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Abstract: Changes in land-use and land-cover, including both agricultural expansion and the estab-
lishment of protected areas, have altered the landscape pattern and extent of forest and wetland 
cover in the tropics. In Central America, land-use and land-cover change is also threatening the 
cultural resources of the region’s ancient Maya heritage since many ancient sites have been de-
graded by burning, deforestation, and plowing. In this study of Orange Walk District of northern 
Belize, from the 1980s to the present, we used multitemporal Landsat data with a random forest 
classifier to reveal trends in land-use and land-cover change and the increasing loss of forest and 
wetlands. We develop a random forest classifier that is time-generalized to map land-use and land-
cover across the entire Landsat record, including Landsat 4, 5, 7, and 8, with a single algorithm. 
Including multiyear and seasonal composites was important for obtaining cloud-free coverage and 
distinguishing between different land-use and land-cover types. Early deforestation (1984–1987) 
was in small patches scattered across the landscape and likely driven by small scale agriculture such 
as milpa and smaller area tractor and horse-drawn plowing. The establishment of protected areas 
in the late 1980s and early 1990s allowed for forest regrowth in these areas, while wetland losses 
were high at 15%. The transition to industrial agriculture in the 2000s, however, drove a 43.6% ex-
pansion of agriculture and a 7.5% loss of forest and a 28.2% loss of wetlands during the ~15 years. 
Protected areas initiated in the 1980s led to a nearly 100 km2 decrease in agriculture from 1984–1987 
to 1999–2001, and they became essential refugia for habitat and maintaining ecosystem services. 
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1. Introduction 
Deforestation in tropical forests and wetlands has proliferated across Central Amer-

ica for decades and accelerated across the tropics [1,2]. Declines in forests and wetlands 
are often the outcome of anthropogenic land management, but the drivers and timescales 
of these changes vary broadly [3–5]. These land changes are local processes that accumu-
late to global effects [6–9]. Like in many Central American countries, the forest and wet-
land ecosystems of Belize are under increasing threat due to land-use change [10]. Partic-
ularly, the increase in industrial agriculture in recent decades has driven the loss of trop-
ical forests and wetlands. These diverse ecosystems not only provide ecosystem services 
and bring income to this tourism-dependent nation, but they are also essential for main-
taining at-risk species such as jaguars, tapirs, and white-lipped peccaries [10,11]. In addi-
tion, these forested areas contain expanses of ancient Maya structures, roads, water man-
agement infrastructure, and agricultural fields [12–14]. 

While agriculture expands in Belize, the country also has established many public 
and private protected areas for ecosystems and cultural heritage. Yet studies in Belize 
assessing land-use and land-cover change through time have simply estimated total forest 
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loss without relating changes to potential drivers [15]. While forests are important ecosys-
tems that are under threat, wetlands in the region have also been drained and plowed 
over wide areas. The District of Orange Walk in Belize has experienced wide deforestation 
and wetland destruction, but it also contains some of the largest networks of connected, 
protected areas in the country. 

About 45% of Orange Walk District is protected as private reserves and public wild-
life sanctuaries (Figure 1). The Rio Bravo Conservation and Management Area (RBCMA) 
is the largest protected area in Orange Walk, covering 1014.55 km2 of tropical forest and 
wetlands. The RBCMA is privately owned by the nonprofit Program for Belize (PfB), 
founded in 1988 to protect biodiversity as well as cultural history and to support research 
in conservation, ecology, and archaeology. All of the land in Orange Walk that is not pro-
tected is under increasing threat of deforestation, and therefore the RBCMA and other 
protected areas are essential for preserving the district’s natural resources and cultural 
heritage [10]. Other studies, however, have demonstrated that protected areas can still 
experience deforestation under improper management [16,17]. 

Belize has a long history of human land-uses, with widespread agriculture dating 
back at least 5000 years [12]. The Maya once occupied the entire region from about 4000–
1000 years BP, and Maya land-uses peaked from 2000 to 1000 BP, when intensive farming 
systems such as terracing and wetland cultivation flourished. Around 1000 BP population 
declined, and many urban areas were abandoned [18]. For the millennium after Maya 
abandonment, the area has had much smaller populations that practiced subsistence 
farming through milpa agriculture and colonial logging for logwood and mahogany [19]. 
In milpa agriculture, farmers rotate plots every few years, using fire to clear a new plot 
and letting the previous plot lie fallow, and rotating plots before returning to the original 
[20–22]. In the last half-century, however, industrial, agricultural production has spread 
rapidly and increased the country’s food security and exports but has also driven defor-
estation and destruction of wetlands. 

A handful of studies have quantified the land change in all of Belize, focused on par-
ticular regions or protected areas, or only quantified the loss of forest [15–17,23]. The only 
study to explicitly map deforestation across Belize is a NASA SERVIR technical report, 
and it only quantified changes in forest and non-forest classes [15]. The report notes that 
from 1980–2012, forest cover in Belize declined from 1,648,783 hectares to 1,366,300 hec-
tares, or from 74.38% to 61.64% of Belize’s land area [15]. Other studies of deforestation in 
Belize have focused on smallholder lands in local areas or specific reserves [16,17,23,24]. 
Belize remains an understudied example of rapid agricultural expansion driving defor-
estation and wetland destruction. The Orange Walk District provides a particularly inter-
esting example to study both deforestation and conservation because it has such rapid 
and intensive agricultural development up to the borders of large tracts of protected land. 
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Figure 1. Protected areas of Orange Walk, Belize. Location of Orange Walk is highlighted in red in the inset map of districts 
in Belize. Satellite imagery is the dry season median from Landsat 8 used for the 2014–2016 period in this study in true 
color (RGB 452). 

There are many classification methods for mapping land-use and land-cover (LULC) 
with remotely sensed data. Machine-learning algorithms are growing in scientific research 
because they are more accurate than commonly used parametric algorithms like maxi-
mum-likelihood [25,26]. In addition, machine-learning algorithms can handle more com-
plex data spaces and are more efficient because they do not rely on data distribution as-
sumptions [25,27]. Machine-learning techniques that use ensembles of classification—
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such as neural network ensembles, random forests, bagging and boosting—have multi-
plied substantially in recent years. These algorithms obtain high accuracy by using the 
same classifier to perform many classifications of the same data or different classifiers to 
perform multiple classifications. The classification ensembles are combined using a 
weighting, error minimization, or a rule-based approach. By applying many classification 
iterations, these approaches generally perform better than other machine-learning algo-
rithms, particularly in land cover classification [25]. 

