fourier transform.
However, since the number M of the brightness temperature pixels is larger than the
number N of the visibility function samples, the inverse problem is underconstrained
and has multiple solutions. In addition, when the matrix G is poorly conditioned, small
errors in the visibility function would lead to a very large perturbation in the reconstructed
brightness temperature map. In consequence, the inverse problem is ill-conditioned and
has to be regularized.

2.1. Tikhonov Regularization

By adding the norm of the solution as a unique constraint, the single-parameter
Tikhonov regularization is to solve the following regularized least-squares problem [9]

min
T
‖V−GT‖2

2 + α‖DT‖2
2 (4)

where the symbol ‖ · ‖ denotes the Euclidean norm, α is the regularization parameter, and
D is the regularization matrix. After the first derivative of the quadratic functional (4)
is equal to 0, the reconstructed brightness temperature map including the regularization
parameter α can be written as

T′α = (G∗G + αD∗D)−1G∗V (5)

where G* is the adjoint operator of G. When D becomes the identity matrix, Equation (5) is
the standard Tikhonov regularization. It has been pointed out by researchers [15] that the
relative error ‖T− T′α‖/‖T‖ of the Tikhonov solution depends highly on the selection of
the regularization matrix. However, it is generally impossible in practical circumstances to
accurately predict which regularization matrix is the best.

2.2. Band-Limited Regularization

By considering the physical constraint of band-limited measurement for SAIRs, the
band-limited regularization is to solve the following constrained least squares problem [8]

min
T
‖V−GT‖2

2 s.t.T̂ = 0 outside H (6)

where T̂ denotes the Fourier transform of the brightness temperature map T. For the SAIR
instrument, the sampled Fourier spatial frequencies are confined to a limited frequency
bandwidth, namely the experimental frequency coverage H.

Then, the unique solution of (6) is given by

T′ = F∗ZJ+V (7)

where J+ = (J*J)−1 J* is the Moore–Penrose pseudoinverse of the matrix J = GF*Z, F is the
Fourier transform operator and T̂ = FT, and Z is the zero-padding operator beyond the
experimental frequency coverage H. For the definitions of F and Z, please refer to Equation
(2) and Equation (3) in a previous study [8].

3. Multi-Parameter Regularization

By introducing multiple constraints, the multi-parameter regularization is to achieve
the minimization of the quadratic functional:

min
T

(
‖V−GT‖2

2 +
k

∑
i=1

αi‖DiT‖2
2

)
(8)
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where the first term ‖V−GT‖2
2 is the residual norm of the solution, namely the data fitting

term; the following terms
k
∑

i=1
αi‖DiT‖2

2 are the regularization terms, where k ≥ 2 denotes

the number of the added constraints and αi > 0(i = 1, 2,..., k) denotes the regularization
parameter; Di represents the i-th regularization matrix which can show the characteristics
of the original brightness temperature map. In general, the regularization matrix may
be selected as the identity operator, the first order differential operator or the second
order differential operator. For SAIRs, the first-order differential operator of the map can
exhibit the clear edges of the brightness temperature map, and the second-order differential
operator of the map is very sensitive to the places where the brightness temperature
changes strongly so that it can reflect the texture structure of the map.

The reconstructed result T′α is the solution of the linear system(
G∗G +

k

∑
i=1

αiD∗i Di

)
T = G∗V (9)

where α = (α1,· · · ,αk)T denotes the regularization parameter vector. Consequently, the final
result can be given by

T′α =

(
G∗G +

k

∑
i=1

αiD∗i Di

)−1

G∗V (10)

The choice of the regularization parameters plays a very important role in the effec-
tiveness of the regularization methods. However, there are no universal methods to select
the optimal regularization parameters at present. The most widely used methods are the
L-curve and generalized cross-validation (GCV) methods.

The L-curve criterion [23] is based on the fact that the parametric curve, which is
composed of x(α) = log10 ‖V−GT′α‖2 and y(α) = log10 ‖DT′α‖2, exhibits a typical “L”
shape in most cases. And the optimal regularization parameter corresponds to the value at
the corner of the “L” shape. The principle of the GCV criterion is that when an arbitrary
component of the visibility function samples Vi is removed, the regularized solution
obtained by solving the residual visibility function should contain enough information to
describe the original brightness temperature distribution well [24,25]. Assuming that the
visibility function samples are disturbed by the normally distributed noise, the optimal
value of regularization parameters is estimated by minimizing the function:

w(α) =
1
M‖(I− B(α))V‖2[
1
M trace(I− B(α))

]2 (11)

where B(α)V = GT′α, and trace represents the trace of the square matrix, i.e., the sum of
the diagonal elements of the square matrix. In this paper, the GCV criterion is used to select
regularization parameters of single-parameter Tikhonov regularization.

