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Abstract: Classification based on polarimetric synthetic aperture radar (PolSAR) images is an emerg-
ing technology, and recent years have seen the introduction of various classification methods that
have been proven to be effective to identify typical features of many terrain types. Among the
many regions of the study, the Hunshandake Sandy Land in Inner Mongolia, China stands out for
its vast area of sandy land, variety of ground objects, and intricate structure, with more irregular
characteristics than conventional land cover. Accounting for the particular surface features of the
Hunshandake Sandy Land, an unsupervised classification method based on new decomposition
and large-scale spectral clustering with superpixels (ND-LSC) is proposed in this study. Firstly, the
polarization scattering parameters are extracted through a new decomposition, rather than other
decomposition approaches, which gives rise to more accurate feature vector estimate. Secondly, a
large-scale spectral clustering is applied as appropriate to meet the massive land and complex terrain.
More specifically, this involves a beginning sub-step of superpixels generation via the Adaptive
Simple Linear Iterative Clustering (ASLIC) algorithm when the feature vector combined with the
spatial coordinate information are employed as input, and subsequently a sub-step of representative
points selection as well as bipartite graph formation, followed by the spectral clustering algorithm
to complete the classification task. Finally, testing and analysis are conducted on the RADARSAT-2
fully PolSAR dataset acquired over the Hunshandake Sandy Land in 2016. Both qualitative and
quantitative experiments compared with several classification methods are conducted to show that
proposed method can significantly improve performance on classification.

Keywords: decomposition; large-scale spectral clustering; PolSAR image; superpixels; unsuper-
vised classification

1. Introduction

In recent years, desertification of grasslands has become increasingly severe due
to continuous drought and grassland overload in Inner Mongolia Autonomous Region,
China. According to research, Hunshandake Sandy Land, has become one of the main
dust sources, so it is of great significance to monitor sandy land [1]. The development
of spaceborne remote sensing technology and a massive increase in monitoring data
provide many effective means to monitor the sandy land echo-environment [1,2]. The
all-time all-weather features of active microwave synthetic aperture radar (SAR) are a
particular advantage over optical sensors, and SAR can penetrate ground and vegetation
with multi-polar observations [3,4]. The polarimetric SAR (PolSAR) which can obtain
relatively complete polarimetric scattering information through four different channels
(HH, HV, VH and VV) is referred to as a fully PolSAR [5]. Theory and practice show
that the polarization feature of electromagnetic echoes is sensitive to the shape, texture,
and other physical features of targets, and the differences in polarization signatures help
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distinguish different types of ground objects. Since radar response to sandy land is related
to polarization, the exploitation of differences in polarization signatures for sandy land
classification can improve accuracy with respect to polarization SAR data. Several PolSAR
satellites have been launched to monitor the earth, including RADARSAT-1/2 (Canada),
ALOS-1/2 (Japan), TerraSAR-X and Tandem-X (Germany), STR-C (NASA/JRL) (America),
and GF-3 (China). Benefiting from the abundant PolSAR data acquired by these sensors,
many classification applications have been reported in the literature [6–10].

The classification of PolSAR images can be divided into supervised and unsupervised
methods, depending on whether the algorithm depends on a priori sample data [5]. The
former needs human intervention to acquire prior knowledge, while the latter, in the
absence of characteristic prior information, only uses scattering and statistical distribution
information obtained from PolSAR data to perform image classification. Therefore, unsu-
pervised classification is widely used to classify PolSAR images. Its process mainly includes
two key steps. One is the choice of features which provides a basic basis for classification,
so the expression of the selected features is the key to determining the performance of
the classification results. The second is the design of classification algorithms. Although
classical clustering algorithms have a complete mathematical theory as the basis, only
reasonable use of them can achieve the ideal performance on classification, so the design of
classification process is also a key when facing different study areas.

