
remote sensing  

Article

PolSAR Image Classification Using a Superpixel-Based
Composite Kernel and Elastic Net

Yice Cao 1, Yan Wu 1,*, Ming Li 2, Wenkai Liang 1 and Peng Zhang 2

����������
�������

Citation: Cao, Y.; Wu, Y.; Li, M.;

Liang, W.; Zhang, P. PolSAR Image

Classification Using a Superpixel-

Based Composite Kernel and Elastic

Net. Remote Sens. 2021, 13, 380.

https://doi.org/10.3390/rs13030380

Received: 21 December 2020

Accepted: 19 January 2021

Published: 22 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Remote Sensing Image Processing and Fusion Group, School of Electronic Engineering, Xidian University,
Xi’an 710071, China; yccao1@stu.xidian.edu.cn (Y.C.); wkliang@stu.xidian.edu.cn (W.L.)

2 National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China;
liming@xidian.edu.cn (M.L.); pzhang@xidian.edu.cn (P.Z.)

* Correspondence: ywu@mail.xidian.edu.cn

Abstract: The presence of speckles and the absence of discriminative features make it difficult for the
pixel-level polarimetric synthetic aperture radar (PolSAR) image classification to achieve more accu-
rate and coherent interpretation results, especially in the case of limited available training samples.
To this end, this paper presents a composite kernel-based elastic net classifier (CK-ENC) for better
PolSAR image classification. First, based on superpixel segmentation of different scales, three types
of features are extracted to consider more discriminative information, thereby effectively suppressing
the interference of speckles and achieving better target contour preservation. Then, a composite
kernel (CK) is constructed to map these features and effectively implement feature fusion under
the kernel framework. The CK exploits the correlation and diversity between different features to
improve the representation and discrimination capabilities of features. Finally, an ENC integrated
with CK (CK-ENC) is proposed to achieve better PolSAR image classification performance with
limited training samples. Experimental results on airborne and spaceborne PolSAR datasets demon-
strate that the proposed CK-ENC can achieve better visual coherence and yield higher classification
accuracies than other state-of-art methods, especially in the case of limited training samples.

Keywords: polarimetric synthetic aperture radar (PolSAR) classification; superpixel segmentation;
composite kernel; elastic net classifier; limited training samples

1. Introduction

Since the polarimetric synthetic aperture radar (PolSAR) systems can transmit and
receive electromagnetic signals in different polarization channels [1], the PolSAR datasets
can provide more detailed information about the backscattering phenomena than data
collected by single-channel SAR or other remote sensing systems [2]. The availability
of PolSAR data stimulates intensive research in polarimetric analysis techniques and
applications, including PolSAR target detection [3], change detection [4], polarization
classification, and so on. In particular, the PolSAR image classification continues to be an
active field of research [2].

In the remote sensing community, algorithms for PolSAR image classification are end-
less [5–11]. The feature extraction, as one important aspect of classification algorithms, has
seen a lot of success and received sustained development [12]. The features used for PolSAR
image classification include the polarization target decomposition (TD) features [5,13–15], the
polarization data features [16,17], and so on [18,19]. Here, these feature extractions can be
called explicit feature extractions [2], where features are extracted by projecting the PolSAR
complex-valued data into the real domain. Broadly, in the explicit feature extraction aspect, the
following problems may be encountered [2,20]. Firstly, the feature extraction process increases
computation time and computational load. Secondly, features for special classification tasks
that are hand-crafted and determined by plenty of experiments require manual trial and
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involve computational error. Finally, the feature extraction process cannot avoid the loss of
valuable information [21].

Since the scattering characteristics of the distributed targets for PolSAR images can be
described by their coherency or covariance matrix [22], it is reasonable to make classification
algorithms work directly on these complex-valued (CV) matrices. At the same time, this can
also ease the aforementioned problems caused by the explicit feature extraction from original
PolSAR CV data. One choice is classification approaches based on statistical distribution
assumption [7,21,23–26]. However, the common disadvantages of these methods are usually
complicated parameter estimation and limited model applicability [27,28]. Recently, some
classifiers with the training–testing format, which work directly on the PolSAR CV data, have
constituted an active area of research [2,20,29–34]. Among them, complex-valued networks
provide results comparable to networks designed for real-valued input [32–34]. Although
these methods have achieved remarkable breakthroughs, the demands for a large number
of labeled samples and their sensitivity to training parameters remain to be solved [12,35].
Since the PolSAR matrices form a Riemannian manifold instead of Euclidean space [36], other
classification methods based on CV matrices utilize the similarities between PolSAR matrix
samples in the manifold [27,28,36]. Among these methods, representation-based classification
methods [27,28] are flexible and can be applied to different polarized SAR datasets without
certain distribution assumptions and training processes [27].

In addition, as we know, due to the imaging mechanism, PolSAR images are heavily
contaminated by the inherent speckles [1]. Note that some of the aforementioned methods
based on PolSAR matrices only consider the polarimetric characteristics [20,27,29,30]. The
existence of speckles may make classification results include many misclassified pixels and
degrade the quality of classification, especially when the training samples are limited [37,38].
To suppress the interference of speckles, the consideration of the spatial correlations contained
in PolSAR image is one of the most commonly used and effective methods [39]. Hence, other
above-mentioned methods use image patches [2,28,31–34] or superpixels [36] to incorporate
the spatial information into PolSAR image classification. In this way, improved and smoother
classification results can be achieved. However, some methods utilize image patches or
superpixels as classification units, which may cause classification errors in certain areas
and may not better preserve the contours of certain ground targets [40]. Additionally, the
patch-based methods will increase computational complexity and load.

To overcome the limitations mentioned above, this paper proposes a pixel-level Pol-
SAR image classification method under the condition of few training samples. This method
directly utilizes PolSAR CV data as the benchmark data without any explicit feature ex-
traction. To preserve target details while considering spatial information, a multi-feature
extraction strategy based on superpixel segmentation of different scales is first proposed.
Then, a composite kernel is designed to realize the multiple information fusion, thereby
improving the representation and discrimination capabilities of features. Finally, the com-
posite kernel elastic net representation-based classification method (CK-ENC) is proposed,
which is utilized to realize pixel-level PolSAR image classification under the condition of
limited training samples.

For the multi-feature extraction, first, the coherency matrix is directly adopted to
represent the polarimetric second-order matrix feature (PSMF). This feature can retain the
full polarization scattering information of PolSAR targets [22]. In addition, to suppress
the interference of speckles and obtain smooth classification performance, the local mean
feature (LMF) within coarse-scale superpixels is designed to obtain the spatial stationary in-
formation. Superpixels are generated by a modified simple linear iterative clustering (SLIC)
algorithm [38]. Based on the assumption that a superpixel represents a homogeneous and
local stationary area, the coherency matrix follows the complex Wishart distribution in a
superpixel. Therefore, the statistical covariance matrix parameter of Wishart distribution
is estimated as the local mean feature of a pixel to consider the local spatial correlation.
Moreover, to encapsulate more discriminative information and further enhance the classifi-
cation performance, inspired by the work of [41], the nonlocal Wishart weighted feature
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(NWWF) among fine-scale superpixels is designed. In traditional nonlocal methods, rect-
angular windows are utilized for searching and matching neighborhood pixels. Although
promising results can be obtained in this way, the computational load in terms of speed is
usually maintained due to pixel by pixel calculation. Therefore, this paper makes full use
of superpixels to simplify nonlocal processing. Considering the superpixels with different
scales capturing different spatial correlations, the NWWF extraction is based on a fine-scale
superpixel segmentation map. In this way, NWWF can be regarded as a further refinement
to the feature extracted by the coarse-scale superpixels, which considers the nonlocal spatial
information to realize the information complementary with LMF. In addition, to extract
more robust NWWFs, new weights of neighborhood superpixels are derived from an adap-
tive threshold decision strategy (ATDS) [42] and the dissimilarity based on the statistical
test. NWWF uses a nonlocal search to explore the spatial correlation of superpixel pairs in
a larger neighborhood, which is regarded as a very important supplementary information
to obtain more accurate classification results.