Motivated by the success of the L-curve and GCV methods, the two methods have been
generalized to select multiple regularization parameters. The generalized L-curve method
proposed previously [14] gets multiple suitable regularization parameters by calculating
the maximum Gaussian curvature of the L hyper-surface which is composed of the residual
norm and other regularization constraints. However, the disadvantages of the generalized
L-curve method are high calculation cost and the difficulty in finding the maximum
curvature when the Gaussian curvature has multiple extremes. By expanding a single
variable into a vector consisting of multiple variables, the GCV criterion is generalized to
the multi-dimensional case by minimizing the function: [15]

w(α) ∝
‖(B(α)− I)V‖2

[trace(I− B(α)]2
=

‖GT′α −V‖2

[trace(I− B(α)]2
(12)
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where B(α) = G(G∗G +
k
∑

i=1
αiD∗i Di)

−1G∗. However, it will have a high computational

cost to directly estimate the optimal values of regularization parameters by minimizing
Equation (12). In addition, the factorization method is not applicable to the minimization
of the function (12). Therefore, in order to reduce the computational cost, the simplified
multi-dimensional GCV method proposed previously [15] is used to choose multiple
regularization parameters in the paper. The simplified method is based on the fact that
the approximate stable solution can be obtained by minimizing the function X(α) =

(
k
∑

i=1
wi(αi))

2 instead of Equation (12). The specific process of the simplified method is that

the i-th regularization parameter αi is estimated by minimizing the GCV criterion wi(αi), and
then the vector α = (α1,···,αk)T is obtained by combining multiple regularization parameters.

4. Results

In order to ascertain the effectiveness of the above multi-parameter regularization
approach, numerical simulation experiments are carried out on the full polarization inter-
ferometric radiometer (FPIR) system [26]. As a one-dimension SAIR, FPIR can only obtain
the brightness temperature distribution of one strip in the cross-track direction, and then
perform push-broom imaging in the along-track direction so as to get the two-dimensional
brightness temperature image. The antenna array of the FPIR system, where the antennas
A1, A2, . . . , A16 are sparsely arranged in different positions with a multiple of the shortest
baseline ∆d, is presented in Figure 1. The specific system parameters are listed in Table
1. The simulated antenna patterns of the sixteen antennas are anisotropic. Moreover, the
fringe washing function in Equation (1) is approximately equal to sin c (B ∆τ). After
including the visibility function for the zero spacing V(0), the available number of complex
visibilities is 241. When the brightness temperature map in the simulation experiment is
sampled to 600 × 1, the size of the matrices G is equal to 241 × 600.
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Table 1. The system parameters.

System Parameters Values

central frequency f 0 = 1.4 GHz
antenna number 16

the shortest baseline ∆d = 0.589λ
the longest baseline 90∆d

bandwidth B = 20 MHz
integration time τ = 1 s

Under normal circumstances, there are measurement errors or noise interference in
actual measurements. Therefore, the corrupted visibility function samples are generated
by applying additive Gaussian noise to the visibility function obtained by performing
forward simulations on SAIR brightness temperature distributions according to Equation
(3). Moreover, the regularization matrix of the Tikhonov regularization is set as the identity
matrix, and multi-parameter regularization is represented by three-parameter regulariza-
tion, in which the regularization matrices D1, D2, and D3 are taken as the identity matrix,
first-order differential matrix, and second-order differential matrix, respectively.
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In addition, total variation (TV) regularization is introduced as a comparison algo-
rithm [27]. The TV regularization uses L1-norm instead of L2-norm regularization term of
the Tikhonov regularization. In the paper, the TV regularization is solved by alternating
direction method of multipliers (ADMM) algorithm in a previous study [28].