The random forest (RF) algorithm has several advantages over other algorithms for 
mapping land cover change with remotely sensed data and generally performs best for 
this application [25]. Compared to most other algorithms, including advanced algorithms 
like support vector machines, RF is more computationally efficient, is less affected by out-
liers or nonparametric data, and has few parameters that need to be optimized to achieve 
high accuracy [25–29]. In addition, new advances in computing allow researchers to em-
ploy machine-learning algorithms with larger datasets at faster speeds [30]. For this study, 
therefore, we chose to use the RF algorithm implemented on the Google Earth Engine 
platform to map land-use and land-cover change in Orange Walk District with NASA’s 
Landsat data archive [30–32]. Differences in spectral resolution make it difficult to apply 
an algorithm trained on one Landsat sensor to other Landsat sensors, so most studies use 
only a single sensor (e.g., Landsat 8 only), although some have made efforts to harmonize 
the data for longer study periods [31–33]. Here, we develop a single RF algorithm trained 
on Landsat 8 data that we also apply to Landsat 7, 5, and 4 data to evaluate how well a 
single algorithm performs through time and across the Landsat sensors. 

In this study, we quantify land-use and land-cover change from 1984–2016 in Orange 
Walk, Belize, and assess how agricultural expansion and establishing protected areas have 
influenced changes in forest and wetland cover. First, we developed a single RF classifier 
to map land-use and land-cover in Orange Walk, Belize using Landsat 4, 5, 7, and 8 data. 
Second, we used the algorithm to quantify the change in land-use and land-cover from 
1984–2016, with a focus on the change in the forest, wetland, and agriculture extent. We 
expected the results of this study to allow us to estimate the loss of tropical forests and 
wetlands over the past 30 years and how protected areas affected the distribution of land-
use. Ultimately, this assessment should augment methods for LULC mapping in the trop-
ics, as well as provide results that could be considered in conservation policymaking in 
Belize and beyond. 

2. Materials and Methods 
2.1. Environment 

Northwest Belize lies primarily on Cretaceous through Tertiary limestone and is part 
of the Yucatan Platform. Trans-tensional deformation along the North American-Carib-
bean transform boundary has created southwest to northeast oriented normal faulting, 
leaving a horst and graben structured landscape [34]. The limestone bedrock has resulted 
in the formation of a complex fluviokarst system throughout this area. These tectonic, 
karst and fluvial processes have formed a series of escarpments and depressions that de-
scend from the west, where the elevation ranges from 100 to 300 m above sea level, to the 
Belizean coastal plain in the east, which ranges from 0 to 10 m above sea level (masl) [35]. 
The western part of the Orange Walk District is elevated on the La Lucha Escarpment 
above 200 masl. To the east, the District descends down two more escarpments (the Rio 
Bravo and the Booths River Escarpments) to the coastal plain (Figure 1). Agricultural de-
forestation and deforestation from runaway fires have spread to nearly all elevations, par-
ticularly with cattle ranching and scattered coconut plantations that have expanded across 
the landscape. 

The region’s climate is considered subtropical, with distinct wet and dry seasons driven 
by the annual migration of the intertropical convergence zone (ITCZ). The wet season runs 
from June to December and the dry season from January through May. The average annual 
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precipitation in this region is 1500 mm [18]. Annual daytime temperatures vary between 26 
°C and 32 °C, with the highest temperatures in April and May [18]. This moist environment 
in the landscape has produced many wetlands that occur in karst depressions, fault lines, 
and floodplains [36,37]. Some perennially inundated wetlands exist, such as around the 
New River Lagoon on the east side of Orange Walk, but many of the forested wetlands are 
seasonally inundated. Pine forest and savannas dominate edaphically dry sand plains 
across the coastal plain, while most of the upland areas are covered by tropical broad-leaf 
forest [37]. These forests have a high species diversity of both flora and fauna, which are 
now mostly restricted to the RBCMA and connected protected areas [36,38,39]. 

2.2. Land Cover Classes 
To assess agricultural changes in this region, we chose 10 land-use and land-cover 

classes to map change over time across the study area (Table 1). These land cover classes 
were based on previous definitions of local ecosystems from Meerman and Sabido [37] 
and on expert knowledge of this area. After an initial assessment using 10 classes (see 4. 
Results), we combined two pairs of similar classes for a final set of 8 land-use and land-
cover categories to achieve higher accuracy for assessing changes through time (Table 1). 
Since the input variables combine multi-season data from three years, a forest degradation 
class was included initially to capture areas that may have been deforested during the 
composite period. Here, we use the term “forest degradation” as a broad class that en-
compasses forested areas that transitioned into non-forest, or deforested area that has 
been fallow, during the time the period of the Landsat composite. For example, areas that 
were cleared for pasture between 2014 and 2016, and so their spectral signature during 
the composite period is mixed between forest and pasture, would be considered forest 
degradation. The agriculture class was broad and included pasture, sugar cane, corn, and 
other rain-fed crops. Rice in the study area is placed in its own class because it is irrigated 
from rivers during the dry season and therefore has a different timing in phenology from 
the other agricultural types (Figure 2). Agriculture in the region is dominated by cattle 
and sugarcane production. There are few commercial orchards (e.g., orange groves) [40], 
although there has been land-clearing and planting of coconut palms and short-lived pa-
paya plantations in northwestern Belize. The agriculture and forest degradation classes 
were combined in the final 8 category scheme, as most of the forest degradation transitions 
to agriculture. The two broad-leaved forest types were also combined for the final 8 classes 
as they are both spectrally and ecologically similar. Lastly, the Urban class refers to the 
built environment of villages, houses, barns, and roads, as cities are absent in the region. 
While some roads in the district have been paved in recent years, historically, most roads 
were covered with crushed limestone, and many still are today. 
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Figure 2. Average normalized difference vegetation index (NDVI) for each day-of-year during 2014–2016 from Landsat 8 
for land cover classes (a) in this study, with an average precipitation for the same time period (b) from global satellite 
mapping of precipitation (GSMaP) data. 

