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Abstract: High-resolution remote sensing (HRRS) images, when used for building detection, play a
key role in urban planning and other fields. Compared with the deep learning methods, the method
based on morphological attribute profiles (MAPs) exhibits good performance in the absence of
massive annotated samples. MAPs have been proven to have a strong ability for extracting detailed
characterizations of buildings with multiple attributes and scales. So far, a great deal of attention
has been paid to this application. Nevertheless, the constraints of rational selection of attribute
scales and evidence conflicts between attributes should be overcome, so as to establish reliable
unsupervised detection models. To this end, this research proposes a joint optimization and fusion
building detection method for MAPs. In the pre-processing step, the set of candidate building objects
are extracted by image segmentation and a set of discriminant rules. Second, the differential profiles
of MAPs are screened by using a genetic algorithm and a cross-probability adaptive selection strategy
is proposed; on this basis, an unsupervised decision fusion framework is established by constructing
a novel statistics-space building index (SSBI). Finally, the automated detection of buildings is realized.
We show that the proposed method is significantly better than the state-of-the-art methods on HRRS
images with different groups of different regions and different sensors, and overall accuracy (OA) of
our proposed method is more than 91.9%.

Keywords: automatic building detection; decision fusion framework; genetic algorithm; MAPs

1. Introduction

With the rapid development of earth observation technology, building detection based
on high-resolution remote sensing (HRRS) images has been one of the research hotspots
in the field of remote sensing [1]. Remote sensing images have the characteristics of wide
coverage, strong timeliness, and a large amount of obtainable information, which are
helpful for cognition and interpretation of geographical targets. Buildings occupy an im-
portant position in the area of human activities. The spatial characteristics and distribution
of urban buildings represent important basic data for urban construction management,
such as national survey monitoring, urban and rural planning management, real estate
management [2], etc. The study of automatic high-precision detection of buildings on
remote sensing images is significant for further developing remote sensing image informa-
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tion mining technology, and promoting its applications in digital cities and other related
fields [3].

Compared with the traditional medium and low-resolution remote sensing images, the
HRRS images contain a wealth of spatial structure information, which is conducive to the
fine description of buildings in the complex urban scene. On the other hand, the low signal
to noise ratio (SNR) of HRRS images limits the detection accuracy. In addition, buildings
are often hedged in by other artificial or natural geographic objects due to their complex
structures. Moreover, there may be significant differences even between buildings in the
same area. All of these negative factors cause difficulties in implementing high-precision,
reliable building detection with HRRS images [4].

In recent years, morphological attribute profiles (MAPs) have been proven to have a
strong ability to detect buildings in complex urban backgrounds, which has been one of the
most effective spatial structure modelling methods for HRRS images. The morphological
feature set of local area constructed by MAPs can be used to realize the multi-attribute
and multi-scale expression of different ground objects, thus significantly improving the
separability of buildings and other ground objects [5–7]. However, the following limitations
must be overcome to realize high-precision, unsupervised building detection based on
MAPs: (1) The potential building pixels are directly determined by the differential attribute
profiles (DAPs) extracted from the differential of neighboring attribute profiles (APs),
and morphological attribute profile (MAP) theory does not give a scale parameter setting
using clear rules, so the requirement according to the scale of the original image is used
to construct (on an adaptive basis) a reasonable parameter set. If the interval between
the scales is too large, it is difficult to describe different types of buildings with different
attributes. Otherwise, it is easy to retain too many other feature pixels with similar
attributes to buildings in the detection results. (2) As a basis for determining whether a
pixel belongs to the building, the DAPs extracted by different attributes may give opposite
conclusions, and the experimental results in this article verify that it is difficult to achieve
reliable detection results for the common practice of taking the union of all attributes and
scales of DAPs, design of effective decision rules is needed to deal with this evidential
conflict. (3) Buildings should be a type of geographical objects with closed contours, and
how to automatically convert potential building pixels extracted based on MAPs into
object-level building detection results is another challenge to be tackled.

In response to these challenges, we propose an automatic building detection method
from HRRS images based on the joint optimization and decision fusion of MAPs. The
contributions of this study can be summarized as follows:

(1) A new adaptive cross-probability genetic algorithm based on DAPs (ACGA-DAPs)
is proposed to detect the pixels of potential buildings by transforming the scale param-
eter selection of MAPs into the joint optimization of multi-attribute DAPs. To meet the
application requirements of building detection, a wide range of scale parameter values and
tight sampling intervals are set and traversed to ensure that the initial DAPs can extract the
property details of the building. Based on this, the genetic algorithm (GA) is introduced
to optimize the DAPs with different attributes, and a cross-probability adaptive selection
strategy is proposed. The constructed ACGA-DAPs are helpful in significantly improving
the detection accuracy of buildings.

(2) Based on ACGA-DAPs and image segmentation results, we propose an unsu-
pervised decision fusion framework, which bridges the gap between potential building
pixels and object-level building detection results. Among them, this framework combines
statistics and spatial information to construct a novel statistics-space building index (SSBI),
finally realizing the automatic detection of building sets.