A widely used approach for obtaining polarimetric features is polarimetric target
decomposition. It is the most effective way to understand polarimetric scattering mecha-
nisms, which contributes significantly to identifying and classifying ground targets [11].
Polarization target decomposition method can be categorized as either from the perspective
of incoherent decomposition: (1) the eigen-decomposition-based approach with quantita-
tive analysis of eigenvectors and eigenvalues of coherency or covariance matrix; (2) the
model-based decomposition with models representing physical scattering phenomena.
Model-based decomposition has developed rapidly, since Freeman–Durden proposed
three-component decomposition in 1998 [12–25]. In this method, three scattering mod-
els (surface, double-bounce, and volume scattering) are defined, and three polarimetric
parameters with distinct physical interpretations corresponding to the three models are
derived. These scattering components constitute the characteristics for sandy land classi-
fication. However, the pioneer model-based decomposition methods have a major flaw
regarding the emergence of negative power. To solve this problem, Cloud [6] proposed
a hybrid Freeman/Eigenvalue decomposition method, in which surface scattering is or-
thogonal to secondary scattering. Singh [13] extended the volume scattering model and
combined it with the rotation transformation of the coherence matrix, by which the negative
power is overcome with improved decomposition accuracy. Other methods have been
proposed [14–20], such as to employ orientation angle compensation (OAC) and phase
angle rotation (PAR) to improve decomposition performance, and accordingly improve
classification accuracy [21]. We propose an alternative new hybrid Freeman/eigenvalue
decomposition method based on adaptive model-based to obtain polarimetric features.

Classification algorithms can be categorized as pixel-wise and region-based [26]. Pixel-
wise algorithms focus on the processing of a single pixel, while neglecting the similarity
between adjacent pixels belonging to the same type of target [27]. Thus, it is difficult to
extract structural information of a homogeneous region and keep the edge information
and spatial structure of the image [28]. Region-based methods can effectively consider
spatial correlation between pixels in a local region, which contributes to the improved
performance of PolSAR image classification. One of the most widely used strategies
for region-based methods is image segmentation. The basic principle of segmentation
is merging the adjacent and homogeneous pixels into the same region, and the hetero-
geneous pixels are divided into different regions. Finally, the image is segmented into
many small homogeneous regions with similar sizes. In recent years, various PolSAR
image segmentation algorithms have been proposed [29–37]. Among them, Simple Lin-
ear Iterative Clustering (SLIC) [32] is a simple and effective segmentation algorithm for
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natural images, which has been successfully applied for PolSAR images [25,29,33,34]. The
algorithm can generate superpixels with compact regions, relatively uniform sizes, and
maintain the region boundaries. In this paper, the PolSAR image is segmented by Adaptive
Simple Linear Iteration Clustering (ASLIC), and the image is divided into different region
blocks. These area blocks are used as the input sample points of the spectrum clustering
algorithm. Compared with directly using the original image, the amount of data processing
is greatly reduced, the problems of insufficient memory and slow processing speed are
improved [35]. Furthermore, as for clustering algorithms, such as k-means and expectation
maximization (EM), must assume a convex spherical sample space, and they tend to fall
into local optima [23–26]. Fortunately, the spectral clustering algorithm, which is based
on graph theory, can transform clustering into a graph partitioning problem. It is carried
out by k-means clustering in a projection space, in which the transformation matrix is
calculated by eigenvectors of Gaussian similarity matrix of samples [24]. Such methods are
attracting considerable attention in the field of polarized SAR processing.

In this study, Hunshandake Sandy Land stands out for its vast area of sandy land, a
great variety of ground objects, and a complex, intricate structure with irregular charac-
teristics compared with conventional land cover types. In order to mitigate the problem
and improve final classification accuracy, starting from the two key steps of unsupervised
classification, an unsupervised classification method based on new decomposition and
large-scale spectral clustering with superpixels (ND-LSC) is proposed. Figure 1 depicts the
proposed architecture. There are two essential parts for the classification method. The first
part is the extraction of polarized scattering power by ND which contribute significantly to
understand the polarimetric scattering mechanisms of sandy land. The second part is the
large-scale spectral clustering (LSC), which is a classification algorithm based on regional
level. The algorithm, i.e., scattering power as input vs superpixels as basic unit, is tested
on the sandy land. Specifically, we utilize the advantages of new decomposition to extract
polarization scattering power (ms, md, and mv), which is used to construct the feature vector
X = [ms, md, mv], and then superpixels are generated by the ASLIC algorithm when the
feature vector combined with the spatial coordinate information are employed as input,
followed by spectral clustering to complete the classification.

Figure 1. The proposed architecture of the work in this paper.

There are several advantages of the proposed method. The main novel contributions
of this work are:

Firstly, it is a classification structure for areas with vast area, variety of ground objects
and intricate structure.

Secondly, these two aspects are crucial to complete the final classification through
spectral clustering. On the one hand, the new decomposition method helps to interpret
the polarization scattering characteristics of ground objects. On the other hand, the clas-
sification algorithm takes the superpixel as the unit. In LSC, it can make full use of the
polarization information and spatial information of the target to generate superpixels.
These two aspects are crucial to complete the final classification through spectral clustering.