Table 1. Land-use and land-cover classes based on Meerman and Sabido map and modified for 
specific areas (33). 

Land-Cover Land-Use Class * 
Urban/roads 

Agricultural (all except rice) 
Rice 

Water 
Wetland 

Swamp forest 
Lowland broad-leaved moist forest 

Lowland broad-leaved moist scrub forest 
Savanna/shrubland 
forest degradation 

* Final 8 classes used for calculations are in bold. 
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The distinction between some of these classes was not clear because human–environ-
ment interactions in the study area may result in “agroecosystems.” For example, ranchers 
graze their cattle on a “natural” savanna, making it both pastureland and savanna. In 
other areas, a farmer may clear some forest but then leave it fallow for a period of time. 
Coconut plantations can mimic forests spectrally. While industrial agriculture is wide-
spread across Orange Walk, traditional agriculture, including milpa agriculture and 
horse-drawn plowing, still occurs today, but much less so than in the past. Using fire and 
letting fields lie fallow in the milpa technique maintains soil fertility through time [41]. In 
other areas, the land is cultivated for longer periods of time with horse-drawn plowing 
and organic or inorganic fertilizer inputs. Sometimes a field lies fallow due to crop disease 
and lack of markets. These practices create a mosaic of rapid (year-to-year) changes in 
agriculture versus forest succession. Much of the modern agriculture in Orange Walk, 
however, is mechanized and involves permanently clearing large tracts of forest. This in-
dustrialized agriculture relies on mechanized plowing, planting, and harvesting, large 
amounts of fertilizer inputs, and pesticide use. 

2.3. Data 
Previous studies mapping land cover in Belize have relied mainly on single-date mo-

saics of Landsat data (14,33). Cloud-free Landsat scenes are rare for this tropical region, 
which limits the ability to get full area coverage at multiple periods. Even with a cloud-
free image, a single date during any season will not provide enough data to distinguish 
between different LULC types because they may appear similar at a certain time of year 
but transition through various phenological stages over the course of the year. Including 
multitemporal data increases classification accuracy by helping to characterize plant phe-
nology [42–44]. For example, using a cloud-free mosaic from a few images in the dry sea-
son may produce results that incorrectly show seasonally inundated wetlands or certain 
crops as savanna. Including data from both the dry and wet seasons, however, clearly 
shows the differences in seasonal phenology and inundation. In this study, therefore, we 
composited multitemporal seasonal data to create cloud-free image mosaics that capture 
the phenological differences between the wet and dry seasons of the region. We mapped 
the land-use and land-cover change using composites for 3 periods: 1984–1987, 1999–2001, 
and 2014–2016. 

While consistent, high-quality data are available from Landsat 8 since 2013, data 
availability and quality have varied more in earlier Landsat missions. For the most con-
sistent dataset through time, we used the Level 1 Tier 1 Surface Reflectance data for Land-
sat 4, Landsat 5, Landsat 7, and Landsat 8 [45]. Landsat 4 and 5 data in the earliest years 
(1984–1987) are much more limited compared to later years of the same sensors (Table 2). 
Because of data availability and persistent cloud coverage, the 1984–1987 period in this 
study required a longer time frame of data to create a cloud-free composite image. In ad-
dition, Landsat 7 data starting in 2003 have many no-data stripes due to a scan line cor-
rection error on the sensor. To overcome these data issues, we used three years of data to 
composite for each period in the study [32]. In addition, using data from multiple years 
can help smooth temporal variations in images (e.g., moving clouds and shadows and 
climatic and atmospheric differences) and improve the ability to apply a single algorithm 
trained on one period to a different period [46]. For the earliest period, only two tiles from 
the same day were available during 1984, but those images were nearly cloud-free. For 
the earliest composite, therefore, we included mostly data from 1985–1987, but also in-
cluded the two tiles from 1984 to acquire nearly complete coverage of the area (Table 2). 
The Landsat path 19 and row 48 covers the entire study area, but the surrounding 
path/row numbers 19/47, 20/47, and 20/48 also intersect with the district. The different 
Landsat sensors also have different spectral resolutions for each band, requiring a correc-
tion to make Landsat 8 comparable to Landsat 4, 5, and 7 data. Thus, we harmonized the 
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Landsat 4, 5, and 7 data to the Landsat 8 data using the relationship and coefficients de-
fined by Roy et al. [33]. The relationships were developed from correlations in the spectral 
signatures of corresponding bands between Landsat 8 OLI and Landsat 7 ETM+. 

Table 2. Landsat data availability during the study periods over Orange Walk, Belize. 

Time Period Sensor Available Scenes 

1984–1987 
Landsat 4 
Landsat 5 

3 
51 

1999–2001 Landsat 5 
Landsat 7 

97 
51 

2014–2016 Landsat 8 188 
Only 2 tiles (Landsat 5, 11 November 1984) were available during 1984, so the period is primarily 
composed of images from 1985–1987. 

Within each period, the data were also aggregated into the dry season and wet season 
composites. As mentioned, the wet season in Belize generally lasts June through mid-No-
vember, with a dry season from December through May. The changes in plant phenology, 
however, are slightly delayed from the start of the season and vary depending on precip-
itation events. Rather than focus on the rainfall trends, the wet and dry seasons were con-
sidered on the basis of the phenological response. For each period of the study, we calcu-
lated the median value composite for all data from August through January of the follow-
ing year to represent the wet conditions, and data from February through July to represent 
dry season conditions (Figure 2). For the 2014–2016 period, for example, the wet season 
composite was calculated by taking every Landsat scene acquired during the months of 
August through January during the years 2014, 2015, and 2016 and calculating the median 
value at each pixel for all spectral bands. The dry season composite is then the median 
value of each pixel calculated from all Landsat scenes acquired from February through 
July during the years 2014, 2015, and 2016. Taking the median value with the clouds re-
moved from each image results in a cloud-free composite of values that should be repre-
sentative of the season [46,47]. In the earlier two periods, however, there were some pixels 
that did not have a cloud-free observation, resulting in ~0.57 km2 in the 1999–2001 compo-
site and ~14.93 km2 in the 1984–1987 composite with no data. All of the spectral composites 
were smoothed by applying a convolution filter with an octagonal kernel of two pixels 
radius. This filter helped reduce noise in the temporal composites to produce results with 
less speckling of individual pixels that can occur with pixel-based classifications. 