The rest of the paper is organized as follows: Section 2 reviews the relevant literature
on building detection, and introduces MAP theory; Section 3 presents the implementation
steps of the proposed method in detail; in Section 4, the experimental results are evaluated;
Section 5 discusses the setting of proportion parameters; and in Section 6 conclusions and
future lines of research are summarized.
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2. Related Work
2.1. Building Detection from Remote Sensing Images

Building detection from remote sensing images can be implemented by combining
artificial interpretation and field investigation. However, these methods require a great
deal of manpower and material resources, and are of very low detection efficiency. In recent
years, extensive building detection research—in regard to both theory and methods—have
been undertaken, such as demolished building detection from aerial imagery using deep
learning [8], automatic building extraction with rooftop detectors [9], etc. Considering the
particularity of deep neural structures, we divide the existing methods into deep learning
methods and non-deep learning methods.

2.1.1. Deep Learning Methods

Deep learning technology is based on the biological understanding and has a strong
impact in the field of remote sensing image processing. Deep learning has been proven to
have a strong ability of concentrating on the essential building characteristics of the dataset
from non-annotated samples [10].

Many scholars have conducted various deep network structures in the building detec-
tion application. Hamed et al. [11] proposed a building detection approach based on deep
learning using the fusion of light detection and ranging (LiDAR) data and orthophotos.
The convolutional neural network (CNN) was adopted in this article to transform com-
pressed features into high-level features, which were used to distinguish buildings from
backgrounds. Wang et al. [12] proposed a fully convolutional dense connection network
to better learn the rich architectural features. The innovative design of top-down short
connections promotes the fusion of high and low feature information. Since the first version
of DeepLab model was released in 2015, Google has evolved and expanded to DeepLab
V3 +. This model further applies deep dividable volume to the atrous spatial pyramid
pooling (ASPP) and decoder modules, resulting in a faster and more powerful semantic
segmentation encoder–decoder network [13].

Despite this, deep learning requires an abundance of annotated samples to participate
in the training of the model; otherwise, overfitting will occur, which restricts the feasibility
and effectiveness of such methods in practical application [14].

2.1.2. Non-Deep Learning Methods

Since the number of annotated samples is often limited, which negatively affects the
building detection performance in deep learning, a variety of non-deep learning building
detection methods have been proposed.

Building indexes can effectively describe the characteristics of buildings from different
aspects, which have been widely used in building detection application. You et al. [15]
proposed a scale-invariant feature point detection method considering the multi-scale and
multi-directional texture characteristics of the stacking area. In this article, the traditional
morphological building index (MBI) was applied to the extracted built-up area, and then
the threshold segmentation of MBI feature images was carried out to obtain the results. Bi
et al. [16] proposed a multi-channel multi-scale filtering building index (MMFBI) to over-
come the drawbacks of MBI. This index is helpful to fully utilize the relatively little spectral
information in HRRS images. However, these methods require appropriate thresholds to
obtain the final results, and are always limited by the threshold method.

In addition, many scholars have conducted in-depth research on the application of
MAP in building detection. Hu et al. [17] proposed a method of combining the new
alternating sequential filters (NASFs) strategy with MAPs for building detection from
high-resolution synthetic aperture radar (SAR) images. Wang et al. [18] proposed a novel
adaptive morphological attribute profile under the object boundary constraint (AMAP-
OBC) method. By investigating the associated attributes in MAPs, this method established
corresponding relationships between AMAP-OBC and building characteristics in HRRS
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images. Compared with the building index, MAP adopts multi-category and multi-scale
attributes as proofs of building detection, and can obtain more reliable results.

Most of the existing MAP research directly optimizes APs and ignores the information
redundancy and evidence conflict between DAPs. As described in Section 1 of this paper,
these processing strategies will bring some specific problems in building detection. To this
end, we propose a MAP method based on the joint optimization and decision fusion of
MAPs in this paper.

2.2. MAP Theory and Constitution of Attribute Set

This developed from traditional morphological filtering, MAP theory has a powerful
ability to portray geographical objects in fine detail across different scales and different
attributes from different angles. At present, MAP theory is widely used in the classification
and change detection of HRRS images. MAP uses a Max-Tree structure to represent the
image and performs attribute thickening and thinning operations based on the given set of
scale parameters N, to evaluate the attribute values of the connecting components in the
image. The basic processing flow is as follows:

For a given grey-scale image M, let j be any pixel and Bnj
n(M) be a binary image

determined by the scale parameter n ∈ N. The thickening operation profile ϕj(M) and the
thinning operation profile θ j(M) can be obtained by Equations (1) and (2), respectively:

ϕj(M) = max{n : j ∈ ϕj[Bnn(M)]
}

(1)

θ j(M) = min{n : j ∈ θ j[Bnn(M)]
}

(2)

By traversing all the scale parameters, the set of thickening and thinning operations
can be extracted. On this basis, the difference operation is carried out for the adjacent scale
sections, and the DAPs are represented as follows:

∆φ(M) =

{
∆lφ(M)

〈
ϕn

j(M)− ϕn−1
j(M), n = (l + 1), ∀l ∈ [1, ··, N]

θn+1
j(M)− θ

j
n(M), n = (l − N), ∀l ∈ [N + 1, ··, 2N]

〉}
(3)

Therefore, by treating M as being superimposed by Bnj
n(M), the specific attribute

characteristics in different scale profiles can be enhanced, and then the corresponding
geographic objects can be extracted through DAPs.