After that, based on the kernel theory [43], a composite kernel (CK) is proposed to
embed these three features into a high-dimensional linear space to realize the information
fusion. The three features are all Hermitian symmetric positive semi-definite (HPD) matri-
ces, which form nonlinear manifolds. The Stein kernel function based on the geometric
distances is suitable for mapping these features to the higher-dimensional reproducing
kernel Hilbert space (RKHS) [27]. Therefore, we first map the three features to yield three
different kernels. Then, according to the properties of Mercer’s kernels [44], the three
kernels are combined in proportion to form the CK. In this way, the multiple information
fusion under the kernel framework is realized to improve the representation and discrimi-
nation capabilities of features. In addition, compared with other kernels based on fixed
square windows [28], the proposed CK based on superpixels can effectively reduce the
computational load and the computational complexity.

Finally, a linear-space-learning classifier, the elastic net representation-based classifi-
cation method (ENC) integrated with the CK (CK-ENC) is proposed for the final PolSAR
image classification. The EN [45], a convex combination of the sparse representation (SR)
and the collaborative representation (CR), has been utilized in various fields. The ENC
mechanism combines the l1-norm in SR and the l2-norm regularization in CR for efficient
classification. In other words, the ENC makes use of the advantages of both SR and CR to
realize a balance between within-class variations and between-class interference [46]. It
can offer more robust coefficients to achieve more reliable classification results, especially
for the condition of few training samples. In addition, unlike machine learning classifiers,
the ENC does not need a training process and does not tune too many parameters. It only
represents each test sample as the sparse combination of atoms from an over-complete
dictionary [45]. Thus, in this paper, to circumvent parameter selection and debugging
problems and achieve better classification performance, the CK-ENC is proposed for the
PolSAR image classification. The CK-ENC can yield higher classification accuracy even
with a small set of training samples.

The major contributions of this paper can be summarized from the following three as-
pects.

• Based on superpixel segmentation of different scales, a multi-feature extraction strat-
egy is proposed. It can fully mine the inherent characteristics of PolSAR data and
capture more discriminative information, thereby preserving the target contour and
suppressing the speckles to improve the visual coherence of the classification maps.

• A composite kernel (CK) is constructed to implement the feature fusion and obtain a
richer feature representation. The CK can well reflect the properties of PolSAR data
hidden in the high dimensional feature space and effectively fuse multiple sources
of information, thereby improving the representation and discrimination capabilities
of features.
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• The CK-ENC is proposed for the final PolSAR image classification. CK-ENC employs
ENC to estimate more robust weight coefficients for pixel labeling, thereby achieving
more accurate classification, especially for the condition of limited training samples.

The remainder of this paper is organized as follows. Section 2 details the proposed
CK-ENC classificaton. The experimental results and discussions are reported in Section 3
and Section 4, respectively. Finally, Section 5 concludes this paper with some remarks.

2. Proposed Method

The flowchart of the proposed method is illustrated in Figure 1. It contains three
modules, multi-feature extraction, CK construction for feature fusion, and CK-ENC for
final PolSAR image classification.

Figure 1. Framework of the proposed CK-ENC.

2.1. Multi-Feature Extraction

To derive better and richer semantic representation, based on superpixel segmentation
and statistical analysis, a multi-feature extraction strategy is proposed to extract three
features for obtaining accurate classification results.

2.1.1. Polarimetric Second-Order Matrix Feature

To suppress the interference of speckles, as the second-order statistics, the polarimetric
coherency matrix T is utilized to analyze the electromagnetic scattering characteristics of
the distributed target [1]:

T =
〈

uL · uH
L

〉
=

1
2

[ 〈∣∣SHH + SVV
∣∣2〉 〈(

SHH + SVV
)(

SHH − SVV
)∗〉 2

〈(
SHH + SVV

)
S∗HV

〉〈(
SHH − SVV

)(
SHH + SVV

)∗〉 〈∣∣SHH − SVV
∣∣2〉 2

〈(
SHH − SVV

)
S∗HV

〉
2
〈

SHV
(
SHH + SVV

)∗〉 2
〈

SHV
(
SHH − SVV

)∗〉 4
〈∣∣SHV

∣∣2〉
]

, (1)

where V denotes vertical polarization and H denotes horizontal polarization. SHH , SHV , SVH,
and SVV are four complex backscattered coefficients. uL is the polarimetric target vector [1].
The superscript H denotes the conjugate transpose, and 〈.〉 indicates temporal or spatial
ensemble averaging.

It is clear that T is an HPD matrix. This paper adopts T as the straightforward and
effective polarimetric second-order matrix feature (PSMF) to describe each pixel in a
PolSAR image. In other words, a 3× 3× H ×W polarimetric feature matrix based on T is
utilized to describe the PolSAR image with a size of H ×W. This can avoid the problems
caused by the explicit feature extraction and keep the contour information of targets in
classification results.
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2.1.2. Local Mean Feature within Coarse-Scale Superpixels

The coarse-scale superpixels are first generated by the modified SLIC algorithm [38]
to consider the spatial relationship between pixels. Then, the local mean feature (LMF) of
each pixel in a PolSAR image is extracted via the similarity within the superpixels.

Each superpixel is a disjoint and homogeneous pixel block, which can be regarded as
a stationary and homogeneous area with uniform texture. In a homogeneous area with
fully developed speckles and no texture, T obeys the complex Wishart distribution [47],
i.e., T ∼ WT(n, q, Σ). Where the parameter q is 3 for monostatic PolSAR on a reciprocal
medium, and n is the number of looks. Σ = E{T}, and Tr(.) is the trace of a matrix.

Assume that the ith pixel Ti in a PolSAR image belongs to the superpixel YSP
k . Let{

Tj
}

be a group of adjacent pixels with similar properties within superpixel YSP
k , where

j = 1, 2, . . . , Jk, and Jk is the number of pixels. Note that each superpixel represents a local,
stationary region, Ti in superpixel YSP

k can be modeled by a complex Wishart model, i.e.,
Ti ∼ WTi

(
n, q, Σ̂SP

k
)
. Thus, we estimate the statistical parameter Σ̂SP

k as the LMF to exploit
spatial information. Σ̂SP

k is calculated with the maximum-likelihood (ML) estimator [47]:

Σ̂SP
k =

1
Jk

Jk

∑
j=1

Tj. (2)

Similar to the Equation (2), the LMF of each pixel can be extracted. Relying on coarse-
scale superpixels, the local stationary information in a whole PolSAR image can be obtained
to effectively suppress the influence of speckles and improve the visual coherence of the
classification map.

2.1.3. Nonlocal Wishart Weighted Feature among Fine-Scale Superpixels

To obtain more accurate and robust classification performance, more descriptive and
discriminative features should be extracted to provide additional invaluable information.
Inspired by the nonlocal idea in [41], the nonlocal Wishart weighted feature (NWWF) is
extracted. It can exploit the nonlocal spatial information around each superpixel, which
can provide a richer spatial context to enhance the discriminability of each pixel.

Figure 2 summarizes the main steps of NWWF extraction process. The key ingredient
comes from the Wishart weight, which balances the relative importance of neighboring
superpixels around the current superpixel.

Figure 2. Scheme of the nonlocal Wishart weighted feature (NWWF) extraction.