NIR REDNDVI
NIR RED

−=
+

  (1)

SWIR_1
_1

NIRNDVI
NIR SWIR

−=
+

  (2)

For each season, we included the median values for each of the six spectral bands 
common across Landsat sensors as well as spectral indices and topographic variables 
commonly used in LULC classification (Table 3). For each seasonal composite, we calcu-
lated the median normalized difference vegetation index (NDVI; Equation (1)), which is a 
widely used proxy for plant “greenness” and is a useful representation of plant phenology 
[48]. We also included the normalized difference water index (NDWI; Equation (2)), which 
represents wetness, to reveal seasonal inundation in wetlands and which generally in-
creases classification accuracy [49]. Vegetation and ecosystem types in this region are cor-
related with topography [36,38,50,51]. To account for the topographic correlation with 
vegetation, we included elevation from the global Advanced Land Observing Satellite 
(ALOS-2) digital surface model (DSM) with 30 m resolution [52], as well as slope and the 
topographic position index (TPI) [53] calculated from the DSM (Table 3). 
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Table 3. Variables used in random forest classification of land-use and land-cover types. 

Variable Abbreviation 
Landsat 4, 5, 7 

Band 
Landsat 8 

Band 
Dry season median blue b_d 1 2 

Dry season median green g_d 2 3 
Dry season median red r_d 3 4 
Dry season median NIR nir_d 4 5 

Dry season median SWIR 1 swir1_d 5 6 
Dry season median SWIR 2 swir2_d 7 7 
Dry season median NDVI ndvi_d (4 − 3)/(4 + 3) (5 − 4)/(5 + 4) 
Dry season median NDWI ndwi_d (5 − 4)/(5 + 4) (5 − 6)/(5 + 6) 
Wet season median blue b_w 1 2 

Wet season median green g_w 2 3 
Wet season median red r_w 3 4 
Wet season median NIR nir_w 4 5 

Wet season median SWIR 1 swir1_w 5 6 
Wet season median SWIR 2 swir2_w 7 7 
Wet season median NDVI ndvi_w (4 − 3)/(4 + 3) (5 − 4)/(5 + 4) 
Wet season median NDWI ndwi_w (5 − 4)/(5 + 4) (5 − 6)/(5 + 6) 

ALOS DSM elevation dsm N/A N/A 
ALOS DSM slope slope N/A N/A 

ALOS DSM topographic position in-
dex 

tpi_500 N/A N/A 

2.4. Training and Validation Data 
One of the goals of this study was to develop a single algorithm that can be applied 

across the Landsat record. Therefore, we trained the algorithm on Landsat 8 data for the 
most recent period (2014–2016) of this study and then applied the trained algorithm to the 
other Landsat sensors in the earlier periods. Separate validation datasets were used for 
each period to assess the transferability of the algorithm across sensors and time. 

First, we created polygons to select training data for the 2014–2016 period based on 
GPS data collected on the ground and expert knowledge of the study area (the authors 
have over 60 years of combined experience in the study area beginning in 1992). The pol-
ygons were created in Google Earth Engine based on the ground information and visual 
interpretation of the Landsat seasonal composites for 2014–2016, individual Landsat im-
ages from each year of the composite period, and Google Earth satellite data. While the 
expert knowledge of the area allowed us to select training and validation data confidently 
for 1999–2001 and 2014–2016, the 1984–1987 polygons relied on visual interpretation of 
the Landsat data and historical context. The seasonal composites were particularly useful 
for determining wetlands, and the individual images from each year were used to find 
areas of deforestation that occurred during the composite period. We randomly sampled 
450 pixels per class contained within the training polygons using the stratified random 
sampling method in Google Earth Engine. 

Next, we repeated the process to create polygons to select validation pixels for each 
class that did not overlap with the training polygons. A randomly sampled set of 450 pix-
els per class were selected from these validation polygons to create an independent vali-
dation dataset. We use an independent set of an equal number of samples for training and 
validation data to fairly assess the performance of the algorithm across space as well as 
time. For the 1984–1987 and 1999–2001 periods, we repeated the process of creating poly-
gons for each class and randomly sampled 450 pixels per class to use for validation. 
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2.5. Optimizing Random Forest 
Random forest is considered to be a robust algorithm with few parameters to opti-

mize, and the effects of parameters are insignificant at high levels of trees [25,27]. The 
main parameters that affect the algorithm’s accuracy are the number of regression trees 
created (t) and the number of variables used at each node in the tree (m). To achieve the 
highest accuracy algorithm to apply across periods, we optimized t and m by testing a 
range of values for each variable and calculating the out-of-bag error (OOB), the training 
accuracy, and the overall validation accuracy for each combination of parameters for the 
training period of 2014–2016. The number of training and validation samples were held 
at 450 pixels per class for all algorithm combinations, and 30% of the training data in each 
run were withheld for calculation of the OOB error and training accuracy. Previous stud-
ies have shown that at high values of t, there is little to no increase in accuracy and that 
the highest accuracies are achieved with low values of m (Rodríguez-Galiano et al. 2012). 
Therefore, we tested every combination of t = 1, 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, 
500, 550, 600 and m = 1, 2, 3, 4, 5, resulting in 70 total RF algorithms to compare. 