Here, four attributes of area, diagonal, standard deviation, and normalized moment
of inertia (NMI) are adopted to the fine description of the building. The reasons are as
follows: an area attribute can describe the size of a building; the diagonal describes the
length of the building’s shape; standard deviation can describe the complexity of building
texture. NMI reflects the mass distribution of the building and has the advantage of
invariance of translation, rotation, and zoom. Studies have shown that the combination
of the above four attributes will endow buildings and other ground objects with strong
interclass separability [19].

3. Method

The implementation of the proposed method mainly included three steps: data pre-
processing, ACGA-DAPs extraction based on multi-attribute joint optimization, and the
construction of an unsupervised decision fusion framework. The implementation process
is shown in Figure 1.
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basic analysis unit for subsequent building detection. At the same time, during the con-
struction of MAPs, object boundaries are used to determine the connectivity domain for 
thickening and thinning operations so that the calculated results reflect the properties of 
the actual geographical objects. 

For this reason, we adopted wavelet J-Segmentation (WJSEG), a HRRS image seg-
mentation method for urban scenes. This method profitably maintains the integrity of the 
object contour, and there is no false “narrow, long unit” arising in the segmentation results 
when using mainstream commercial software Ecognition [20,21]. WJSEG mainly includes 
several steps, such as multi-band fusion, seed region initialization and secondary extrac-
tion, region merging, etc. The specific implementation process is detailed elsewhere [20]. 
It should be pointed out that the segmentation method adopted in this study was not 

Figure 1. Flowchart of the proposed method. NMI: normalized moment of inertia; WJSEG: wavelet J-Segmentation ACGA-
DAP: adaptive cross-probability genetic algorithm based on DAPs; DAPs: differential attribute profiles; SSBI: statistics-space
building index.

3.1. Data Pre-Processing
3.1.1. Image Segmentation by WJSEG

In the data pre-processing step, the original image is first segmented to divide the
discrete pixels into connected sets of pixels with semantic information, thus providing
the basic analysis unit for subsequent building detection. At the same time, during the
construction of MAPs, object boundaries are used to determine the connectivity domain
for thickening and thinning operations so that the calculated results reflect the properties
of the actual geographical objects.

For this reason, we adopted wavelet J-Segmentation (WJSEG), a HRRS image segmen-
tation method for urban scenes. This method profitably maintains the integrity of the object
contour, and there is no false “narrow, long unit” arising in the segmentation results when
using mainstream commercial software Ecognition [20,21]. WJSEG mainly includes several
steps, such as multi-band fusion, seed region initialization and secondary extraction, region
merging, etc. The specific implementation process is detailed elsewhere [20]. It should
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be pointed out that the segmentation method adopted in this study was not limited to
WJSEG, which meant that the use of other methods did not affect the implementation of
the subsequent building detection phase.

3.1.2. Non-Building Pre-Screening

In the image segmentation results, there must be objects with significant feature
differences such as vegetation, vehicles, and other buildings. The elimination of such
objects in the pre-processing stage is not only helpful in reducing the computational
burden but can also avoid the possibility of subsequent false detections.

At present, scholars have proposed many preliminary screening strategies for non-
building objects. This article adopted the four discriminant rules proposed in the litera-
ture [18]: shadow index, normalized difference vegetation index (NDVI), area index and
rectangularity. The objects rejected in the initial screening are not considered in the subse-
quent building detection, while the remaining objects constitute the candidate building
set Rcdi.

3.2. ACGA-DAPs Extraction Based on Multi-Attribute Joint Optimization

The premise of constructing MAPs is to determine the set of scale parameters cor-
responding to different attributes, and the setting of scale parameters is one of the key
factors affecting the accuracy of building detection. However, MAPs only realize the
quantitative expression of morphological attributes, and the DAPs obtained by subtracting
APs of adjacent scales are the basis for identifying potential building pixels. Therefore, it is
difficult to objectively evaluate the rationality of scale parameter selection by directly using
traditional measurement methods such as mutual information between scales of MAPs.
For this reason, we proposed to transform the scale parameter selection problem of MAPs
into the joint optimization problem of multi-attribute DAPs. By using fixed adjacent scale
spacing to fully extract the morphological attribute features contained in the original image,
the improved genetic algorithm is used to carry out multi-attribute joint optimization
screening of the difference features.

3.2.1. Candidate Object Set of DAPs

In the process of MAPs extraction, a wide range of values and a tight sampling interval
are set for each attribute, and then a complete set of MAPs as generated by traversing all
the scale parameters within the interval. The purposes are to expand MAPs with small
sampling interval, to increase computation, and obtain a complete representation of scene
spatial structure.