4.1. Experiment 1

In the first experiment, the performances of all the regularization approaches are
evaluated by the use of the original distribution, which derives from the L-band brightness
temperature data of the H polarization in the ocean area observed by the Aquarius satellite
on 21, August, 2013. The original brightness temperature distribution is shown in Figure 2,
where the horizontal axis ξ = sin θ is the direction cosines in the Cartesian coordinates and
θ is the incidence angle in the across-track dimension measured from the nadir.
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When the measured visibility function samples are corrupted by white Gaussian noise
with zero mean and variance σ2 = 0.01 max (Vi), the reconstructed results in the alias-
free field of view are shown in Figure 3 via Tikhonov, band-limited and multi-parameter
regularization. In Figure 3, the horizontal axes ξ = sin θ is the direction cosines in the
Cartesian coordinates. For the convenience of comparison, the original distribution in
the alias-free field of view is also shown in Figure 3. The results show that the retrieved
distributions by the TV, Tikhonov, and band-limited regularization have obvious oscillation
ripples, particularly at the edge of the distributions. This is because SAIRs can only
cover the limited bandwidth in the frequency domain, which will result in the ripple
oscillation, namely the Gibbs phenomenon. In general, the Gibbs effect can be reduced by
applying windows such as the Blackman, Kaiser, and Hanning windows [29]. However,
windowing needs to be at the cost of reducing the spatial resolution of the reconstructed
map. Compared with the TV, Tikhonov and band-limited regularization, the retrieved
distribution by the multi-parameter regularization is distinctly smoother and has weaker
ripples especially on the edge of the distribution, which indicates that the multi-parameter
regularization can retain more detailed information and better suppress the Gibbs effect.
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The reconstruction errors between the reconstructed results and the original distribu-
tion are quantitatively evaluated by the root mean square error (RMSE) and peak signal
to noise ratio (PSNR). In Figure 3, the RMSE values for the TV, Tikhonov, band-limited
regularization, and multi-parameter regularization are, respectively, 2.64 K, 1.71 K, 1.48 K,
and 0.24 K, and the PSNR values for the TV, Tikhonov, band-limited, and multi-parameter
regularization are, respectively, 39.70 dB, 43.46 dB, 44.74 dB, and 60.66 dB.

Moreover, the parameter of the Tikhonov regularization in Figure 3 is set as 0.62,
and three parameters α1, α2, and α3 of multi-parameter regularization are 0.62, 5.22, and
420.86, respectively. The multi-parameter regularization is somewhat similar to the single-
parameter Tikhonov regularization in form. As a consequence, we make a comparison
between the multi-parameter regularization and the Tikhonov regularization with different
parameters, and the performance comparison result is shown in Figure 4. In Figure 4,
the horizontal axis is the logarithmic value log10(α/α0), where α is the parameter of the
Tikhonov regularization and α0 = 0.62, is the regularization parameter selected by the GCV
method. As can be seen from Figure 4, the regularization parameter has an important
influence on the reconstruction performance of the Tikhonov regularization. Even if the
Tikhonov regularization has an optimal parameter, its RMSE is still higher than that of the
multi-parameter regularization.
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For the sake of analyzing quantitatively the influence of the noise on the reconstructed
results, the corrupted visibility function samples with different level noises are used to
reconstruct SAIR brightness temperature maps. The RMSE and PSNR performance with
different noise levels is presented in Figure 5. As can be seen from Figure 5, whether the
noise level is high or low, the RMSE for the multi-parameter regularization is dramatically
lower than that for the TV, Tikhonov, and band-limited regularization. In addition, the
multi-parameter regularization has the significant PSNR improvement of more than 9
dB over the TV, Tikhonov, and band-limited regularization. The result demonstrates
that the multi-parameter regularization is more robust to the noise interference than the
TV, Tikhonov, and band-limited regularization. In consequence, the multi-parameter
regularization can reduce the reconstruction error more effectively, compared to traditional
TV, Tikhonov, and band-limited regularizations.
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4.2. Experiment 2