The optimal parameter combination was determined using a sensitivity analysis 
based on the OOB error, training, and validation accuracies calculated from all combina-
tions of t and m. The optimal algorithm was determined as the one that achieved the high-
est training and validation accuracies while maintaining the lowest OOB error. We ap-
plied the optimized algorithm to the earlier periods, assessing accuracy with the valida-
tion data sets for each period to evaluate how well the single algorithm performs through 
time. In addition to overall accuracy, confusion matrices revealed which classes were most 
misclassified by the algorithm. We then combined classes that were highly confused in 
the results and reassessed the accuracy, resulting in eight final LULC classes. We com-
bined the lowland broad-leaved moist forest and lowland broad-leaved moist scrub forest 
classes, as they are similar forest types, and the species differences are not important for 
assessing forest loss in this study. Additionally, the agriculture and forest degradation 
classes were combined, as the deforestation in the study area is almost entirely for agri-
culture, and so can be considered agriculture in this study. These final eight classes were 
used to calculate the area and percent of each LULC in each time period and the percent 
of change between each of the three maps. 

3. Results 
3.1. Algorithm Selection and Variable Importance 

Increasing the number of trees in the RF increased both OOB and validation accura-
cies sharply up to 25 trees, while gains in accuracy diminished above 100 trees. At all 
values of m, both the validation accuracy and OOB accuracy reached a maximum at 
around 300 trees (Figure 3). At t = 25 and 50, the highest accuracy was achieved with m = 
2, but at all values of t ≥ 100, the accuracy was highest at m = 3 (Figure 3). Therefore, the 
final algorithm selected for land cover mapping had t = 300 and m = 3, with 450 pixels per 
class used for training with 10 land cover classes. 
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(a) (b) 

 
Figure 3. Effect of the number of trees (t) on the validation accuracy and out-of-bag (OOB) accuracy of the random forest 
land-cover classifier at the highest and lowest number of variables per split (m) that were tested (a). Effect of variables per 
split (m) on validation accuracy across a range of trees (t) in the random forest (b). 

The RF algorithm used the Gini index to assess the relative amount that each variable 
contributed to the difference between classes in the classification [54]. Higher values of 
the Gini index represent higher importance in the final classification accuracy and a larger 
contribution to maximizing the difference between classes. Since ecosystems are strongly 
correlated with topography in this area, it is not surprising that the elevation from the 
ALOS-2 DSM was the most important variable in the classification (Figure 4). In addition, 
the majority of the agriculture occurs in the flat areas of the coastal plain. The next most 
important variables were the wet season NIR and the dry season NIR composites. The 
NIR wavelength is highly sensitive to water content as well as chlorophyll and is used in 
the calculation of both NDVI and NDWI, and the seasonal differences reflected plant phe-
nology and seasonal inundation. The least important variable was slope gradient, calcu-
lated from the ALOS-2 DSM. While slope likely does influence LULC distributions, most 
of the study area occupies the relatively flat coastal plain, so there was little slope variation 
in the analysis. Moreover, where there is a high gradient in steeply faulted and karst col-
lapse escarpments, and Landsat and ALOS-2 resolutions may have been too low to cap-
ture some of these changes. 
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Figure 4. Importance of each variable used in the random forest classification ranked by the Gini index. The variable names 
correspond to abbreviations in Table 3. 

3.2. 2014–2016 Land-Use Land Cover Classification 
The final model with t = 300 and m = 3 achieved an overall accuracy of 90.2% across 

the 10 LULC classes for the 2014–2016 period (Table 4). The classes with the lowest accu-
racies were forest degradation and agriculture, which were most confused with each 
other. The confusion of these two classes makes sense because the deforestation in this 
area is almost entirely driven by different types of agriculture in this period, and so the 
forest degradation ultimately becomes agriculture. The algorithm mapped rice well (pro-
ducer accuracy = 84.67%, user accuracy = 98.96%), but understandably sometimes con-
fused rice for wetland or vice versa. The three key distinctions between the rice and wet-
land classes were that the rice fields are flooded during the dry season with irrigation, 
harvested and drained, and often burned before the wet season. Alternatively, many wet-
lands flood with the wet season (though some are perennial) and dry with the dry season. 
Using the seasonal data allows the algorithm to not only identify seasonal wetlands but 
distinguish seasonal wetlands from irrigated rice agriculture. The urban class was also not 
always distinguishable from the savanna and agriculture classes, likely because there is 
little area that is actually densely built environment, and buildings are often interspersed 
between large yards, fields, and gardens. These low-density towns and narrow limestone 
roads were difficult to identify in the 30 m spatial resolution of Landsat pixels. 

Table 4. Classification producer accuracy (PA) and user accuracy (UA) of each class for the 3 peri-
ods with 10 classes and 8 classes (scrub forest combined with forest and forest degradation com-
bined with agriculture). 

  2014–2016 1999–2001 1984–1987 
Class No. Classes PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Agriculture 
10 classes 89.78 70.88 86.22 74.90 82.00 48.55 
8 classes 94.22 80.30 83.56 88.68 89.33 61.94 
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Rice 
10 classes 84.67 98.96 77.56 96.94 NA 0.00 
8 classes 85.11 98.97 77.56 97.21 NA 0.00 

Savanna 
10 classes 97.56 89.78 99.56 81.45 94.67 84.36 
8 classes 97.56 92.23 99.56 89.07 94.67 85.37 

Urban 
10 classes 82.67 97.64 87.33 98.25 40.67 97.34 
8 classes 82.67 97.89 87.33 100.00 40.67 97.86 

Forest 
10 classes 95.33 90.51 6.00 100.00 1.11 100.00 
8 classes 99.33 96.13 97.78 94.02 93.11 95.88 

Swamp forest 
10 classes 96.67 95.81 99.56 97.39 98.22 92.08 
8 classes 96.67 95.81 99.56 97.39 98.22 92.08 

Wetland 
10 classes 90.22 87.50 95.33 80.49 85.33 82.05 
8 classes 90.22 88.84 95.33 81.25 85.33 92.53 

Water 
10 classes 99.33 98.68 100.00 96.77 99.11 94.09 
8 classes 99.33 98.68 100.00 96.77 99.11 94.09 

Scrub forest 
10 classes 91.78 91.37 96.67 41.91 83.56 41.23 
8 classes - - - - - - 

Forest degradation 
10 classes 76.00 90.48 24.22 73.15 37.11 67.61 
8 classes - - - - - - 