To this end, according to other suggestions [22,23], the area, diagonal, standard
deviation, and NMI values were set to [500, 28000], [10, 100], [10, 70], and [0.2, 0.5]: each
of the four attributes extracted 50 scale parameters at equal intervals, resulting in a total
of 200 scales of MAPs for the four attributes [18]. On this basis, the initial DAPs set was
obtained by applying those differences to all adjacent scales, as defined by DAPscdi.

3.2.2. ACGA-DAPs

Since DAPscdi, GA is used to screen out representative DAPs sequences in different
attributes and a novel ACGA-DAPs is proposed. The specific steps are as follows:

Step 1: for DAPs belonging to the same attribute in DAPscdi, first random sampling
with replacement is performed to obtain the set of Q DAPs corresponding to the attribute.

Step 2: calculate the fitness f (D) by Equation (4):

f (D) =
(Q− 1)∑ d

Q∑ d′ (4)
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where d represents the difference index of the two DAPs in set D, and d′ is the difference
index of the two DAPs from different sets. d can be calculated by Equation (5):

d =

(
1−

√
2MI
HH′

)2

(5)

where H represents the information entropy of a DAP, and the mutual information of two
DAPs is MI.

Step 3: keep the set of DAPs corresponding to the minimum fitness, defined as Dmin.
According to the roulette wheel selection (RWS) method [24], reselect Q-1 DAPs. On this
basis, the one-point crossover method is used to perform pair-wise cross-over operations on
the sets of Dmin and Q-1 DAPs, and set the cross-over probability Pc [25]. At this time, the
RWS method is adopted to re-select Q DAPs sets, and Dmin is updated to D′min according
to Step 2. Among them, whether the setting of Pc is reasonable will significantly affect the
genetic performance, which is reflected in: if Pc is too large, the model may be completely
ineffective; otherwise, it may fall into local optimality. To this end, the distance distribution
matrix S of all DAPs sets is calculated:

S = (s)Q×Q (6)

where s represents the distance between two sets, and the minimum distance set smin of
each row can be obtained. On this basis, let the fitness corresponding to the maximum
distance be fm, and the cross-over probability Pc can be adaptively determined as:

Pc =

{
1− 2

π arctan(π fmax− fm
fmax− favg

), fm≥ favg

2
π arctan(π fm− fmin

favg− fmin
), fm< favg

(7)

where fmax, fmin, and favg are the maximum, minimum, and average fitness of Q DAPs
sets, respectively.

Step 4: Steps 2 and 3 are repeated to obtain the representative DAPs corresponding to
the current attribute. Four attributes are traversed, and all DAPs screened jointly constitute
ACGA-DAPs.

3.3. Construct an Unsupervised Decision Fusion Framework

In practical application, buildings are a type of geographical object with complete
contours, while ACGA-DAPs only provides the detection results of potential buildings at
pixel level. On the other hand, the traditional decision-making method of taking the union
directly for the DAPs corresponding to different attributes ignores the evidential conflict
and redundant information. Therefore, based on Dempster–Shafer (D–S) evidence theory,
this paper proposed an unsupervised decision fusion framework combining ACGA-DAPs
and image segmentation [5].

3.3.1. Identification Framework Based on D–S Theory

As an uncertain reasoning method, D–S evidence theory can not only satisfy the
weaker condition than Bayesian probability theory, but also has a powerful ability to deal
with uncertain information directly. Denote I as the total number of Rcdi and define the
recognition framework U : {B, NB} for any object Ri(i = 1, 2, 3, . . . , I), where B and NB
represent building and non-building, respectively. Thus, the non-empty subset A of U is
desirable {B}, {NB} and {B, NB}. We define the basic probability assignment formula
(BPAF) as m: 2U → [0, 1] , and satisfy the following constraints:{

m(Θ) = 0
∑A⊆U m(A) = 1

(8)
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Let the total number of DAPs in ACGA-DAPs be K, then the synthesis rules of K m
functions m1, m2, . . . , mK are as follows:

m(A) = m1 ⊕m2 ⊕ . . .⊕mK(A) =

∑
∩A′=A

∏
1≤k≤K

mk(A′)

∑
∩A′=∅

∏
1≤k≤K

mk(A′)
(9)

3.3.2. Calculation of SSBI

In the decision fusion framework, it is required to quantify the degree of uncertainty
belonging to buildings (or non-buildings) when constructing BPAF. For this reason, we
combined statistics and spatial information to construct a novel SSBI. The SSBI is calculated
as follows:

Step 1: calculation of statistical indicators Dpro and Dpro′. According to the pro-
portion of building pixels in all objects, fuzzy C-means (FCM) method is first used to
determine the two proportion parameters νB and νNB, which correspond to the clustering
center of building and non-building objects, respectively. On this basis, Dpro and Dpro′
are, respectively, defined as:

Dpro = |νi − νB| (10)

Dpro′ = |νi − νNB| (11)

where νi denotes the building pixel ratio of Ri in a DAP. Dpro and Dpro′, respectively,
represent that Ri is a building and a non-building object (the smaller the distance the higher
the likelihood).