Considering the robustness and computation efficiency, the distance derived from the
Wishart test statistic is adapted for the dissimilarity measure between superpixels [37,47].
Let ΣSP

i and ΣSP
j respectively denote the center covariance matrix of superpixels YSP

i and

YSP
j , the dissimilarity distance between the ith and jth superpixels is defined as:

DS

(
YSP

i , YSP
j

)
=
(

Ni + Nj
)

ln
∣∣∣Σ̂SP

∣∣∣− Ni ln
∣∣∣Σ̂SP

i

∣∣∣− Nj ln
∣∣∣Σ̂SP

j

∣∣∣, (3)

where Σ̂SP
i and Σ̂SP

j respectively are ML estimators of ΣSP
i and ΣSP

j in Equation (2). Details
of the aforementioned derivation can be found in [37,47].

After the dissimilarity measurement, weights of neighborhood superpixels, which
balances the relative importance, can be derived from the dissimilarity. For one superpixel
YSP

i , all neighborhood superpixels can be denoted by
{

YSP
m
}

, where m = 1, 2, . . . , M, and M
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is the total number. Based on the distance DS
(
YSP

i , YSP
m
)
, the Wishart weight wi,m between

YSP
i and YSP

m can be estimated by the exponential kernel:

wi,m = exp
(
−γD2

S

(
YSP

i , YSP
m

))
, (4)

where γ is the scale parameter. If the center superpixel YSP
i and a neighborhood superpixel

YSP
m are more similar, the value of weight wi,m will be higher.

Notably, there may be some neighborhood superpixels belonging to the different
categories with the center superpixel, which still make a contribution by weights for the
final NWWF extraction. This will make results disturbed by heterogeneous regions with
smaller weights. Therefore, to improve the robustness to heterogeneous, a more effective
weight computation is adopted as follows:

wi,m =

{
exp

(
−γD2

S
(
YSP

i , YSP
m
))

, DS
(
YSP

i , YSP
m
)
< τ

0, otherwise
, (5)

where τ is the adaptive threshold, which is provided by an AIDS. Inspired by [42], we
extend AIDS to deal with PolSAR images. Assume a PolSAR image contains C classes, the
set of available training samples can be denoted as X =

[
X1, X2, . . . , XC] with C subsets.

Each subset Xc =
[
Tc

1, Tc
2 . . . , Tc

nc

]
∈ R3×3×nc is constructed by nc training samples in the

class c(c = 1, 2, . . . , C). The total number of all training samples for the training set is N
and N = ∑C

c=1 nc. For the cth class, the mean coherency matrix is calculated as:

Tc =
1
nc

nc

∑
k=1

Tc
k. (6)

According to Equation (3), all distances between two classes can be computed, which
can be composed the set

{
D1, D2, . . . , DC(C−1)/2

}
in ascending order. Then, we take the

median values in this set as the adaptive threshold τ to decide weights:

τ = median
{

D1, D2, . . . , DC(C−1)/2

}
. (7)

Based on dissimilarity and threshold decided by AIDS, the new weight computation
scheme can reduce or even eliminate the impact of the heterogeneous regions, thereby
improving the representation performance.

Finally, with the calculated weights, the NWWF of pixels in superpixel YSP
i can be

estimated in a weighted maximum likelihood way:

Σ̂NWWF
i =

∑M
m=1 wi,m · Σ̂SP

m

∑M
m=1 wi,m

. (8)

It is worth noting that, to preserve more details and achieve relatively good perfor-
mance, superpixels with the fine-scale size are generated to extract local mean spatial
features for Equation (8). In other words, compared with Equation (2), the local spatial
feature Σ̂SP

m in Equation (8) is generated by superpixels with different size.
In summary, for each pixel in a PolSAR image, three features are extracted to pre-

serve the original CV attributes, suppress the interference of speckles, and capture more
discriminative information to obtain more accurate classification results.

2.2. Composite Kernel (CK) Construction

The above three extracted features for each pixel all 3× 3 CV matrices, which form a
nonlinear manifold. This nonlinear geometry often makes PolSAR classification compli-
cated and difficult. Therefore, to better build a classifier for PolSAR images, a composite
kernel (CK) is developed based on geometric distance and kernel method. It can map these
features to the Hilbert space and realize the multi-feature information fusion to achieve
promising classification accuracy.
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On the Riemannian manifold, the similarities between points can be measured by the
geodesic distance [36]. The widely used geodesic distances include the affine invariant
Riemannian metric (AIRM) [36], the log-Euclidean distance (LED) [48], and the Bartlett
distance [49]. Due to the eigenvalue decomposition in the equation, AIRM has high
computational complexity [27]. In addition, LED applies the Euclidean metric by projecting
the SPD matrix into the Euclidean space, which distorts the matrix structure and may
lead to suboptimal results [28]. Rather than the eigenvalue decomposition for AIRM, the
Bartlett distance only needs to calculate the matrix logarithm operation, which means a
low computational load. Therefore, for simple calculation and effective implementation,
this paper chooses the Bartlett distance.

Given two SPD matrices X ∈ Cp×p and Y ∈ Cp×p on a Riemannian manifold, the
Bartlett distance, also known as Stein divergence or Jensen-Bregman LogDet divergence, is
defined as:

dBartlett(X, Y) = log
∣∣∣∣X + Y

2

∣∣∣∣− log |XY|
2

, (9)

where log(·) is the principal matrix logarithm.
In addition, through the kernel method, matrices on the Riemannian manifold can be

embedded into the RKHS to handle the nonlinearity. In this way, many pattern recognition
methods can be utilized for the PolSAR image classification. Base on the Gaussian RBF
kernel and the above Bartlett distance, the Stein kernel function [28] can be defined as:

kStein(X, Y) = exp(−βdBartlett(X, Y)) = 2pβ

√
|X|β|Y|β

|X + Y|β
. (10)

The Stein kernel is a positive definite kernel when the values of β is inside of the
following set:

β ∈
{

1
2

,
2
2

, . . . ,
p− 1

2

}
∪
{

τ ∈ R : τ >
p− 1

2

}
. (11)

In this paper, the choice of β is (p− 1)/2.
Therefore, according to the stein kernel, three features are mapped into the RKHS

to form three different kernels, and then the CK is composed of the three kernels. More
specifically, given the polarimetric second-order matrix feature XPSMF

s ∈ Cp×p for the pixel
s = {i, j}, the mapped polarimetirc second-order matrix kernel, dented by kPSMF

(
Xi, Xj

)
, is

defined as:

kPSMF
(
Xi, Xj

)
= exp

(
−βdBartlett

(
XPSMF

i , XPSMF
j

))
= 2pβ

√∣∣XPSMF
i

∣∣β∣∣∣XPSMF
j

∣∣∣β∣∣∣XPSMF
i + XPSMF

j

∣∣∣β . (12)

For the local mean feature denoted by XLMF
s ∈ Cp×p, the mapped local mean kernel

kLMF
(
Xi, Xj

)
is as follows:

kLMF
(
Xi, Xj

)
= exp

(
−βdBartlett

(
XLMF

i , XLMF
j

))
. (13)

In addition, similarlu to Equation (13), the nonlocal Wishart weighted kernel
kNWWF

(
Xi, Xj

)
mapped from the nonlocal Wishart weighted feature XNWWF

s ∈ Cp×p is
calculated as:

kNWWF
(
Xi, Xj

)
= exp

(
−βdBartlett

(
XNWWF

i , XNWWF
j

))
. (14)

Finally, according to the properties of Mercer’s kernels [43], the CK can be created by
combing the above three kernels:
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kCK
(
Xi, Xj

)
= µPSMF.kPSMF

(
Xi, Xj

)
+ µLMF.kLMF

(
Xi, Xj

)
+ µNWWF.kNWWF

(
Xi, Xj

)
, (15)

where µPSMF, µLMF, and µNWWF are the weight parameters of the three different kernels.
Their values are satisfied:

µPSMF + µLMF + µNWWF = 1, µPSMF, µLMF, µNWWF ∈ [0, 1]. (16)

For the proposed CK-ENC, the three weights µPSMF, µLMF, and µNWWF are set to 0.1,
0.2, and 0.7, respectively. In the following experimental part, the influences of these weights
on the performances of the proposed method will be further analyzed.