The structure of this paper is organized as follows. In Section 2, the descriptions of the
Hunshadake Sandy Land and parameters of RADARSAT-2 fully PolSAR were presented.
Then, the details of the proposed ND-LSC unsupervised classification are introduced in
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Section 3, and the flowchart of the method is given at the end of this section. In Section 4, on
the one hand, the classification performance of ND-LSC and other classification methods
are compared. On the other hand, it analyzed the influence of decomposition parameters
and superpixels segmentation on classification result. Finally, discussion and conclusions
are drawn in Sections 5 and 6, respectively.

2. Study Area

Hunshandake Sandy Land, is located at 42◦32′–42◦50′ N, 115◦49′–116◦12′ E in the
south of Xilingol League, Inner Mongolia, China. It is a semi-temperate grassland with
a semi-arid continental climate. The altitude ranges from 1150 to 1500 m rising slowly
from northwest to southeast. The edge of the sandy land is hilly and denuded, and there
are dunes, basins, lakes, and denuded plateaus in this area. Sand dunes can be divided
into fixed, semi-fixed, and mobile dunes from the perspective of vegetation coverage.
The vegetation of fixed dunes is mainly herbaceous, and the proportions of irrigation are
relatively high. Semi-fixed sand dunes distributed among fixed sand dunes always present
speckle shapes in SAR images. A mobile sand dune can move, as the effect of the wind
for the surface vegetation is rare. There are five types of sandy land in the area. Fixed
sand accounts for 29.23%, semi-fixed sand for 29.52%, mobile sand for 15.23%, semi-mobile
sandy land for 23.27%, and saline-alkali land for only 2.55%. There is almost no Gobi
sand in Hunshandake Sandy Land [35], as shown in Figure 2a. Polarimetric SAR data are
obtained from the RADARSAT-2 satellite, with data parameters as shown in Table 1. The
corresponding PolSAR images are shown in Figure 2b–d. According to surveys, three main
types of phenomena occur or have occurred in Hunshandake Sandy Land: (1) soil and
water are severely lost, (2) the degree of desertification increases, and (3) grass pasture is
severely degraded. Therefore, it is urgent to constantly monitor the change of grassland
features. The data used in this article were collected in September 2013, August 2016, and
September 2017.

Figure 2. Location of study area in Hunshandake Sandy Land. (a) Map of China, (b) Map of
Hunshandake Sandy Land, (c) Pauli RGB image (overpass, Sep. 2013), (d) Pauli RGB image (overpass,
Aug. 2016), and (e) Pauli RGB image (overpass, Sep. 2017).
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Table 1. The Parameters of RADARSAT-2 fully PolSAR.

Parameters Statement

Wave mode Fine quad polarization
Polarization types HH VV HV VH

Sampling pixel spacing ~4.73 m
Sampling line spacing ~4.94 m

Pass direction Descent
Ellipsoid name WGS 84

Hunshandake Sandy Land is famous for its unique characteristics, such as a large
area, various types of features, and intricate structures. As shown in Figure 3, the details of
seven typical features.
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Figure 3. Optical maps corresponding to locations of sampling points used to verify RADARSAT-2
full PolSAR image classification. (a) Sandy land, (b) residents, (c) roads, (d) vegetation, (e) saline
land, (f) lakes, and (g) semi-vegetation sand.

3. Methodology

An unsupervised classification method combined with new decomposition and large-
scale spectral clustering with superpixels is proposed for Hunshadake Sandy Land classifi-
cation. The method consists of data preprocessing, new decomposition (ND), superpixel
segmentation by adaptive simple linear iterative clustering (ASLIC), and large-scale spec-
tral clustering (LSC) classification. The workflow of the proposed ND-LSC is shown in
Figure 4. The polarization parameters (ms, md, mv) are more accurately extracted from the
ND, which is used to construct the feature vector X = [ms, md, mv]. The application of LSC
is more in line with the characteristics of its large area. The feature vector X and spatial
coordinate information constitute the input vector of ASLIC, which is used to generate
superpixels. Representative points are selected from superpixels, and the bipartite graph
between the representative points is formed. According to the principle of the spectral
clustering algorithm, the classification of PolSAR is completed. It can be seen from the
flowchart that the classification method has two three parts, (1) extracting polarization
parameters from decomposition (2) spectral clustering with superpixels. We propose
improvements from these two aspects to classify the sandy land.
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Figure 4. Flowchart of new decomposition and large-scale spectral clustering with superpixels
(ND-LSC) unsupervised classification method.