Overall accuracy 
(OA %) 

10 classes 90.2% 79.4% 69.0% 
8 classes 92.6% 93.6% 85.7% 

Algorithm performance decreased when applied to the earlier years with previous 
Landsat sensors (Table 4). Even after normalizing the sensor data to Landsat 8 (31), there 
likely remained differences in the spectral data from each sensor. It is important to note 
that the previous periods have far fewer images available (Table 1), which affected the 
median composite values and left some pixels without any available data. With Landsat 
8 data from 2014–2016, the RF was able to distinguish between the two different types of 
broad-leaved forests in the study area, but when applied to past sensors, these forest types 
were indistinguishable. While species compositions may differ, it was appropriate to com-
bine these two forest types into a single tropical forest class to meet the goal of quantifying 
forest loss. Most of the forest degradation class that could be mapped reliably with the 
recent Landsat 8 data (PA = 76%; UA = 90.48%) was fairly indistinguishable from agricul-
ture in the earlier periods (PA = 24.22%, UA = 73.15% for 1999–2001; PA = 37.11%, UA = 
67.61% for 1984–1987). In Orange Walk, most of the deforestation is for conversion to ag-
riculture, usually where agriculture meets the forest edge (Figure 7). Hence, combining 
these two classes was again appropriate for this study. In the earliest period, 1984–1987, 
some of the agriculture (some originally classified as forest degradation) was likely other 
types of rotational agriculture (milpa), illicit growing plots, and selective logging, none of 
which are nearly as prevalent in the two more recent periods. Therefore, for assessing 
land-use and land-cover change across time, we combined these two pairs of classes to 
create the eight final classes (Table 1). 

With the classification results combined into eight classes, the algorithm performed 
well in the earlier periods, and the overall accuracy increased for every period (Table 4). 
When applied to the 1999–2001 data, the overall accuracy increased by 1%, to 93.6%, and 
when applied to 1984–1987 data, the overall accuracy was lower, but still useful at 85.7%. 
The earliest period had less than 33% of the number of Landsat images available as the 
later periods did. Thus, it was likely that the lower frequency of observations in the earli-
est classification affected its composite values and contributed to its higher error rate. 

The land-cover and land-use maps revealed changes in land-use patterns and the 
losses of tropical forest and wetlands over recent decades (Figure 5). The area classified as 
agriculture decreased from 1984–1987 to 1999–2001 by nearly 100 km2, but wetlands (in-
cluding wetland and swamp forest) decreased by 115.2 km2 (Table 7). From 1999–2001 to 
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2014–2016, the agriculture class increased by nearly 350 km2. The early decrease in agri-
culture can be attributed to multiple factors. First, the 1984–1987 period was before the 
establishment of the protected areas that now occupy much of the district and when there 
were active logging and milpa agriculture in these now protected forests [55]. After the 
establishment of public and private protected areas during the late 1980s and 1990s, these 
areas showed reforestation, but zones outside of the protected areas experienced a drastic 
increase in intensive agriculture (Figure 5). 

 
Figure 5. Land-use land cover maps for the district of Orange Walk, Belize. 

The largest increase in the area of any class between the 1999–2001 and 2014–2016 pe-
riods was agriculture, which gained 347.68 km2, representing an increase of 43.6% (Tables 
5–7). The classes that lost the most area were lowland broad-leaved forest and wetlands, 
losing 210.47 and 145.6 km2, respectively. The urban/road class only increased by 15.22 km2, 

but given the low amount of that class in the study area, this increase represents 57.3% 
growth for that class during this time period. We also know from yearly field research in 
this area that road paving and accessibility has increased significantly over this time. 
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Table 5. Transition matrix of lands cover classes between maps for 1984–1987 and 1999–2001 in km2. 

 Agriculture Rice 
Savanna/ 

Shrubland 
Urban/ 
Roads Lowland forest Swamp forest Wetland Water 

Agriculture 485.88 3.46 78.84 16.09 275.87 0.01 37.87 0.00 
Rice 3.88 1.24 8.94 0.36 0.09 0.06 7.69 0.01 

Savanna/shrubland 33.49 0.86 237.16 1.01 4.61 0.02 33.22 0.00 
Urban/roads 4.13 0.11 0.59 6.79 0.03 0.00 0.03 0.00 

Lowland forest 222.53 1.26 21.11 1.51 2415.10 0.06 16.60 0.00 
Swamp forest 0.68 0.23 0.54 0.00 7.90 34.29 20.91 0.23 

Wetland 46.80 8.13 54.91 0.75 100.18 5.37 390.17 1.24 
Water 0.02 0.01 0.04 0.00 0.29 0.64 9.94 29.02 

Table 6. Transition matrix of lands cover classes between maps for 1999–2001 and 2014–2016 in km2. 

 Agriculture Rice Savanna/ 
Shrubland 

Urban/ 
Roads 

Lowland forest Swamp forest Wetland Water 

Agriculture 640.98 4.34 55.11 17.91 72.71 0.13 6.50 0.65 
Rice 4.86 5.90 2.66 0.36 0.20 0.06 1.45 0.01 

Savanna/shrubland 80.51 5.53 262.13 2.19 11.41 0.13 41.00 0.03 
Urban/roads 8.01 0.21 0.16 18.10 0.02 0.00 0.02 0.00 

Lowland forest 371.15 3.49 22.75 3.02 2408.51 0.18 5.74 0.81 
Swamp forest 0.03 0.06 0.02 0.00 1.48 26.82 11.86 0.27 

Wetland 39.98 8.02 43.86 0.24 110.72 8.57 302.39 3.25 
Water 0.00 0.00 0.00 0.00 0.00 0.22 2.18 28.23 

Table 7. Area of each land cover class during each time period. 