Step 2: calculation of spatial information indices Dspa and Dspa′. Since the center of
mass reflects the center of mass distribution of an object in space, this paper holds that the
closer the distance between the pixel and the center of mass, the more reliable it will be as
proof of building detection. Based on this assumption, let WB and WNB be the number of
building pixels and non-building pixels in Ri, respectively. Dspa and Dspa′ of Ri can be
calculated by:

Dspa =
∑WB

w=1 sw

WB
(12)

Dspa′ = ∑WNB
w′=1 sw′
WNB

(13)

where sw and sw′ represent the distance from the center of mass of a pixel belonging to a
building or non-building.

Step 3: determination of SSBI. SSBI = {SSBIB, SSBINB} is defined by combining
statistical and spatial information indicators.

SSBIB = e−(Dpro×Dspa) (14)

SSBINB = e−(Dpro′×Dspa′) (15)

3.3.3. BPAF and Discrimination Rules

Through all Ri, BPAF is constructed according to Equations (8) to (15) as follows:

mk({B}) = SSBIB × γate
mk({NB}) = SSBINB × γate
mk({B, NB}) = 1− (SSBIB × γate + SSBINB × γate)

(16)

where γate is a confidence factor. γate is designed to cope with the problem that there
may be an imbalance in the number of DAPs belonging to four different attributes. Let



Remote Sens. 2021, 13, 357 9 of 22

gt(t = 1, 2, 3, 4) be the number of DAPs for each of the four attributes. Then γate can be
calculated from Equation (17).

γate =
1

1 + ∑
t′6=t

(gt/gt′)
(17)

At this point, based on BPAF, if m({B}) > m({NB}) and m({B}) > m({B, NB}) are
satisfied, Ri is a building; otherwise, Ri represents a non-building. Traverse all objects to
obtain the final building detection results.

4. Experiments and Evaluation

Three datasets of HRRS images of urban scenes in different regions and with different
spatial resolutions are used in the experiment. Compared with various advanced build-
ing detection methods, the proposed method is found to have excellent performance by
combining quantitative and visual analysis for accuracy evaluation.

4.1. Dataset and Experimental Strategy
4.1.1. Dataset Description

Dataset 1 was a pan-sharpened WorldView image with red, green, and blue bands of
Chongqing, China; the acquisition date was August 2011, the spatial resolution was 0.5 m,
and the size was 1370 pixels × 1370 pixels, as shown in Figure 2a. Dataset 2 was an aerial
remote sensing image with red, green, and blue bands of Nanjing, China; the acquisition
date was October 2011, the spatial resolution was 2 m, and the image size was 300 pixels ×
500 pixels, as shown in Figure 2b. Dataset 3 was a WorldView pan-sharpened image with
red, green, and blue bands of Nanjing, China; the acquisition date was December 2012, the
spatial resolution was 0.5 m, and the image size was 1400 pixels × 1400 pixels, as shown
in Figure 2c. In addition, as the basis for accuracy evaluation, the ground truth map was
manually created by field survey and visual interpretation, where white objects represent
buildings and black objects represent non-buildings. Some representative areas marked in
red boxes (patches I1, I3, and I5) and blue boxes (patches I2, I4, and I6) in Figure 2 were
chosen for more detailed comparison and analysis.

As shown in Figure 2, the three datasets are all typical urban scenes composed of
buildings, roads, vegetation, shadows, and other features, but at the same time, there are
significant differences in the image lighting conditions, acquisition time, and imaging side
view. In addition, the buildings in Dataset 1 are mainly low-rise residential buildings and
regularly-shaped factory buildings; in Dataset 2, there are many high-rise buildings and in
Dataset 3, the geometric shapes of old commercial buildings to be demolished are irregular.
Therefore, experiments on these datasets are helpful to reflect the detection performance of
the algorithm in real urban scenes from different angles.

4.1.2. Experimental Set-Up

To evaluate the performance of the proposed method comprehensively and objectively,
we used six advanced building detection methods for comparative experiments: based
on adaptive MAPS method (Method 1) [18]; the grey-level co-occurrence matrix (GLCM)
and support vector machine (SVM) based method (Method 2) [26]; the top-hat filter and
K-means classification based method (method 3) [27]; based on a DeepLab V3+ network
method (Methods 4 and 5) [13], combine the Otsu method and the evidence fusion strategy
proposed in this paper, respectively, to obtain the object-level building detection results. By
comparing this with Method 1, it is helpful when analyzing the optimization strategies of
different DAPs. Method 2 belongs to the common machine learning method. Method 3 is
an automatic detection method based on building descriptors. Methods 4 and 5 are deep
learning methods. By comparing with these methods, it is helpful to assess the performance
of the proposed methods in general. In addition, the further to investigate the influence of
ACGA-DAPs on the detection performance of buildings separately, Method 6 only replaces
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ACGA-DAPs with DAPscdi, and the other steps are the same as the proposed method.
Meanwhile, to ensure consistency of the geographic object set, all comparison methods are
based on the segmentation results of WJSEG to achieve the object-level building detection
results. Finally, based on the initialization parameters of the improved GA model, we
adopt the recommendation made elsewhere [28], and take Q = 20, and use 500 iterations.
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According to Section 3.2.1, the DAPscdi can be obtained. After screening the DAPscdi
with the improved GA model, the adaptively extracted ACGA-DAPs contains 85, 76,
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and 84 DAPs in three datasets of experiments, respectively. Each DAP in ACGA-DAPs
is calculated by applying the difference to the two adjacent APs. Let the smaller scale
parameter corresponding to one of these two APs be an initial parameter. The obtained
scale parameter sets are listed in Tables 1–3.