3.1. Data Preprocessing

The SAR pre-processing procedure is performed in three steps with SARscape software
(PolSARpro 5.3.0). These include calibration, registering, and filtering. The PolSAR single
look complex (SLC) image data can be geometrically calibrated and registered by the NEST
tool. Then the Lee filter is used to suppress inherent speckle noise, and the corresponding
polarimetric coherency matrix T3 for every pixel of data is generated. Finally, the area of
interest is selected.

As for fully PolSAR image, the acquired scattering matrix in H-V polarization basis
can be written as [5]:

S =

[
SHH SHV
SVH SVV

]
(1)

where the different elements in matrix S represent the backscattering coefficients of the
different polarimetric channels. SHH and SVV are the common-polarized echo channels, and
SHV and SVH are the cross-polarized echo channels. According to the reciprocity principle,
the two cross-polarizations are considered equal, that is, SHV = SVH, and the scattering
target vector obtained from the matrix S can be expressed as follows:

K =
1√
2

[
SHH + SVV SHH − SVV 2SHV

]† (2)

Then the corresponding coherency matrix is (3) [11]:
T3 contains nine independent parameters, which is relevant to the physical properties

of the observed targets. Generally speaking, T11 is relevant to surface scattering mechanism,
T22 is relevant to double-scattering mechanism, and T33 is relevant to volume scattering
mechanism. T13 is relevant to cross-polarization power generated by the coupling between
surface and volume scattering mechanisms. T23 is relevant to cross-polarization power
generated by the coupling between double-bounce and volume scattering mechanism.
Elimination of the cross-polarization power cannot only optimize the PolSAR coherency
matrix T3, but can help approach the reflection symmetry condition.

T3 =
〈

K•KH
〉
→

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 =


〈
|k1|2

〉
〈k1k∗2〉 〈k1k∗3〉

〈k2k∗1〉
〈
|k2|2

〉
〈k2k∗3〉

〈k3k∗1〉 〈k3k∗2〉
〈
|k3|2

〉


=


〈
|SHH + SVV |2

〉
〈(SHH + SVV)(SHH − SVV)

∗〉 2〈(SHH + SVV)S∗HV〉

〈(SHH − SVV)(SHH + SVV)
∗〉

〈
|SHH − SVV |2

〉
2〈(SHH − SVV)S∗HV〉

2〈SHV(SHH + SVV)
∗〉 2〈SHV(SHH − SVV)

∗〉 4
〈
|SHV |2

〉


(3)
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3.2. New Decomposition

In order to effectively obtain the polarization parameters of Hunshandake Sandy
Land to improve the final classification results, a new decomposition is presented based
on [7,17] in this paper. The decomposition eliminates cross-polarization at the bottom
power to reduce the influence of the volume scattering overestimation problem, followed
by the hybrid Freeman/Eigenvalue decomposition based on adaptive model to extract the
polarization scattering power.

3.2.1. Removal

Orientation angle compensation (OAC) [15,16] and phase angle rotation (PAR) [18]
are common polarimetric target decomposition data processing methods. They are used
to remove T23 and T13, which can increase the power of the common polarization term,
decrease the power of the cross-polarization term, minimize the influence of different
orientation angles on polarimetric decomposition results, Thus, the coherency matrix T3 is
rotated as follows:

T3(ϕ1) = R(ϕ1)T3T3(ϕ1)
∗T (4)

T3(ϕ2) = R(ϕ2)T3(ϕ1)T3(ϕ2)
∗T (5)

where *T denotes complex conjugation and transposition, and the rotation matrices R(ϕ1)
and R(ϕ2) are given by [21]:

R(ϕ1)=

 cos 2ϕ1 0 sin 2ϕ1
0 1 0

− sin 2ϕ1 0 cos 2ϕ1


ϕ1=

1
4

tan−1
[

2Re(T13)

T11 − T33

] (6)

R(ϕ2) =

 cos 2ϕ2 0 j sin 2ϕ2
0 1 0

j sin 2ϕ2 0 cos 2ϕ2


ϕ2 = 1

4 tan−1
[

2Im(T13)
T11(ϕ1)−T33(ϕ1)

] (7)

After this rotation, the eliminated T13 of coherency matrix T3 can be eliminated by
Equations (4) and (5) completely.