2.3. Composite Kernel-Based Elastic Net Classifier (CK-ENC)

For higher computational efficiency and better classification accuracy, the CK inte-
grated with the ENC is developed for the PolSAR image classification. Under the condition
of few training samples, ENC can estimate robust coefficients to reveal a more powerful
discriminant ability for better classification performance.

For a testing sample y ∈ Cp×p, the objection of ENC is to find the coefficient vector
α ∈ Rn×1 for the linear combination of the training samples X =

[
X1, X2, . . . , XC] with

the combination of `1 and `2 penalties. Thus, the objective function under the kernel
framework can be formulated as:

α̂ = arg min
α

1
2

∥∥∥∥∥φ(y)−
c

∑
c=1

φ(Xc)αc

∥∥∥∥∥
2

2

+ λ1‖α‖1 + λ2‖α‖2
2, (17)

where λ1 and λ2 are the regularization parameters. φ(.) is an embedding function, which
maps the data from Riemannian manifold into PKHS. α =

[
α1, . . . , αc, . . . , αc] is the coeffi-

cient vector to reconstruct the testing sample y, and αc ∈ Rnc×1 is the vector representing
coefficients corresponding to the subset Xc. It is known that the inner product of two
instances in PKHS can be calculated by a kernel function k(.) : 〈φ(A), φ(B)〉 = k(A, B),
where A and B are all on a Riemannian manifold. Thus, Equation (17) can be expanded as:

α̂ = arg min
α

1
2

(
k(y, y)− 2

c

∑
c=1

αc · k(Xc, y) +
c

∑
i,j=1

αiαj · k
(

Xi, Xi
))

+ λ1‖α‖1 + λ2‖α‖2
2. (18)

In this paper, the objective function in Equation (18) adopts the CK in Equation (15).
In addition, the sparse modeling software [50] is used to solve the convex problem in
Equation (18) and find the optimized solution α̂ =

[
α̂1, . . . , α̂c, . . . , α̂c]. According to the

estimated coefficient vector α̂, the testing sample y can be classified to the best category by the
following rule:

class(y) = arg min
c=1,...,C

‖y− Xcα̂c‖2
‖α̂c‖2

. (19)

In the same way, the classification of a complete PolSAR image can be realized. In
summary, we propose the CK-ENC to achieve pixel-level PolSAR classification. CK-ENC
makes good use of the inherent statistical characteristics and the spatial information of
PolSAR data through the CK. Thus, it can obtain more discriminative representation and
overcome the influence of speckles, thereby preserving image boundaries well and making
the classification results smoother. In addition, under the condition of limited training
samples, the CK-ENC combines the CK with ENC to achieve PolSAR image classification,
which can balance the between-class interference and within-class variations to obtain
more accurate classification results. Subsequently, we will investigate the effectiveness of
the proposed CK-ENC method with real PolSAR images.



Remote Sens. 2021, 13, 380 9 of 24

3. Experimental Results

Experiments were carried out to evaluate the classification capability of the proposed
CK-ENC method. We first introduce three real PolSAR datasets utilized in the experiments
and three objective metrics for quantitative evaluation of classification performance. Then,
a comparison to classification algorithms and the experimental setup are given. Finally,
to make a sufficient comparison among various algorithms, the visualized classification
results and the quantitative performance are displayed for the full demonstration.

3.1. Experimental Datasets Description and Objective Metrics

To demonstrate the effectiveness of CK-ENC, we select three real PolSAR datasets
from an airborne system (L-band AIRSAR) and two spaceborne systems (C-band GaoFen3
and C-band RADARSAT-2). The three selected PolSAR pseudo-images are from different
areas, and the types and quantities of classes in these datasets are also different. Therefore,
the effectiveness of the proposed classification method can be verified by three selected
datasets in terms of the system, the operative band, and the classification problem. The
details of these datasets are listed as following.

3.1.1. Flevoland Benchmark Dataset

It is an L-band four-look PolSAR data with a size of 750 × 1024 pixels, acquired by the
NASA/JPL AIRSAR system on August 16, 1989. The Pauli RGB image is shown in Figure 3a
and contains 15 classes: stem beans, peas, forest, lucerne, wheat, beet, potatoes, bare soil,
grass, rapeseed, barley, wheat2, wheat3, water, buildings. The ground-truth of the image is
shown in Figure 3b, and the corresponding color code is displayed in Figure 3c.

(a) (b) (c)

Figure 3. The Flevoland dataset. (a) Pauli RGB image; (b) ground truth; (c) color code of the
different classes.

3.1.2. Yihechang Dataset

The Yihechang dataset near a domestic airport in China was obtained by the spaceborne
GaoFen3 system of the China National Space Administration (CNSA) in 27 June 2019. The
Pauli RGB map are shown in Figure 4a. As a fully polarized image of the C-band, its image
size is 590 × 800 pixels, and the resolution is 5m. This dataset is provided by the Aerospace
Information Research Institute, Chinese Academy of Sciences. There are four land cover
classes identified in this dataset: road, building, grass, and farmland. Figure 4b,c show the
ground truth and the corresponding color code, respectively.
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(a) (b) (c)

Figure 4. The Yihechang dataset. (a) Pauli RGB image; (b) ground truth; (c) color code of the different
classes.

3.1.3. San Francisco Dataset

The third dataset, San Francisco, is obtained by RADARSAT-2 in 9 April 2008, which
is a spaceborne system of the Canadian Space Agency. It is the C-band full PolSAR image
and is composed of 1800 × 1380 pixels. The Pauli RGB image, the ground-truth map, and
the color code are respectively shown in Figure 5a–c. The image consists of five major
classes: water, vegetation, high-density urban, low-density urban, and developed.

(a) (b) (c)

Figure 5. The San Francisco dataset. (a) Pauli RGB image; (b) ground truth; (c) color code of the
different classes.

To evaluate the quantitative performance of different algorithms, three objective
metrics are adopted, namely, overall accuracy (OA), average accuracy (AA), and the Kappa
coefficient (κ). Besides, the individual accuracy (CA) of each class is also listed. Specifically,
OA refers to the percentage of correctly classified testing samples in all testing samples;
AA is the mean of all class accuracies; Kappa is a robustness measurement with the degree
of agreement.

3.2. Comparison Algorithms and Experimental Setup

To verify the effectiveness of the proposed method, the proposed CK-ENC is com-
pared with some competing methods including Wishart-based ML (WML) [23], region-
based Markov random field (RMRF) [39], random forest (RF) [2], support vector machine
(SVM) [6], multilayer projective dictionary pair learning and sparse autoencoder-based
method (MDPL-SAE) [10], adaptive nonlocal stacked sparse autoencoder (ANSSAE) [11],
SRC with majority voting (SRC-MV) [51], superpixel-based joint SRC (JSRC-SP) [51], Wishart-
based joint CRC (W-JCRC) [52], and double kernels SRC (DK-SRC) [28]. In this paper, it
is not our main purpose to examine the impact of spatial information on classification re-
sults. Therefore, for the WML and RF methods, the spatial information is introduced into
these methods by superpixel-based segmentation. They are denoted by S-WML and S-RF,
respectively. In addition, we found that the classifiers with the explicit feature-based kernels
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gain poor classification performance under the condition of limited training samples. Thus,
for a fair comparison, we replace these kernels in SRC-MV, JSRC-SP, and W-JCRC methods
with the polarimetric second-order statistical kernel. Since the proposed method combines
the CK, we construct the CK-SVM classifier according to [6] for testing. The optimization
problem of CK-SVM is resolved by the LIBSVM library [53] and the parameters are obtained
by cross-validation. In addition, the CK is embedded into CRC and SRC separately to com-
pare the performance of representation-based classifiers. For deep learning-based methods
MDPL-SAE and ANSSAE, their parameters are tuned by cross-validation. In this paper, the
MDPL-SAE and ANSSAE are implemented in the Keras framework with TensorFlow as the
backend. Other methods are all run on MATLAB R2014a. The machine used for experiments
is a Lenovo Y720 cube gaming PC with an Intel Core i7-7700 CPU, an Nvidia GeForce GTX
1080 GPU, and 16GB RAM under Ubuntu 18.04 LTS operating system.