Table 1. ACGA-DAPs extracted scale parameter set of Dataset 1.

Attribute Initial Parameter Set of Dataset 1 Number

Area (500,1050,1600,2700,3250,3800,4900,5450,7100,7650,8200,9850,12050,14800,15900,
17000,19200,21400,21950,23050,23600,26350,27450) 23

Diagonal (10,13.6,17.2,19,24.4,26.2,21.6,38.8,40.6,44.6,47.8,56.8,58.6,62.2,64,65.8,69.4,
71.2,78.4,91,92.8,94.6,98.2) 23

Standard deviation (11.2,13.6,14.8,17.2,240.8,25.6,26.8,29.2,32.8,34,44.8,54.4,56.8,58,
60.4,62.8,64,65.2,67.6) 19

NMI (0.206,0.242,0.248,0.254,0.29,0.296,0.314,0.326,0.332,0.338,0.344,0.374,0.392,
0.398,0.41,0.422,0.446,0.458,0.47,0.476) 20

Table 2. ACGA-DAPs extracted scale parameter set of Dataset 2.

Attribute Initial Parameter Set of Dataset 2 Number

Area (500,2150,3800,4900,5450,7650,8200,9850,12050,14800,17000,17550,
22500,23050,23600,24700,27450) 17

Diagonal (13.6,15.4,17.2,19,22.6,24.4,28,29.8,31.6,35.2,37,38.8,49.6,51.4,56.8,
60.4,62.6,74.8,80.2,82,85.6,96.4) 22

Standard deviation (10,13.6,14.8,16,26.8,29.2,32.8,34,36.4, 40,43.6,47.2,49.6,52,56.8,60.4,67,6) 17

NMI (0.2,0.206,0.254,0.26,0.272,0.284,0.29,0.296,0.30,0.356,0.362,0.392,
0.404,0.41,0.422,0.44,0.47) 20

Table 3. ACGA-DAPs extracted scale parameter set of Dataset 3.

Attribute Initial Parameter Set of Dataset 3 Number

Area (2150,2700,4350,4900,6550,7100,7650,8750,9850,11500,12050,12600,14250,
15350,16450,17000,17550,21400,23050,24700,25250) 21

Diagonal (15.4,19,22.6,24.4,28,29.8,31.6,35.2,38.8,44.2,46,47.8,51.4,56.8,62.2,64,69.4,
76.6,80.2,82,83.8,89.2,94.6,96.4) 24

Standard deviation (2.4,13.6,16,18.4,19.6,22,24.4,26.8,29.2,32.8,34,35.2,37.6,41.2,44.8,46,49.6,
54.4,56.8,58,59.2,62.8) 22

NMI (0.224,0.236,0.254,0.26,0.272,0.29,0.296,0.302,0.344,0.35,0.362,0.41,0.43,
0.452,0.458,0.476,0.488) 17

4.2. Experimental Results and Accuracy Evaluation
4.2.1. General Results and Analysis

The building detection results of three datasets are shown in Figures 3–5: true positive
(TP), false positive (FP), false negative (FN), and other non-buildings are represented by
four colors.

The visual analysis shows that the results of this method are significantly better overall
than the five comparison methods. In addition, four accuracy evaluation indices including
overall accuracy (OA), FP, FN, and Kappa are adopted for quantitative accuracy evaluation
in this work. The results are reported in Tables 4–6. In the three groups of experiments,
the OA of the proposed method exceeds 91.9%, offering the best performance among all
experimental methods, in line with the conclusions of the visual analysis. Despite the
differences between the different datasets the OA fluctuations of the method presented
here is less than 2%, showing its stability.
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Table 4. Evaluation of building detection accuracy in Dataset 1.

Method/Indicator OA (%) FP (%) FN (%) Kappa

Evaluation
Criteria

The Higher the
Better

The Lower the
Better

The Lower the
Better

The Higher the
Better

Proposed method 93.2 3.71 2.99 0.809
Adaptive MAPS 92.1 4.71 3.12 0.782

GLCM-SVM 83.8 10.7 5.99 0.663
Top-hat 83.1 6.83 9.82 0.644

DeepLab-Otsu 66.6 27.3 6.11 0.282
DeepLab-fusion 69.8 20.9 9.22 0.270

DAPs-fusion 85.8 10.16 4.07 0.687

Table 5. Evaluation of building detection accuracy in Dataset 2.