After OAC, the real part of T13 becomes zero, and its imaginary part can be set to zero
via PAR [21], that is,

T11(ϕ2) = T11(ϕ1) cos2 2ϕ2 + T33(ϕ1) sin2 2ϕ2

+Im(T13(ϕ1)) sin 4ϕ2

T22(ϕ2) = T22

T13(ϕ2) = 0

(8)

Similarly, T23 represents a cross term of double-bounce and volume scattering, which
can be completely eliminated by OAC and PAR, that is,

T11(θ2) = T11

T22(θ2) = T22(θ1) cos2 2θ2 + T33(θ1) sin2 2θ2

+Im(T23(θ1)) sin 4θ2

T23(θ2) = 0

(9)

The rotation matrices R(ϕ1) and R(ϕ2) are given by [18]. The choice of rotation transfor-
mation depends on the form of the dominant scattering mechanism. It can be determined
according to the value of T11 − T22, which contributes to removing the maximum of the
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cross-polarization power generated by the coupling between common polarization and the
cross-polarization scattering mechanism. The coherent matrix after two unitary rotations is
as follows:

T3
′ =

{
[T3(ϕ2)]
[T3(θ2)]

T11 − T22 > 0
T11 − T22 ≤ 0

(10)

3.2.2. Adaptive Model-Based Decomposition

After two unitary rotations, the coherency matrix T3’ can be decomposed as follows:

T3
′ = msTs + mdTd + mvTv (11)

where Ts, Td and Tv are scattering models of surface, double-bounce, and volume scattering,
respectively, with corresponding power coefficients ms, md and mv.

The surface scattering model Ts and double-bounce scattering model Td are repre-
sented by eigenvectors, and can be expressed as follows [13]:

Ts =

 cos2 αs cos αs sin αseiϕs 0
cos αs sin αse−iϕs sin2 αs 0

0 0 0

 (12)

Td =

 cos2 αd cos αd sin αdeiϕd 0
cos αd sin αde−iϕd sin2 αd 0

0 0 0

 (13)

where αs and αd depend on the two dielectric constants of the surface, reflector and the
angle of incidence, and αs < π/4, αd > π/4. ϕs and ϕd are the scattering phases for surface
scattering and double-bounce scattering mechanisms, respectively. Under the conditions
αs + αd = π/2 and ϕd − ϕs= ±π, these two components Ts and Td have orthogonality with
each other. This reduces the number of unknowns in (11), which can be rewritten as:

T3 = Tsd + Tv (14)

The adaptive volume scattering model is the main distinction of improved hybrid
decomposition, and can be described as follows:

Tv =

 V11 V12 0
V21 V22 0
0 0 V33

 (15)

The object is judged to be located at artificial area when double-bounce scattering is
dominant scattering mechanisms. Under the condition, we consider this physical situation
in more detail and assume for more accurate modeling that volume scattering mainly comes
from the dihedral structure of the artificial target. The model is expressed as follows [13]:

Tdihedral
vol =

1
15

 0 0 0
0 7 0
0 0 8

 (16)

The object is judged to be located in a natural area when surface scattering is dominant.
At this time, volume scattering mainly comes from a cloud of randomly oriented dipole
scatter such as vegetation, in which case we adopt the generalized volume scattering
model [16]:

Tgeneraly
v =

1
3
2 (γ+1)−

√
γ

3


γ+1

2 +
√

γ
3

γ−1
2 0

γ−1
2

γ+1
2 +

√
γ

3 0
0 0 γ+1

2 −
√

γ
3

 (17)
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where γ =
〈
|SHH |2

〉
/
〈
|SVV |2

〉
, and γ is the ratio of the horizontal and vertical polariza-

tion components.
To determine the scattering power coefficients of mv, ms and md, first the volume

scattering power mv coefficient is calculated as [17]:

mv = V33/T33 (18)

Then, Equation (14) can be written as follows:

Tsd = T3 − Tv (19)

Finally, the remaining scattering power coefficient ms and md can be calculated as
the eigenvalues of remainder matrix Tsd on the basis of dominant scattering mechanism
(λ1sd > λ2sd). In case of T11 − T22 > 0, ms and md can be determined as:

ms = λ1sd and md = λ2sd (20)

In the case of T11 − T22 < 0, ms and md can be determined as:

ms = λ2sd and md = λ1sd (21)

3.3. LSC Classification

Spectral clustering algorithms usually involve two large steps (1) to construct a simi-
larity matrix (2) to solve the corresponding eigenvalue problem on the Laplace. However,
accounting for the particular surface features of the Hunshandake Sandy Land, the imple-
mentation of the algorithm requires a lot of memory and affects the classification accuracy.
Therefore, on the basis of obtaining the polarization scattering parameters (ms, md, mv), this
paper generates representative points through superpixels, and subsequently a sub-step
of representative points selection as well as bipartite graph formation, followed by the
spectral clustering algorithm to complete the classification task.