For the proposed CK-ENC, we conduct experiments to set the number of superpixels
and the regularization parameters λ1 and λ2. It should be noted that the number of
superpixels is decided by the initial expected spatial size R for similar pixels search [51].
Thus, we vary the value of R to observe its impact on the classification results. To explore
the effect of these parameters on the performance of CK-ENC and tune them, we utilize
the leave-one-out cross validation (LOOCV) strategy to conduct the experiments based on
available training samples. In addition, the same training and testing samples are chosen
in the same set of experiments to ensure consistency [46]. The labeled samples of each
dataset were divided into training and test sets randomly. For all datasets, 20 labeled pixels
per class are randomly chosen for training, and the remaining labeled samples are treated
as the test set. To avoid any bias, the experimental results are repeated ten times, and the
mean OA values are reported.

3.2.1. Impact of the Number of Superpixels

We first report experiments about the influence of the number of superpixels on
the classification performance. According to the previous theory, the local mean kernel
kLMF and the nonlocal Wishart weighted kernel kNWWF are all affected by the number of
superpixels. Thus, for all datasets, the ENC with the kLMF (LMK-ENC) and the kNWWF
(NWWK-ENC) are respectively employed to determine the optimal number of superpixels.
As mentioned above, the optimal number of superpixels means the optimal R. Here, the
value of R ranges from 3 to 23, and the interval is 2. Figure 6 illustrates the OA values
of the two classifiers under the varying initial spatial sizes. It can be observed that the
classification accuracies of LMK-ENC and NWWK-ENC are all worse when the value of R
is small. With the increase of R value, the OA curve shows a trend of first increasing and
then decreasing. In addition, for three datasets, the optimal R values of NWWK-ENC are all
smaller than the optimal value of LMK-ENC. This can be explained as follows. If the value
of R is too much smaller, each superpixel may not provide enough spatial information
for accurate classification. On the other hand, a much larger value of R may cause more
heterogeneous pixels to be contained in each superpixel, which easily leads to insufficient
segmentation. Moreover, for NWWK-ENC, the smaller value of R than LMK-ENC can
alleviate the effect of heterogeneous pixels. At the same time, enough spatial information
is provided through the weighted neighborhood superpixels. Based on the above analysis
and the results in Figure 6, the R parameters of LMK-ENC and NWWK-ENC for different
datasets are set according to their best performances. The details of the R parameters
settings are shown in Table 1.

Table 1. Detailed R settings for different datasets.

Dataset LMK-ENC NWWK-ENC

Flevoland 19 11

Yihechang 15 11

San Francisco 21 17
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Figure 6. Impact of the superpixel size R for (a) Flevoland dataset, (b) Yihechang dataset, and (c) San
Francisco dataset.

3.2.2. Impact of the Regularization Parameters

The regularization parameters λ1 and λ2 are critical for the proposed CK-ENC, which
are used to balance the data item and the penalty items. On the one hand, too much smaller
values of λ1 and λ2 have no contribution to higher overall classification accuracy. On the
other hand, when the values of λ1 and λ2 exceed a threshold, too many important features
may be lost, resulting in reduced classification accuracy. To search the optimal regularization
parameters λ1 and λ2 for the experimental datasets, we conduct experiments in the range
of λ1 = 1e− 6, 1e− 5, . . . , 1e− 1 and λ2 = 1e− 6, 1e− 5, . . . , 1e− 1. Figure 7 demonstrates
the results on the three PolSAR datasets. As shown in Figure 7, when λ1 = 1e− 2 and
λ2 = 1e− 3, the performance of CK-ENC for the Flevoland is the best. For the Yihechang and
San Francisco, the best regularization parameters λ1 and λ2 are 1e− 3 and 1e− 2, respectively.

(a) (b) (c)

Figure 7. Impact of the regularization parameters for (a) Flevoland dataset, (b) Yihechang dataset,
and (c) San Francisco dataset.

3.3. Classification Results Comparison

In this sub-section, we evaluate the effectiveness of the proposed PolSAR image classi-
fication method by the visualized classification results and the quantitative performance.

3.3.1. Experiment on Flevoland Dataset

The first experiment is carried on the Flevoland dataset. The classification accuracies
of different algorithms are shown in Table 2, and the comparison results are shown in
Figure 8.

From Table 2, it is apparent that the proposed CK-ENC performs better than other
compared methods, in terms of OA, AA, and the Kappa coefficient. Compared with S-WML
and RMRF, CK-ENC obtains higher accuracies with a more than 8% improvement in OA. That
clearly demonstrates the advantage of capsuling more discriminative features. By utilizing
more effective features, S-RF can achieve a better classification result. However, it cannot
maintain a balance between different classes. As presented in this table, although the OA of
the Bare soil reaches 100%, the OA of the Wheat is only 83%. This phenomenon also appears
in CK-SVM, MDPL-SAE, and ANSSAE. The main reason may be that due to the limitation of
available labeled samples, the training-based classification algorithms cannot fully explore and
learn the inherent polarimetric information. Thus, they cannot identify all classes effectively



Remote Sens. 2021, 13, 380 13 of 24

to maintain a classification balance between classes. For SRC-MV and JSRC-SP based on
superpixels, they can achieve classification accuracies than 95%. Additionally, W-JCRC based
on the statistical distance-weighted regularization obtains an OA up to 95.94%. However,
none of them consider nonlocal spatial information, which results in accuracy lower than
CK-ENC. By considering the nonlocal spatial information, the OA of DK-SRC reaches 97.66%.
It indicates that it is necessary to introduce nonlocal spatial information for more accurate
classification results. Although DK-SRC achieves a great classification result, its performance
is not as good as the proposed CK-ENC. Compared with DK-SRC, CK-ENC improves the
accuracy of wheat, grass, and barley by about 4%. It may be the result of the integration of
more spatial information and the fusion of various types of features. In addition, the results of
CK-ENC are better than CK-SRC and CK-CRC, which illustrates that ENC combining `1 and
`2-norm regularized terms outperforms the original SRC and CRC. Overall, for the Flevoland
dataset, the proposed CK-ENC achieves the best classification accuracy, especially when the
number of labeled samples is limited.

(a) Pauli image (b) Ground truth (c) S-WML (d) RMRF

(e) S-RF (f) CK-SVM (g) MDPL-SAE (h) ANSSAE

(i) SRC-MV (j) JSRC-SP (k) W-JCRC (l) DK-SRC

(m) CK-SRC (n) CK-CRC (o) CK-ENC (p) Color
code

Figure 8. Classification results of the Flevoland dataset with different methods.
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Table 2. Comparision of classification performances on the Flevoland dataset.