Class 
1984–1987 

(km2) 
1999–2001 

(km2) 
2014–2016 

(km2) 
Agriculture 898.00 798.09 1,145.77 

Rice 22.21 15.51 27.51 
Savanna/scrubland 310.47 403.10 386.70 

Urban/roads 11.72 26.57 41.80 
Lowland broad-leaved moist forest 2,677.52 2,815.55 2,605.08 

Swamp forest 64.85 40.65 36.27 
Wetland 607.73 516.71 371.11 

Water 39.90 30.56 33.10 
Population Orange Walk 1985 est, 2000, 

2016 est 26,776 40,301 50,208 

Another factor was the doubling of the population in Orange Walk District. We used 
a simple mean between 1980 and 1990 censuses for the 1985 estimate, the census figure 
for 2000, and the census estimate for 2016 for these baseline population growth numbers 
[56]. We lacked rural numbers where land-use changes were taking place, but the District 
population provided a general trend, and it grew by 33.6% from 1985 to 2000 and by 19.7% 
from 2001 to 2016. Population growth was greatest in the first period from 1985–2000, but 
agriculture increased by a much higher percent from 2000 to 2015 (Table 8). 

Table 8. Area change in each class compared to prior period (~15 years) in km2 with the percent 
change in parentheses. 

Class 1984–1987 to 1999–2001 1999–2001 to 2014–2016 
Agriculture −99.92 (−11.1%) +347.68 (43.6%) 
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Rice −6.70 (−30.1%) +12.00 (77.4%) 
Savanna/scrubland +92.63 (29.9%) −16.40 (−4.1%) 

Urban/roads +14.86 (126.8%) +15.22 (57.3%) 
Lowland broad-leaved moist forest +138.03 (5.2%) −210.47 (−7.5%) 

Swamp forest −24.21 (−37.3%) −4.38 (−10.8%) 
Wetland −91.01 (−15.0%) −145.60 (−28.2%) 

Water −9.34 (−23.4%) +2.53 (8.3%) 
Population +13,525 (33.6%) +9,907 (19.7%) 

4. Discussion 
By using data harmonization, multitemporal data, and machine learning, we were 

able to achieve our goals of developing a time-generalized land-cover classifier and quan-
tifying land-use and land-cover change in Orange Walk, Belize with the Landsat archive. 
The approach used multi-season data to distinguish land-use and land-cover types and 
multiyear data to acquire nearly complete coverage and derive median values that were 
more comparable through time after applying sensor harmonization coefficients [33]. The 
results of the classifications revealed a rapid loss of tropical forest and two types of wet-
lands due to agricultural expansion since 2000. These losses occurred during a time of 
population growth in Orange Walk, Belize, but forest and wetland loss was far greater 
than the increase in population since 2000 relative to the higher population growth from 
1984–2000. Moreover, the role of conservation in landscape patterns and the protection of 
natural and cultural resources in Orange Walk was reflected in the distributions of land-
use land-cover through time. In 1984–1987, before the establishment of protected areas, 
small clearings were prolific throughout the forests. By 1999–2001, the now protected for-
ests grew back, but continuous clear-cutting for mechanized agriculture had begun to in-
crease outside of the protected areas, continuing to expand rapidly through 2016. 

We achieved our first goal by optimizing an RF algorithm trained with Landsat 8 
data and successfully classifying LULC with harmonized Landsat 4, 5, and 7 data. After 
initially running a sensitivity analysis of the RF parameters to achieve high accuracy 
(>90%) with 10 classes in the Landsat 8 data, we found that combining classes to 8 more 
general classes resulted in much higher accuracy when applying the algorithm to the ear-
lier data. The combination of the two pairs of classes, however, did not affect the interpre-
tation of our results because the distinction between these classes was subtle and not im-
portant for the application of this study. Multiple factors likely contributed to the decrease 
in accuracy of the algorithm applied to the past time periods. First, even after harmonizing 
the Landsat 4, 5, and 7 data, the spectral resolutions and consistency across sensors did 
not perfectly match [33]. In the experiments training with and classifying the Landsat 8 
data, the algorithm was able to distinguish between the two forest types in the original 
10-category classification scheme. The algorithm could not distinguish these forest types 
from each other when applied to the earlier datasets, however, likely because the NDVI 
phenological signatures of the two forest types were similar (Figure 2). Additionally, 
fewer Landsat scenes were available for 1984–1987 and 1999–2001 than for 2014–2016 (Ta-
ble 2). As a result, the seasonal median composite values in the earliest data were com-
prised of far fewer samples and will likely produce median values that differ from the 
Landsat 8 training samples due to sample size. Previous studies demonstrated that using 
monthly median composites across multiple years improved the application of an RF al-
gorithm across time [46]. Here, we demonstrated that even just two seasonal median com-
posites created from multiple years of data could produce a time-generalized classifier for 
general LULC categories. 

After using the optimized algorithm to map LULC during three time periods, we 
were able to quantify these changes in our study area. While Orange Walk had forest re-
growth between 1984 and 1987 and 1999–2001 (~15 years) due to the establishment of pro-
tected areas, there was a significant loss of forest and wetlands, 210.47 km2 and 145.6 km2, 
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respectively, from 1999–2001 to 2014–2016 (~15 years). During this more recent period, the 
agricultural area increased by 347.68 km2. The total loss of forest and wetland classes 
closely matches the gain in the agriculture class during this most recent period. Interest-
ingly, the population grew much more in Orange Walk during the 15 years between the 
1984–1987 and 1999–2001 periods (13,525 people) than it did between the 1999–2001 and 
2014–2016 periods (9,907 people), while the deforestation was much greater during this 
later period. We do not have enough data to directly infer a relationship between popula-
tion growth and deforestation, but studies in the global tropics have observed that shifts 
to large commercial agriculture from small landowners change the relationship between 
population and forest cover [5,57]. 

The deforestation that occurred in 1984–1987 in the RBCMA was classified as agri-
culture in this study, but there were other contributions to the observed deforestation that 
differed from the industrial agricultural, driving most of the long-term deforestation. In 
the earliest period, the agriculture area within what is now the RBCMA also consisted of 
milpa agriculture and possibly illicit agriculture and logging. In the Toledo district in 
southern Belize, Emch et al. [58] estimated that ~360 km2 of forest were lost between 1975 
and 1999 and that the primary driver was increased milpa agriculture due to a 259% in-
crease in the population [58]. The rapid expansion of industrial agriculture in recent dec-
ades has occurred in the Mennonite communities of Northwest Belize. In Campeche, Mex-
ico, Mennonite industrial farming lands had ~4 times higher rate of deforestation than on 
other private property [59]. Land tenure and expansion of the agro-industrial production 
model were considered to be the major drivers of forest loss in the central Yucatan; com-
munal property experienced significantly less forest loss. In other parts of Central Amer-
ica, including in similar forests in adjacent Guatemala, narcotics production and traffick-
ing can drive deforestation as well [60]. 