3.3.1. Superpixels Segmentation

The ASLIC algorithm is utilized to generate superpixels in this paper, and it is de-
veloped based on the SLIC algorithm. The basic principle of SLIC is to use k-means for
segmentation in a local area. In the beginning, some seeds are uniformly selected on the
image plane at intervals Ns as the initial clustering center of the superpixels. The formula
for the distance between a pixel and its adjacent superpixel region in the PolSAR image is
generally expressed as [32]:

DSLIC =

√
dW(Si, Spi) + β ∗

(
dXY(i, j)

Ns

)2

(22)

where dxy is the Euclidean distance between the image plane coordinate points i and j,
and dW the Wishart distance. Since the Wishart distance may be negative, it is not a good
distance measure. In this paper, Wishart distance will be replaced by Bartlett distance as:

dW(Si, Spi) = ln |∑j |+ Tr(∑−1
j Ti) (23)

where Ti and ∑j are the respective sample coherence matrices of pixel Si and superpixel
region Spi. Polarization parameters (ms, md, mv) can be extracted more accurately from ND,
and are used to construct the vector X= [ms, md, mv] as the feature vector of the coherence
matrix.
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Since the values of dW and dXY changes with different images, and also with regions,
DSLIC is modified to adaptively balance the distance between the pixel values and the
distance in the image plane space, and Equation (22) can be modified as follows:

DSLIC =

√√√√ dw(Si, Spi)

maxSi∈Spi dW(Si, Spi)
+ β ∗

(
dXY(i, j)

NS

)2
(24)

The ranges of the two items in Equation (24) are very similar, and it is easy to determine
the contribution of the two components. Consequently, ASLIC with the advantage of
adaptive distance formula is selected to generate superpixel in this paper.

3.3.2. LSC Classification

The idea of spectral clustering algorithms is derived from the theory of spectral graph
partitioning. If a dataset is regarded as a set of all vertices in a graph, and the weights of
edges between vertices represent the similarities between data, then spectral clustering is a
method to divide the graph by a weight. Then, to find the optimal solution of the graph
partitioning criterion becomes the essential problem of spectral clustering. According to
the Rayleigh–Ritz theory, several eigenvectors of similarity matrix W are optimal partition-
approximate solutions. That is, the original optimal segmentation problem is converted to
the spectral decomposition of the similarity matrix or Laplacian matrix. Therefore, the key
to classification for a PolSAR image based on spectral clustering is to obtain the similarity
matrix W, expressed as follows [25]:

Wij = exp
(
−

d(si, sj)

2σ2

)
(25)

where si, sj are sample of data; d(si, sj) is the distance between superpixel, and usually is
the Euclidean distance; and σ is a scale parameter. We construct a normalization Laplacian
matrix Lrw by similarity matrix W as [32]:

Lrw = D−1L = I − D−1W (26)

where L = D −W, and D is the degree matrix, which consists of the corner elements of W.
Based on the symmetric Wishart distance measure as Equation (23), the similarity

matrix of spectral clustering can be defined as shown:

WT
ij = exp

(
−

dw(TPi, TPj)

2σ2

)
(27)

where Tpi and Tpj are the coherency matrix of superpixels (pi, pj), and dw is the symmetric
Wishart distance.

The similarity matrix of spectral clustering based on central features can be defined as
shown:

WF
ij = exp

(
−

d(FPi, FPj)

2σ2

)
(28)

where Fpi and Fpj are the central features vector (X = [ms, md, mv]) of superpixels (pi, pj),
and d is the cosine distance.

The similarity matrix Z for LSC is defined as follows:

Zi j =

{
1 i = j
WT

ij ∗WF
ij i 6= j

(29)

The procedure of the LSC in this paper can then be described as follows:

1. Segment the PolSAR image into superpixels with ASLIC.



Remote Sens. 2021, 13, 355 11 of 22

2. Calculate the mean values of (ms, md, mv) in each superpixel region to form represen-
tative points.

3. Calculate similarity matrix Z between representative points and Laplacian matrix Lrw.
4. Calculate eigenvectors corresponding to the first K largest eigenvalues of matrix Lrw

as a matrix Q = [q1, q2, . . . qk].
5. Normalize matrix Q with Equation (24).
6. Cluster the row vectors of normalization matrix V with k-means.

The similarity matrix between representative points is calculated with LSC, which con-
structs a bipartite graph to decrease the memory and increase the speed of PolSAR image
processing. For natural sandy land of complex characteristics, such as a large area, irregular
objects [38,39], various features and intricate structures, LSC can be performed efficiently
and flexibility. Moreover, the spatial information is effectively loaded with the help of
superpixel segmentation algorithm, which further improves the final classification effect.