Class S-WML RMRF S-RF CK-SVM MDPL-SAE ANSSAE SRC-MV JSRC-SP W-JCRC DK-SRC CK-SRC CK-CRC CK-ENC
1 98.28 ± 0.06 99.59 ± 0.07 99.39 ± 0.03 99.62 ± 0.11 95.74 ± 0.26 94.49 ± 0.56 99.69 ± 0.11 99.69 ± 0.17 99.47 ± 0.08 99.15 ± 0.25 99.74 ± 0.02 96.00 ± 0.78 99.47 ± 0.01
2 89.81 ± 1.71 99.64 ± 0.11 98.92 ± 0.19 99.68 ± 0.19 94.23 ± 0.80 93.47 ± 0.86 99.69 ± 0.02 99.69 ± 0.01 99.08 ± 0.20 99.43 ± 0.28 99.68 ± 0.01 99.90 ± 0.16 99.67 ± 0.03
3 94.93 ± 1.46 93.49 ± 1.01 98.55 ± 0.65 98.14 ± 0.29 95.68 ± 1.07 90.44 ± 0.51 97.94 ± 0.38 98.10 ± 0.27 96.62 ± 0.71 99.23 ± 0.30 99.06 ± 0.58 97.79 ± 0.45 99.18 ± 0.54
4 92.64 ± 0.66 98.86 ± 1.30 96.45 ± 1.06 99.86 ± 0.02 89.51 ± 1.55 93.66 ± 1.26 96.73 ± 1.78 99.57 ± 0.15 99.23 ± 0.30 97.83 ± 0.57 96.95 ± 0.79 97.99 ± 0.73 99.08 ± 0.02
5 86.24 ± 1.12 88.07 ± 1.20 83.98 ± 1.98 85.45 ± 1.39 97.41 ± 0.29 88.18 ± 0.50 96.66 ± 1.28 94.06 ± 0.94 92.68 ± 1.58 95.04 ± 0.55 97.32 ± 0.62 94.29 ± 1.58 98.11 ± 0.16
6 95.60 ± 0.21 97.79 ± 1.25 99.49 ± 0.28 99.41 ± 0.05 92.21 ± 0.57 70.79 ± 1.24 96.92 ± 0.53 94.10 ± 0.40 98.81 ± 0.71 97.62 ± 0.21 98.60 ± 0.18 98.75 ± 0.19 98.98 ± 0.01
7 98.27 ± 0.81 96.95 ± 0.95 98.20 ± 0.50 99.27 ± 0.07 87.42 ± 0.84 85.29 ± 1.01 93.69 ± 1.49 91.66 ± 0.55 95.25 ± 0.21 98.74 ± 0.47 99.46 ± 0.24 99.41 ± 0.36 99.18 ± 0.14
8 97.78 ± 1.28 94.98 ± 0.54 100 ± 0 100 ± 0 99.38 ± 0.48 98.86 ± 0.13 100 ± 0 100 ± 0 99.87 ± 0.06 99.22 ± 0.05 97.97 ± 0.17 97.98 ± 1.16 99.80 ± 0.01
9 87.99 ± 1.94 74.87 ± 1.66 95.26 ± 0.52 74.75 ± 2.46 90.91 ± 0.63 82.66 ± 0.37 99.86 ± 0.05 99.86 ± 0.26 92.75 ± 0.88 92.70 ± 1.43 96.53 ± 0.44 95.13 ± 1.45 96.14 ± 0.15

10 84.34 ± 0.42 78.24 ± 0.56 90.30 ± 0.18 64.30 ± 2.49 74.67 ± 2.22 65.20 ± 1.65 76.10 ± 2.16 70.96 ± 1.48 85.14 ± 1.67 93.67 ± 0.94 92.75 ± 0.60 89.86 ± 1.29 93.91 ± 0.22
11 91.91 ± 0.59 99.23 ± 0.03 97.51 ± 0.48 99.66 ± 0.03 92.10 ± 0.18 95.56 ± 1.16 99.15 ± 0.49 99.15 ± 0.43 94.91 ± 0.79 95.20 ± 0.91 99.08 ± 0.06 97.05 ± 1.91 98.88 ± 0.36
12 95.95 ± 0.41 97.89 ± 1.10 91.62 ± 0.92 84.77 ± 1.45 50.91 ± 1.78 80.36 ± 0.93 97.64 ± 0.99 97.64 ± 0.08 95.56 ± 1.05 98.97 ± 0.24 98.98 ± 0.46 96.13 ± 0.51 95.18 ± 1.10
13 94.51 ± 0.96 95.61 ± 0.97 91.48 ± 1.12 92.51 ± 0.74 94.99 ± 0.45 94.43 ± 0.45 99.32 ± 0.22 98.06 ± 0.30 98.23 ± 1.05 99.02 ± 0.03 98.31 ± 0.67 97.33 ± 1.21 99.01 ± 0.68
14 69.27 ± 1.14 49.41 ± 1.27 91.23 ± 0.07 50.81 ± 2.64 81.97 ± 1.83 88.62 ± 0.46 100 ± 0 100 ± 0 99.11 ± 0.43 99.93 ± 0.02 99.55 ± 0.31 97.79 ± 1.24 98.34 ± 0.86
15 98.71 ± 0.12 92.70 ± 0.87 99.16 ± 0.45 98.42 ± 0.02 94.54 ± 0.32 97.90 ± 0.26 99.12 ± 0.12 99.12 ± 0.12 96.71 ± 0.32 98.93 ± 0.58 81.36 ± 1.45 98.93 ± 0.18 98.46 ± 0.04

OA 90.65 ± 0.85 89.54 ± 0.29 94.04 ± 0.10 87.83 ± 0.36 88.13 ± 0.89 86.74 ± 0.59 96.21 ± 0.65 95.11 ± 0.54 95.94 ± 0.33 97.66 ± 0.32 98.06 ± 0.05 97.05 ± 0.27 98.18 ± 0.09
AA 91.75 ± 0.54 90.49 ± 0.25 93.50 ± 0.03 89.65 ± 0.35 88.78 ± 1.17 87.99 ± 0.52 96.83 ± 0.12 96.11 ± 0.43 96.29 ± 0.25 96.64 ± 0.39 97.02 ± 0.64 97.20 ± 0.84 98.23 ± 0.17

κ×100 89.91 ± 0.92 88.62 ± 0.32 95.31 ± 0.11 86.76 ± 0.39 87.05 ± 0.96 85.55 ± 0.64 95.86 ± 0.71 94.66 ± 0.60 95.56 ± 0.35 97.45 ± 0.35 97.89 ± 0.39 96.79 ± 0.30 98.01 ± 0.01
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As shown in Figure 8, the proposed CK-ENC performs a better visual effect than other
methods and has better agreement with the ground truth. As shown in Figure 8c–e, S-WML
and RMRF misclassify a considerably large part of water into bare soil. S-RF achieves a bad
result in recognizing wheat3, but it can distinguish water well. As shown in Figure 8f–h,
the classification maps by training-based methods have many notable misclassified pixels,
which is consistent with the results listed in Table 2. It indicates that the proposed CK-ENC
can provide competitive performance even with limited labeled samples. Comparing
Figure 8o with Figure 8i,j, the proposed CK-ENC can reduce the number of misclassified
homogeneous regions (as highlighted by black ovals). This illustrates that fusing pixel-
based features (i.e., PSMF) and capturing more discriminant information is indispensable
to improve classification results. From Figure 8k,l, we can see that the classification maps
are over-smoothed, and the pixels located around class boundaries are misclassified. The
reason is that W-JCRC and DK-SRC utilize rectangle windows to joint neighboring pixels.
By contrast, CK-ENC adopts superpixels to provide adaptive spatial information, thereby
avoiding mixing pixels belonging to different classes and preserving image boundaries
well. In addition, compared with Figure 8m,n, CK-ENC can obtain a better and accurate
classification result (as highlighted by white rectangles). According to Table 2 and Figure 8,
it can be concluded that the proposed CK-ENC outperforms other compared approaches
on the Flevoland dataset.

3.3.2. Experiment on Yihechang Dataset

The second experiment is conducted on the Yihechang dataset. The quantitative
evaluation results are listed in Table 3, and the classification maps are shown in Figure 9.