Method/Indicator OA (%) FP (%) FN (%) Kappa

Evaluation
Criteria

The Higher the
Better

The Lower the
Better

The Lower the
Better

The Higher the
Better

Proposed method 92.2 4.76 3.03 0.841
Adaptive MAPS 90.2 6.95 3.25 0.780

GLCM-SVM 80.1 5.64 14.3 0.594
Top-hat 78.7 8.89 12.6 0.568

DeepLab-Otsu 82.0 3.90 14.7 0.622
DeepLab-fusion 83.1 5.41 11.4 0.649

DAPs-fusion 83.7 9.81 5.38 0.674
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Table 6. Evaluation of building detection accuracy in Dataset 3.

Method/Indicator OA (%) FP (%) FN (%) Kappa

Evaluation
Criteria

The Higher the
Better

The Lower the
Better

The Lower the
Better

The Higher the
Better

Proposed method 91.9 6.13 1.89 0.811
Adaptive MAPS 90.5 4.65 5.12 0.766

GLCM-SVM 80.9 9.30 9.77 0.563
Top-hat 72.6 12.6 14.9 0.456

DeepLab-Otsu 81.1 2.36 16.5 0.614
DeepLab-fusion 83.5 3.77 12.74 0.649

DAPs-fusion 84.9 10.92 4.25 0.624

As an automated building detection method based on MAPs, the OA of Method 1
and the proposed method in all three sets of experiments are higher than 90%, and FNs
are lower than 3.1%, which confirms the powerful ability of MAPs at portraying buildings
in complex urban environments; however, all other accuracy indices of this method are
higher than that of Method 1, except for FPs in Dataset 3. Therefore, compared with the
strategy of Method 1, we directly select the DAPs set for adaptive selection based on the
statistics and spatial information of potential building pixels, which is conducive to more
accurate building characterization.

Method 2 is a classification method based SVM, which not only requires manual
intervention, but also the detection accuracy is susceptible to the quality and number of
training samples. For example, the number of samples in Dataset 1 is 833, which is higher
than the 462 in Dataset 2 and 212 in Dataset 3, while the OA is improved by 3.7% and
2.9%, respectively. Method 3 uses fixed shapes for structural elements despite the use
of automated building descriptors, while ignoring the complexity and diversity of the
buildings, so it has an OA of less than 80% for both Datasets 2 and 3.

As deep learning methods, Methods 4 and 5 show low accuracy and bad stability in
all three datasets of experiments. For example, the fluctuation range of the OA reaches
16.9%, and the lowest OA is only 66.6%. Compared with the proposed method, deep
learning methods are not applicable to specific building detection applications where a
prior knowledge is sparse, the reasons are as follows: (1) Due to the architecture of multi-
layer neural networks, deep learning models require large, diverse training datasets to
avoid the overfitting problem. In the implementation of building detection within a specific
area, the efforts to curate these datasets is regarded as the main barrier to adopt the deep
learning method. This is the case for the three sets of experiments in this paper. (2) The
proposed method can automaticly extract appropriated morphological attributes according
to the characteristics of the remote sensing images, which is not limited by the amount of
training samples. In addition, compared with the traditional treatment of taking the union
of all DAPs adopted in Method 4, the improvement of the OA proves that the proposed
fusion strategy is both feasible and effective.

After replacing the ACGA-DAPs with DAPscdi in Method 6, the OA is reduced in all
three sets of experiments, and in particular, the FPs improve significantly. This indicates that
the number of DAPs is not maximized, and the redundancy of information and evidential
conflicts among DAPs with different attributes and scale parameters may adversely affect
the detection performance. Therefore, it is necessary to optimize the selection of DAPscdi
from the perspective of improving the OA and automation, which is also aligned with the
goal of the proposed cross-probability adaptive genetic algorithm.

4.2.2. Visual Comparison of Representative Patches

The results of the representative patches in each dataset are reported in Figure 6
(patches I1 and I2), Figure 7 (patches I3 and I4), and Figure 8 (patches I5 and I6). The results
for each representative patch are discussed as follows.
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Figure 7. Building detection results of patches I3 and I4: (a) Patch I3; (b–h) results obtained in patch I3 using the proposed
method and Methods 1 to 6, respectively; (i) patch I4; (j–p) results obtained in patch I4 using the proposed method and
Methods 1 to 6, respectively.
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Figure 8. Building detection results of patches I5 and I6: (a) Patch I5; (b–h) results obtained in patch I5 using the proposed 
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Methods 1 to 6, respectively. 

Figure 8. Building detection results of patches I5 and I6: (a) Patch I5; (b–h) results obtained in patch I5 using the proposed
method and Methods 1 to 6, respectively; (i) patch I6; (j–p) results obtained in patch I6 using the proposed method and
Methods 1 to 6, respectively.
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Residential and industrial buildings are two types of buildings that are common and
distributed widely across urban HRRS images. On the other hand, they are always regions
of interest (ROIs) in building detection applications based on HRRS images. Therefore, we
focused on both residential and industrial buildings to ascertain the detection performance
of the proposed method.