4. Experimental Results

As described in Section 2, there are various and complex types of features in the
sandy land. Therefore, the area in the red color box is taken as the study area. The area is
1000 × 3000 pixels, mainly including residents (RT), roads (RD), semi-vegetation sand (SS),
sandy land (DL), saline land (SL), vegetation (V), and lakes (L). The Pauli RGB image after
Lee filtering is shown in Figure 5a. Test samples without overlap (i.e., from different fields)
are randomly selected, as shown in Figure 5b, to evaluate the classification methods. The
detailed information is shown in Table 2.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 23 
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Table 2. Collected field data and number of pixels under test.

Land Cover Number of Pixels Number of Fields

Residents(RT) 23,088 1
Roads(RD) 44,291 2

Semi-vegetation Sand(SS) 84,291 7
Sandy Land(DL) 127,600 5
Saline Land(SL) 43,600 3
Vegetation(V) 28,925 6

Lakes(L) 137,320 4
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4.1. Decomposition Results

Three decomposition approaches are adopted to study area decomposition, and
investigated to determine which is more suitable. The first strategy is to adopt original
hybrid Freeman/eigenvalue decomposition (HFED) [7]. The second is to utilize HFED
with extended volume scattering (HFEDE), which is surely more reasonable than the first
strategy. The extend volume scattering are applied to the ensemble average of dipole
scatters or dihedral (horizontal or vertical) corner reflectors. The third approach is to use
the ND, as described in Section 3. In 3.2.1 of Section 3, the cross-polarization scattering
components of the PolSAR data are removed by OAC and PAR, which solves the problem
that the arrangement direction of the building is not parallel to the radar azimuth direction.
In 3.2.2 of Section 3, volume scattering mainly comes from the dihedral structure of the
artificial target for more accurate modeling in artificial areas, while it comes from a cloud
of randomly oriented dipole scatter such as vegetation in natural areas. The decomposition
results obtained under the above three approaches are shown in Figure 6. At a glance, it
is difficult to see the differences of the three images. Therefore, the three decomposition
approaches corresponding to the percentage of the power values of the three polarization
scattering powers (ms, md, mv) are shown in Figure 7, from which it can be seen that
the volume scattering power ratio decreases from 52% with HFED to 41% using ND as
proposed in this paper. At the same time, the ratio of surface scattering increases to 45%,
which accords with the actual scattering characteristics of the region, and double-bounce
scattering increases from 14% with HFED to 16% with HFEDE. Finally, the results of the
decomposition approach more accurately reflect the scattering characteristics of real objects.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 23 

 

42
°4

2'
0 

N
42

°3
4'

0 
N

42
°3

6'
0 

N
42

°3
8'

0 
N

42
°4

0'
0 

N

42
°4

2'
0 

N
42

°3
4'

0 
N

42
°3

6'
0 

N
42

°3
8'

0 
N

42
°4

0'
0 

N

115°54'0 E 115°56'0 E

115°54'0 E 115°56'0 E    

42
°4

2'
0 

N
42

°3
4'

0 
N

42
°3

6'
0 

N
42

°3
8'

0 
N

42
°4

0'
0 

N

42
°4

2'
0 

N
42

°3
4'

0 
N

42
°3

6'
0 

N
42

°3
8'

0 
N

42
°4

0'
0 

N

115°54'0 E 115°56'0 E

115°54'0 E 115°56'0 E     

42
°4

2'
0 

N
42

°3
4'

0 
N

42
°3

6'
0 

N
42

°3
8'

0 
N

42
°4

0'
0 

N

42
°4

2'
0 

N
42

°3
4'

0 
N

42
°3

6'
0 

N
42

°3
8'

0 
N

42
°4

0'
0 

N

115°54'0 E 115°56'0 E

115°54'0 E 115°56'0 E  

                                              (a)                         (b)                       (c) 

Figure 6. Results obtained under three decomposition approaches. (a) hybrid Freeman/eigenvalue 

decomposition (HFED); (b) HFED with extended volume scattering (HFEDE); (c) new decomposi-

tion (ND). 

 

            (a)                       (b)                         (c) 

Figure 7. Scattering powers percentage under three decomposition approaches. (a) HFED; (b) 

HFEDE; (c) ND. 