As shown in Table 3, the proposed CK-ENC has the highest accuracy and kappa coef-
ficient. What is more, compared with other methods, CK-ENC has excellent performance
for correctly classifying the Farmland. That shows that our method can provide more
discriminant information by the multi-feature fusion, thereby achieving satisfying results
for complex scattering classes. As shown in Figure 9, the classification map of CK-ENC has
fewer remarkable misclassified pixels and is much clearer and smoother compared with
other methods. Moreover, CK-ENC significantly reduces the misclassification of the edges
and improves the visual coherence of the classification map. Therefore, for the Yihechang
dataset, whether objective metrics or visual performance, the proposed CK-ENC delivers
better performance than other compared methods.

3.3.3. Experiment on San Francisco Dataset

The third experiment is conducted on the San Francisco dataset. Table 4 reports the
quantitative evaluation results for different classification methods. The corresponding
classification results are shown in Figure 10.

As shown in Table 4, CK-ENC has the highest OA value and Kappa coefficient,
which demonstrates the effectiveness of the proposed method. Moreover, the AA value
of CK-ENC is the highest, which proves that our method can extract features with the
representation and discrimination ability, thereby maintaining the classification balance
between classes. It is noteworthy that, for all urban classes including High-density urban,
Low-density urban, and Developed, the CK-ENC yields accuracies more than 95%. This
shows that even for similar classes with small differences, the proposed method also well
captures within-class variation to present a better performance, which outperforms other
competitive methods.
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Table 3. Comparision of classification performances on the Yihechang dataset.

Class S-WML RMRF S-RF CK-SVM MDPL-SAE ANSSAE SRC-MV JSRC-SP W-JCRC DK-SRC CK-SRC CK-CRC CK-ENC
1 92.86 ± 0.78 91.04 ± 0.21 97.04 ± 0.41 96.44 ± 0.74 98.04 ± 0.79 97.03 ± 0.43 91.61 ± 0.79 92.12 ± 0.87 79.45 ± 2.12 89.03 ± 1.60 95.00 ± 0.25 91.90 ± 1.29 92.64 ± 0.75
2 71.62 ± 1.59 78.60 ± 2.63 96.47 ± 0.25 79.17 ± 2.41 81.79 ± 1.09 72.18 ± 1.62 89.68 ± 1.24 92.70 ± 0.27 87.25 ± 1.78 92.11 ± 0.70 89.67 ± 0.80 91.31 ± 0.56 92.82 ± 0.56
3 80.75 ± 1.08 81.41 ± 1.53 84.57 ± 1.99 65.53 ± 2.15 48.28 ± 3.57 69.78 ± 2.70 84.65 ± 1.75 90.50 ± 1.75 91.27 ± 0.80 87.09 ± 1.63 90.66 ± 1.35 93.60 ± 1.28 92.44 ± 1.19
4 96.02 ± 0.95 96.17 ± 0.49 90.89 ± 0.27 80.51 ± 1.23 88.11 ± 0.76 82.61 ± 1.37 94.97 ± 0.18 89.85 ± 1.94 94.84 ± 0.27 96.31 ± 0.47 97.83 ± 0.73 97.22 ± 0.59 98.48 ± 0.63

OA 90.91 ± 1.07 91.64 ± 0.54 91.33 ± 0.39 80.14 ± 0.88 83.07 ± 0.98 81.38 ± 1.20 92.58 ± 0.36 90.51 ± 1.17 91.75 ± 0.97 93.74 ± 0.76 95.63 ± 0.26 95.47 ± 0.26 96.36 ± 0.22
AA 85.31 ± 1.28 86.81 ± 1.17 92.24 ± 0.26 80.41 ± 0.91 79.06 ± 1.22 80.40 ± 0.28 90.23 ± 0.43 91.29 ± 0.94 88.20 ± 1.74 91.14 ± 0.57 93.29 ± 0.27 93.51 ± 0.17 94.10 ± 0.44

κ×100 83.20 ± 1.42 84.48 ± 0.88 84.93 ± 0.58 66.90 ± 0.89 70.60 ± 1.71 68.38 ± 1.69 86.59 ± 0.69 85.53 ± 1.85 85.08 ± 1.74 88.64 ± 1.31 92.02 ± 0.44 91.77 ± 0.46 93.34 ± 0.38

Table 4. Comparision of classification performances on the San Franciso dataset.

Class S-WML RMRF S-RF CK-SVM MDPL-SAE ANSSAE SRC-MV JSRC-SP W-JCRC DK-SRC CK-SRC CK-CRC CK-ENC
1 98.11 ± 0.85 99.15 ± 0.23 99.03 ± 0.04 100 ± 0 95.61 ± 0.76 99.69 ± 0.24 99.99 ± 0.01 99.96 ± 0.02 99.91 ± 0.05 99.96 ± 0.04 99.98 ± 0.08 99.47 ± 0.27 99.95 ± 0.01
2 90.88 ± 1.16 88.62 ± 1.09 94.83 ± 1.13 93.75 ± 0.88 84.80 ± 1.47 86.41 ± 1.54 92.80 ± 0.53 90.85 ± 0.98 82.87 ± 1.70 90.87 ± 1.42 92.85 ± 1.47 89.26 ± 1.15 92.03 ± 0.98
3 65.20 ± 2.94 83.92 ± 1.89 79.23 ± 2.07 43.69 ± 2.10 77.92 ± 0.09 76.25 ± 0.93 74.76 ± 1.94 89.67 ± 1.43 90.07 ± 0.46 93.08 ± 0.63 98.13 ± 0.48 92.74 ± 1.47 97.27 ± 0.64
4 92.20 ± 1.05 73.84 ± 2.27 84.25 ± 1.67 72.06 ± 0.94 83.29 ± 2.42 58.91 ± 0.91 96.73 ± 1.14 96.03 ± 1.16 78.56 ± 1.87 77.40 ± 2.16 92.79 ± 1.59 97.05 ± 1.48 96.16 ± 0.02
5 80.05 ± 1.75 69.78 ± 0.67 92.33 ± 0.40 58.97 ± 1.31 79.56 ± 0.22 74.24 ± 1.15 73.66 ± 1.54 84.25 ± 1.80 89.60 ± 0.74 83.33 ± 1.59 92.76 ± 1.50 95.54 ± 0.72 96.41 ± 0.47

OA 90.04 ± 1.28 89.14 ± 0.92 92.20 ± 0.39 83.07 ± 0.44 88.30 ± 1.42 85.19 ± 1.32 93.27 ± 0.10 95.68 ± 0.48 91.51 ± 1.10 92.55 ± 1.11 97.03 ± 0.33 96.43 ± 0.49 97.59 ± 0.24
AA 85.29 ± 1.81 83.06 ± 1.11 89.93 ± 1.19 73.69 ± 0.56 84.23 ± 0.40 79.10 ± 2.15 87.59 ± 1.56 92.15 ± 1.63 88.20 ± 1.00 88.93 ± 1.48 95.30 ± 0.51 94.82 ± 0.21 96.36 ± 0.40

κ×100 85.69 ± 0.81 84.41 ± 1.33 88.80 ± 0.34 75.57 ± 0.60 83.16 ± 0.53 78.30 ± 0.83 90.28 ± 0.30 93.78 ± 0.21 87.83 ± 1.55 89.30 ± 0.59 95.73 ± 0.47 94.87 ± 0.70 96.54 ± 0.35
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(a) Pauli image (b) Ground truth (c) S-WML (d) RMRF

(e) S-RF (f) CK-SVM (g) MDPL-SAE (h) ANSSAE

(i) SRC-MV (j) JSRC-SP (k) W-JCRC (l) DK-SRC

(m) CK-SRC (n) CK-CRC (o) CK-ENC (p) Color code

Figure 9. Classification results of the Yihechang dataset with different methods.