In the second experiment, the initial brightness temperature distribution, shown in
Figure 6, is used to further evaluate the performances of all the reconstruction methods.
The original distribution derives from the L-band brightness temperature data for the H
polarization in the coast observed by the Aquarius satellite on 19 August 2013.
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The visibility function samples corrupted by Gaussian white noise with the variance
σ2 = 0.01 max (Vi) are reconstructed using the TV, Tikhonov, band-limited, and multi-
parameter regularization. The retrieved distributions in the alias-free field of view are
presented in Figure 7. From Figure 7, we can find that the reconstruction results for the
TV, Tikhonov, and band-limited regularization lost a lot of detailed information and have
the obvious ripples on the edge of the map owing to the Gibbs effect. In addition, the
multi-parameter regularization produces smoother and better results with clearer details
particularly at the edge of the distribution, compared to the TV, Tikhonov, and band-limited
regularizations. In order to quantitatively analyze the reconstruction errors, the RMSE and
PSNR are calculated. In Figure 7, the RMSE values for the TV, Tikhonov, band-limited, total
variation regularization, and multi-parameter regularization are 15.79 K, 4.91 K, 4.49 K,
and 1.64 K, respectively, and the PSNR values for the TV, Tikhonov, band-limited, and
multi-parameter regularization are 24.17 dB, 34.30 dB, 35.09 dB, and 43.84 dB, respectively.
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Furthermore, the performance (RMSE and PSNR) of the TV, Tikhonov, band-limited,
and multi-parameter regularization with different noise levels is shown in Figure 8 to quan-
titatively analyze the sensitivity of the above reconstruction methods to the error and noise
interference. The results indicate that compared with the TV, Tikhonov, and band-limited
regularization methods, the multi-parameter regularization is more robust to measurement
error and noise interference. This seems to suggest that the multi-parameter regularization
can better improve the accuracy of reconstructing the brightness temperature distributions.

4.3. Experiment 3

For the sake of further verifying the robustness of the multi-parameter regularization,
we have conducted the simulation experiment using two-dimensional brightness tempera-
ture image. The original image is shown in Figure 9a, where there are thirty brightness
temperature bands of different ocean regions in the along-track direction. Because the result
of a single measurement for the Aquarius satellite has only three brightness temperature
bands, the original image comes from the results of ten measurements, which are randomly
selected from the L-band brightness temperature data for the H polarization between 19,
August and 21, August. When the variance of the additive Gaussian noise is set as σ2 = 0.01
max (Vi), the reconstructed image by different regularization methods in the alias-free field
of view are presented in Figure 9b–e. Figure 9 indicates that there are obvious oscillation
ripples for the inversion results of the TV, Tikhonov, and band-limited regularizations.
Compared with the above three regularization methods, the oscillation ripples for the
inversion result of multi-parameter regularization are effectively suppressed.
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The reconstruction error maps for different regularization methods are shown in
Figure 10. From Figure 10, we could see that the reconstruction errors for the multi-
parameter regularization are greatly diminished, compared with the TV, Tikhonov, and
band-limited regularizations.
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To quantitatively analyze the reconstruction error in Figure 10, we calculated the
performance (RMSE and PSNR) for each strip in the along-track direction. The relation
between different strips and the performance of the regularization methods is presented
in Figure 11. In Figure 11, the horizontal axis denotes the serial number of the strip, and
the vertical axis is the RMSE and PSNR for the corresponding strip. Figure 11 indicates
that when the strip changes, the performance of the TV regularization is obviously worse
than other regularization methods, and the RMSE and PSNR for the band-limited regu-
larization are close to those for the Tikhonov regularization. Moreover, even though the
strips are different, the multi-parameter regularization has a considerably lower RMSE
and a considerably higher PSNR than the TV, Tikhonov and band-limited regulariza-
tions. In consequence, the simulation experiment results show that the multi-parameter
regularization is more robust to the measurement noise interference and the brightness
temperature distributions of the observed scenes, which demonstrates the effectiveness of
the proposed approach.



Remote Sens. 2021, 13, 382 12 of 14
Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 15 
 

 

  

(a) (b) 

Figure 11. The relation between different strips and the performance of the regularization methods: 

(a) the root mean square error; (b) the peak signal to noise ratio. 

The computation time of the multi-parameter regularization method is closely re-

lated to the number of regularization parameters that need to be selected. When the size 

of G is 241 × 600, the MATLAB runtime (MATLAB2020a on a PC with 3.6 GHz Intel 

i9-9900 k processor and 64 GB memory) of the multi-parameter regularization with three 

parameters are 0.0924 s. Moreover, the MATLAB runtime of the TV, Tikhonov, and 

band-limited regularizations are 0.0114 s, 0.0312 s, and 0.0129 s, respectively. The results 

indicate that the calculation time of the three-parameter regularization is about three 

times that of the Tikhonov regularization. In consequence, the multi-parameter regular-

ization increases the computational and memory cost while improving the accuracy of 

the reconstructed brightness temperature maps. The factorization technique or the ap-

proximate solution of Equation (8) may be introduced to reduce the computational com-

plexity. Moreover, the program can run on the graphics processing unit (GPU) plat-

form to increase the speed of computation. 