As shown in the figure, the segmentation by WJSEG extracts the complete outline of the
buildings without obvious over-segmentation and under-segmentation, which lays a good
foundation for the subsequent object-level building detection. The detection performance
of the method in this paper is significantly better than that of other methods, regardless
of the low-rise residential buildings in the green rectangle of I1, the green rectangle of I5,
and purple rectangle, or high-rise residential buildings in the green rectangle of I3 and
I4; however, only objects adjacent to the building and with regular shape in individual
positions have FPs, but no FNs occur. For irregularly shaped buildings, such as villas (e.g.,
the purple rectangle in I1) and industrial buildings (e.g., the green rectangle in I6), only the
methods proposed in this paper and Methods 1, 4, and 5 do not have FNs; for industrial
buildings to be demolished (e.g., the yellow and green rectangle in I6), Methods 2, 3, and 4
had severe FPs. For industrial buildings of large size and regular shape (e.g., the yellow
rectangle in I2 and the purple rectangle in I6), only the method in this paper and Methods
1, 4, and 5 do not have FPs. For some geographic objects that are located between buildings
and have similar morphological features to buildings (e.g., the green rectangle in I4 and
the green and purple rectangles in I5), the detection results of this method and Method 6
are better than the other comparators. In addition, the screening strategy employed in the
present research can reduce the influences of non-building objects such as vegetation and
shadows (e.g., the green and yellow rectangles in I1 and the purple rectangles in I2 and I4).
For high-rise buildings using side-view imaging as in Dataset 2, the method proposed in
this paper can obtain correct detection results when the building roof and side elevations
are partitioned into the same object (e.g., the green rectangles in I3 and I4) and when the
side elevations are partitioned into separate objects (e.g., the yellow and purple rectangles
in I4).

Through the visual analysis of representative patches, this method can detect different
types of buildings in complex urban backgrounds, and is insensitive to interference from
factors such as false targets and imaging side view confusion. It is significantly better than
other comparison methods and agrees with the conclusions of quantitative analysis.

5. Discussion

In the process of decision fusion of ACGA-DAPs, we employed the idea of fuzzy
clustering to self-adapt to determine the proportion parameters νB and νNB. The results are
as follows.

On this basis, to further discuss the influence of the setting of OA, we constructed the
VNB-VB-OA three-dimensional curves in the intervals [0.05, 0.45] and [0.5, 0.95], respectively,
with an interval of 0.05, as shown in Figure 9.

As shown in the figure, when the value of νB is unchanged, the OA of νNB in [0, 0.5]
show an increasing tendency before falling; when the value of νNB is unchanged, OA of νB
in the interval [0.5, 1] also exhibits a similar trend of increasing before falling. Among them,
the three datasets belong to {[0.1, 0.2], [0.85, 0.95]}, {[0.15, 0.2], [0.8, 0.95]}, and {[0.15, 0.2],
[0.85, 0.95]} in (νNB, νB), respectively, and OA can exceed 88%. Meanwhile, νNB and νB
are also located in these intervals according to Table 7. Therefore, we adopted 0.02 as the
sampling interval for the above intervals to describe the relationship between the setting of
νNB, νB, and OA. The results are shown in Figure 10.
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Table 7. Proportion parameters of νB and νNB in the three datasets.

Dataset 1 Dataset 2 Dataset 3

νB 0.93 0.87 0.91
νNB 0.18 0.16 0.21

In the above interval, the mean values of OA for the three datasets are 91.2%, 90.8%,
and 90.5%, respectively, and the peak values of OA are 94%, 93.5%, and 93.3%, respec-
tively, while the OA of the method proposed in this paper is 93.2%, 92.2%, and 91.9%,
respectively. Thus, the OA of the method proposed herein is only slightly lower, by 0.8%,
0.13% and 0.16%, than the corresponding highest OA in three datasets, respectively, and
significantly higher than the interquartile range of the overall mean accuracy. Meanwhile,
the automation of parameter setting is thus achieved.
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6. Conclusion and Future Lines of Research

For HRRS images of buildings in complex urban backgrounds, an automatic detection
method based on the joint optimization and decision fusion of MAPs is proposed. This
method aims to preserve detailed information about the morphological attributes of build-
ings by transforming the scale parameter setting of MAPs into an optimal selection problem
for DAPs, and a cross-probability adaptive selection method is developed. Based on these,
a building index SSBI that combines statistical and spatial information is designed and an
unsupervised decision fusion framework based on D–S evidence theory is established to
achieve the automated building detection. In the experiments on HRRS images from differ-
ent groups of different regions and different sensors, the proposed method outperforms
the other six advanced comparison methods in visual and quantitative analysis, with the
OA exceeding 91.9%, while FPs and FNs are less than 6.13% and 3.03%, respectively. In
addition, the setting of the value intervals of different attributes in this paper was limited
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by prior knowledge. In the future, we will consider studying an automatic method to
determine appropriate value interval corresponding to the attribute.
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