From Figure 10, it is apparent that CK-ENC performs the best visual effect. As shown
in Figure 10c–l, serious confusions exist between high-density urban and low-density
urban. This phenomenon has been weakened in Figure 10m–o, which indicates that
the proposed CK can capsule more discriminant information by the feature fusion and
eliminate the between-class interference. In addition, compared with Figure 10m,n, the
proposed CK-ENC further alleviate this problem (as highlighted by black ovals), which is
coincident with the results in Table 4. Moreover, for Developed and Vegetation, CK-ENC
shows better visual effects in regional label consistency than other methods (as highlighted
by white ovals). In summary, by the fusion of various types of features, the proposed
CK-ENC method can captive more discriminative information, thereby exploring more
characteristics contained in PolSAR data to obtain more accurate classification results.
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(a) Pauli image (b) Ground truth (c) S-WML (d) RMRF

(e) S-RF (f) CK-SVM (g) MDPL-SAE (h) ANSSAE

(i) SRC-MV (j) JSRC-SP (k) W-JCRC (l) DK-SRC

(m) CK-SRC (n) CK-CRC (o) CK-ENC (p) Color code

Figure 10. Classification results of the San Franciso dataset with different methods.

4. Discussion
4.1. Impact of the Kernel Parameter β

To verify the influence of β on the classification result, we select 15 values within the
effective range of β for experiments. Figure 11 illustrates the OA values of the proposed
method under different β values on the three PolSAR datasets. As shown in Figure 11, the
change of β value has little effect on classification performance. Therefore, without loss of
generality, we set β to (p− 1)/2 in the above experiments, that is, β = 1.
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Figure 11. Impact of the kernel parameter β for three PolSAR datasets.

4.2. Impact of the Proposed Composite Kernel

In CK-ENC, the three kernel weights µPSMF, µLMF, and µNWWF can reflect the con-
tribution of the three feature kernels kPSMF, kLMF, and kNWWF for classification. To verify
the performance of the proposed CK kCK, Figure 12 illustrates the OA values of differ-
ent combinations of kernel weight parameters µPSMF and µLMF under the condition of
µPSMF + µLMF + µNWWF = 1.
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Figure 12. Effect of the kernel weight parameters for (a) Flevoland dataset, (b) Yihechang dataset,
and (c) San Francisco dataset.

For the Flevoland dataset, when the three feature kernel are used separately, that is,
when µPSMF = 1, µLMF = 0, µNWWF = 0, the OA value is 71.61%, when µPSMF = 0, µLMF =
1, µNWWF = 0, the OA value is 89.50%, and when µPSMF = 0, µLMF = 0, µNWWF = 1, the
OA value is 96.01%. Obviously, the OA value obtained by using only the kPSMF is the lowest.
This shows that the local mean feature (LMF) and the nonlocal Wishart weighted feature
(NWWF) seem to be more effective for higher accuracy than the polarimetric second-order
matrix feature (PSMF). When the kPSMF is separately combined with kLMF and kNWWF, i.e.,
0 < µPSMF < 1, µNWWF = 0 and 0 < µPSMF < 1, µLMF = 0, the OA value increases first and
then decreases. Especially when µPSMF varies from 0.2 to 0.9, the OA value keeps decreasing.
This indicates that NWWF should be utilized for the PolSAR image classification, but its
weight value is comparatively smaller than other features. Therefore, this paper fixes the
value of µPSMF to 0.1 for three datasets. If the kLMF and kNWWF are used at the same time, i.e.,
µPSMF = 0, with the increasing of µLMF, the change of OA value is to increase first and then
decrease. The best OA value is 97.10%, which is higher than using both kernels alone. This
shows that a suitable combination of LMF and NWWF has a positive impact on classification
performance. From Figure 12a, we can observe that the highest OA value occurs when the
three kernels are fused, i.e., µPSMF 6= 0, µLMF 6= 0, µNWWF 6= 0. This means the validity of the
proposed composite kernel kCK.



Remote Sens. 2021, 13, 380 20 of 24

For the Yihechang and San Francisco datasets, it can be observed that the best classi-
fication results are obtained using CK. In addition, for the San Francisco dataset, although
the increase in OA is not obvious when combining with the kPSMF, the contour details
of some ground targets are clearer due to the fusion of PSMF. For better interpretation,
Figure 13a,b respectively show the classification results without and with the kPSMF. As
shown in Figure 13, the proposed method with the kPSMF can identify the fine structures
effectively (as highlighted by black rectangles). To sum up, the proposed CK, which integrates
three different kernels, can achieve better results than single kernels and dual kernels.

(a) (b)

Figure 13. Classification results on the San Francisco dataset (a) without the polarimetirc second-order
matrix kernel, and (b) with the polarimetirc second-order matrix kernel.

4.3. Effect of the Number of Training Samples

Figure 14a–c illustrates the effect of different numbers of training samples on the
classification results, and the average OA value of 10 times random runs is reported. For
all three datasets, the number of training samples per class varies from 3 to 40. Besides, we
also report the execution time of the proposed CK-ENC under different numbers of training
samples shown in Figure 14d. From Figure 14a–c, it can be seen that the OA values of all
methods increase when the number of training samples increases. The proposed CK-ENC
consistently yields higher OA values than other competitive methods. Furthermore, from
Figure 14d, we could find that the execution time of CK-ENC increases as the number
of training samples increases. Meanwhile, the OA value of CK-ENC is stable when the
number of training samples is more than 20 per class. Based on the above discussion, for
the compromise between time cost and classification accuracy, we have selected 20 training
samples per class for all datasets in the above experiments.
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Figure 14. Effect of the number of training samples for (a) Flevoland dataset, (b) Yihechang dataset,
and (c) San Francisco dataset. (d) Execution time (in seconds) of CK-ENC under different numbers of
training samples for the three PolSAR datasets.

4.4. Efficiency Comparison

To assess the efficiency of the proposed CK-ENC, Figure 15 reports the execution time
of different methods, including feature extraction time and classification time. For training-
based methods, the execution time also includes model training time. Besides, these
methods are all speed up by using the graphical processing unit (GPU). From Figure 15, we
can see that S-WML has the shortest execution time because its classification framework
is simple. As the GPU is used for acceleration, S-RF, MDPL-SAE, and ANSSAE methods
have certain advantages in terms of execution time. However, compared with CK-ENC, the
classification performance of these methods is undesirable. Restricted by the rectangular
window operation, the execution time of DK-SRC is longer than other methods. In addition,
benefiting from the role of superpixels, the proposed CK-ENC has a rather short time cost
compared with DK-SRC. However, the execution time of the proposed CK-ENC is higher
than SRC-MV, JSRC-SP, and W-JCRC. The main reason is that CK-ENC needs to calculate
three different kernels, while SRC-MV, JSRC-SP, and W-JCRC only need to calculate one
kernel. To sum up, taking both time consumption and accuracy into consideration, the
proposed CK-ENC can get very competitive classification results.
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Figure 15. Execution time (in seconds) in the three PolSAR datasets.

5. Conclusions

This paper presents the CK-ENC method to achieve PolSAR image classification
under the circumstance of limited training samples. Without any data projection, CK-ENC
directly uses the PolSAR CV data as the benchmark data to avoid the loss of polarimetric
information. Based on the superpixel segmentation of different scales, CK-ENC introduces
a multi-feature extraction strategy to achieve better target contour preservation and enhance
the robustness against speckles. In addition, a CK is constructed to effectively implement
feature fusion, thereby improving the representation and discrimination capabilities of
features. In this way, the proposed CK-ENC can achieve better classification performance.
Moreover, to achieve more reliable results with limited training samples, we integrated
the CK with the ENC for final PolSAR image classification. Experiments on three PolSAR
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datasets acquired from different systems evaluated the classification performance and
effectiveness of the proposed CK-ENC. The classification results demonstrate that CK-ENC
outperforms the state-of-the-art methods both in quantitative metrics and in visual quality,
especially under the circumstance of limited training samples. In future work, we will
generalize the CK-ENC method to classify dual-frequency PolSAR datasets.
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