There are no current studies that estimate LULC change for the entire Landsat record 
for Orange Walk, but other studies have estimated deforestation rates for other parts of 
Belize or Belize as a whole. A study of tropical forest loss using Landsat data estimated 
that all of Belize lost 80 km2 per year of the forest, defined as >30% tree cover, between 
1990 and 2000 and 70 km2 per year from 2000–2010 [1]. Voight et al. [24] estimated that in 
the Maya Golden Landscape in southern Belize, 20.9 km2 of mature forest were cleared 
from 2014–2016. 

Another key finding is the role of conservation areas in reforestation and forest 
maintenance. The Rio Bravo Conservation and Management Area (RBCMA) (Figure 1) 
showed both reforestation from its founding in 1988 as well as forest maintenance in this 
area. Figure 5 shows that areas that were to become the RBCMA had ~56 km2 of deforesta-
tion before its establishment (Figure 5a), but ~42 km2 were reforested by ~2000 (Figure 5b) 
and another ~20 km2 increase in the forest through ~2015 (Figure 5c). For example, the 
area of the RBCMA around the ancient Maya site of Gran Cacao, even though it is difficult 
to access today, had a few square kilometers of deforested area, but these became refor-
ested by 2000 and are currently closed-canopy forest (Figure 5). The southern part of Or-
ange Walk in what is now the privately managed Yalbac Ranch experienced similar de-
forestation in the earliest years with forest regrowth and maintenance since (Figure 5). 

The protected Archaeological Preserve of the important ancient Maya city of 
Lamanai remained forested, but deforestation on its west side has occurred up the small 
park’s boundary. Additionally, the wetlands to the west have decreased in an area with 
drainage and conversion to agriculture. Deforestation there has also taken place over nu-
merous ancient Maya mounds on private property in well-drained uplands, but not so in 
wetlands and lower-lying savannas to Lamanai’s east. Once surrounded by tropical forest, 
the Lamanai Archaeological Reserve now stands as an island of forest in an expanse of 
agricultural fields (Figure 6). 
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Figure 6. Land-use and land-cover change around the archaeological site and protected area of Lamanai during the three 
periods (A) 1984–1987, (B) 1999–2001, and (C) 2014–2016. Lamanai is located in the red circle in the inset map of Orange 
Walk District. 

The changes in land-use and land-cover patterns revealed by these maps demon-
strate the importance of protected land for the conservation of both natural and cultural 
resources. In the most recent map, most of the forest that is not in protected areas has 
already been deforested (Figure 7). Our results estimate that about 627 km2 of forest re-
main unprotected while about 1978 km2 (76%) of forest in Orange Walk is in protected 
areas today. With little area left for agriculture to expand into, the protected areas remain 
essential for conserving the biodiversity and habitat of these forests. The protected area of 
the RBCMA is particularly important for jaguar and peccary conservation, and efforts 
should aim to increase the habitat connectivity and corridors between the protected areas 
of Belize [11]. While previous studies in the region and international conservation efforts 
mainly focus on forest ecosystems, this study suggests that wetland ecosystems should be 
equally considered in conservation efforts. While the establishment of protected areas 
helped forest regrowth between 1984 and 1987 and 1999–2001, wetlands and swamp for-
ests still declined by 115 km2. While both forests and wetlands continue to be rapidly lost, 
conservation efforts should include wetlands, and not just forests, in their efforts to pre-
serve natural resources. 
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Figure 7. Land-use land cover map of 10 land cover classes for 2014–2016 and location of protected areas in Orange Walk 
District, Belize. 

It is important to note, however, that the increase in agricultural production is im-
portant for developing food security and economic commodities, as well as local economies. 
Further, land-use and conservation planning should aim to balance the urgency of protect-
ing cultural and natural resources with the economic and social needs of the population. 

5. Conclusions 
Land-use land-cover change in the tropics can be accurately mapped across the Land-

sat archive with a random forest classifier by including multi-season and multiyear com-
posites. While many studies rely on a single sensor or single date imagery, the multitem-
poral machine learning approach in this study allowed for the distinction of more land-
use and land-cover types and the ability to use the entire Landsat archive. This novel ap-
proach revealed that tropical forests and wetlands are under threat from rapidly expand-
ing industrial agriculture in Northwest Belize and that the remaining tracts of these valu-
able ecosystems are largely within protected areas. Early deforestation (1984–1987) was 
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likely driven by a combination of milpa agriculture, illicit agriculture, and selective log-
ging, as well as some industrial agriculture. The establishment of the RBCMA in 1988 and 
the subsequent protected areas allowed for forest regrowth in the 1990s, though wetland 
losses were high at 15%. Between 1999 and 2001 and 2014–2016, however, industrial agri-
culture rapidly spread across all areas that were not protected with heavy losses of tropi-
cal forest (7.5%) and the continued loss of wetlands (28.2%). As a result, the protected 
areas in Orange Walk are critical to preserving the remaining forests and wetlands in the 
district. These threatened ecosystems provide essential ecosystem services and habitat for 
maintaining biodiversity, connectivity of wildlife corridors, and threatened species. The 
protected areas also protect the cultural heritage that is threatened with land-use and 
land-cover change, such as in our case study of the ancient Maya site of Lamanai, which 
is now an island of preserved forest. Agriculture provides an important means of food 
security and economic development for Belize, but its rapid increase has occurred across 
biodiverse ecosystems and millennia of ancient Maya structures. Combining new ad-
vances in computing and machine learning with the growing length of the satellite record 
allows us to provide robust estimates of these threatened natural and cultural resources 
and inform conservation and land management policies and decision-making. 
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