5. Conclusions 

The reconstruction of the brightness temperature map of the observed scene in 

SAIRs has been demonstrated to be an ill-posed inverse problem, which needs to be 

regularized to provide a unique and stable solution. Although the conventional regular-

ization approaches such as the TV, Tikhonov, and band-limited regularizations can ef-

fectively alleviate the ill-conditioned features of the inverse problem, it may not preserve 

multi-scale features of the original maps because of only adding a single constraint. Dif-

ferent from some inverse problems, where there may be a clear best choice of regulariza-

tion restriction and parameter, the inverse problem of SAIRs is complicated so that 

choosing any particular restriction brings advantages and disadvantages, even when a 

suitable regularization parameter is selected. 

In response to the above issue, we propose a multi-parameter regularization method 

with multiple constraints for SAIR reconstruction in this paper. Instead of using a single 

penalty, multi-parameter regularization adds multiple different penalties to reflect mul-

ti-scale characteristics of the original map. Furthermore, regularization parameters are 

chosen by utilizing the simplified multi-dimensional generalized cross-validation 

method. Several simulation experiments were carried out on the FPIR system. The results 

reveal that the multi-parameter regularization can retain more detailed information and 

better suppress the Gibbs effect than the TV, Tikhonov, and band-limited regularizations, 

indicating probably the effectiveness of the proposed method. Moreover, the mul-

ti-parameter regularization approach can better suppress noise and exhibit the significant 

Figure 11. The relation between different strips and the performance of the regularization methods: (a) the root mean
square error; (b) the peak signal to noise ratio.

The computation time of the multi-parameter regularization method is closely related
to the number of regularization parameters that need to be selected. When the size of G
is 241 × 600, the MATLAB runtime (MATLAB2020a on a PC with 3.6 GHz Intel i9-9900 k
processor and 64 GB memory) of the multi-parameter regularization with three parameters
are 0.0924 s. Moreover, the MATLAB runtime of the TV, Tikhonov, and band-limited
regularizations are 0.0114 s, 0.0312 s, and 0.0129 s, respectively. The results indicate that
the calculation time of the three-parameter regularization is about three times that of the
Tikhonov regularization. In consequence, the multi-parameter regularization increases
the computational and memory cost while improving the accuracy of the reconstructed
brightness temperature maps. The factorization technique or the approximate solution of
Equation (8) may be introduced to reduce the computational complexity. Moreover, the
program can run on the graphics processing unit (GPU) platform to increase the speed
of computation.

5. Conclusions

The reconstruction of the brightness temperature map of the observed scene in SAIRs
has been demonstrated to be an ill-posed inverse problem, which needs to be regularized to
provide a unique and stable solution. Although the conventional regularization approaches
such as the TV, Tikhonov, and band-limited regularizations can effectively alleviate the
ill-conditioned features of the inverse problem, it may not preserve multi-scale features
of the original maps because of only adding a single constraint. Different from some
inverse problems, where there may be a clear best choice of regularization restriction and
parameter, the inverse problem of SAIRs is complicated so that choosing any particular
restriction brings advantages and disadvantages, even when a suitable regularization
parameter is selected.

In response to the above issue, we propose a multi-parameter regularization method
with multiple constraints for SAIR reconstruction in this paper. Instead of using a sin-
gle penalty, multi-parameter regularization adds multiple different penalties to reflect
multi-scale characteristics of the original map. Furthermore, regularization parameters are
chosen by utilizing the simplified multi-dimensional generalized cross-validation method.
Several simulation experiments were carried out on the FPIR system. The results reveal
that the multi-parameter regularization can retain more detailed information and better
suppress the Gibbs effect than the TV, Tikhonov, and band-limited regularizations, indi-
cating probably the effectiveness of the proposed method. Moreover, the multi-parameter
regularization approach can better suppress noise and exhibit the significant improve-
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ment of the reconstruction performance like RMSE and PSNR, compared to the traditional
regularization methods.
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