For further analysis, three zones are selected and marked by red rectangles in Figure 

5a and labeled Zone 1, Zone 2, and Zone 3. Each zone is 100 × 240 pixels, and the types of 

ground truth for these zones are lake areas, residents, and trees, respectively. It is well 

known that the dominant scattering powers of these three zones are surface, dou-

ble-bounce, and volume, respectively, as shown in Table 3. In Zone 1, it can be seen that 

mean_ms as given by ND is 0.988, which is about 13.6% higher than for the other two ap-

proaches. In residential areas, because buildings and the ground constitute a large 

number of dihedral structures, double bounce scattering is dominant. In Zone 2, ND 

again performs best. Specifically, mean_md from the proposed method is 0.604, which 

exceeds the mean values of HFED and HFEDE by 16.6% and 10.4%, respectively. How-

ever, in Zone 3, mean _ mv with HFED is the largest. In the ND, the cross-polarization 

power contributes to all of the three scattering models, which leads to the surface scat-

tering power and double-bounce scattering power being higher than those generated by 

the current hybrid Freeman/eigenvalue decomposition techniques. On the whole, ND 

obtains better decomposition performance than the other methods. 

Figure 6. Results obtained under three decomposition approaches. (a) hybrid Freeman/eigenvalue
decomposition (HFED); (b) HFED with extended volume scattering (HFEDE); (c) new decomposi-
tion (ND).
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Figure 7. Scattering powers percentage under three decomposition approaches. (a) HFED; (b) HFEDE;
(c) ND.

For further analysis, three zones are selected and marked by red rectangles in Figure 5a
and labeled Zone 1, Zone 2, and Zone 3. Each zone is 100 × 240 pixels, and the types
of ground truth for these zones are lake areas, residents, and trees, respectively. It is
well known that the dominant scattering powers of these three zones are surface, double-
bounce, and volume, respectively, as shown in Table 3. In Zone 1, it can be seen that
mean_ms as given by ND is 0.988, which is about 13.6% higher than for the other two
approaches. In residential areas, because buildings and the ground constitute a large
number of dihedral structures, double bounce scattering is dominant. In Zone 2, ND again
performs best. Specifically, mean_md from the proposed method is 0.604, which exceeds
the mean values of HFED and HFEDE by 16.6% and 10.4%, respectively. However, in
Zone 3, mean _ mv with HFED is the largest. In the ND, the cross-polarization power
contributes to all of the three scattering models, which leads to the surface scattering power
and double-bounce scattering power being higher than those generated by the current
hybrid Freeman/eigenvalue decomposition techniques. On the whole, ND obtains better
decomposition performance than the other methods.

Table 3. Mean Values of Dominated Scattering Powers in Selected Zones.

Mean_ms
(Zone 1)

Mean_md
(Zone 2)

Mean_mv
(Zone 3)

HFED 0.867 0.518 0.828
HFEDV 0.869 0.547 0.790

ND 0.988 0.604 0.710

4.2. Superpixels Generation Results

Two adjustable parameters related to the ASLIC algorithm are introduced in 3.3 of
Section 3. The parameter β is used to balance the distance between the pixel value and
the distance in the image plane space, and it usually has a fixed value of 1. Ns is used
to control the superpixel size of a block. This determines the similarity matrix Z, which
affects the accuracy of the final classification result. At the same time, to produce better
superpixel segmentation results, we test the segmentation effect when Ns is 10, 30, and 50.
The superpixel generation maps are shown in Figure 8. From the magnified view of the
region in the box, we can see that ALSIC shows better boundary-preserving ability than
SLIC for superpixel generation of PolSAR images, especially for some narrow or smaller
targets. Specifically, the structures of target can obviously be observed after superpixels
segmentation works with Ns = 30, including good detail in the island and building areas.
Compared with Figure 8b,e shows better segmentation quality, as the sizes of superpixels
are similar, the borders of superpixels are smoother, and the edges of the island and building
areas are preserved well. So, ASLIC outperforms SLIC for superpixel segmentation results
under the same parameter Ns.

To illustrate the superiority of ASLIC in superpixel generation of PolSAR image,
we compare the performances of the ASLIC with generalized mean shift (MS) [30] and
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Ncut [30], and evaluate the performances of the superpixels by boundary recall (BR) [27]
and achievable segmentation accuracy (ASA) [27]. BR represents the degree of maintains
between superpixels and real boundaries. ASA indicates the degree of coincidence between
superpixels and real targets. Figure 9 shows the ASA scores and the BR scores. As the
number of superpixels increases, the performance of each algorithm is basically improved
until it is relatively stable. Due to the complex terrain type, the gap between the ASA score
and the BR score of these three methods are large to each other. However, ASLIC has the
highest ASA score and BR score. It improves the BR score at 4000 superpixels to 95.0%,
which is 17.6% and 18.7% higher than GMS and Ncut, respectively. At same time, the
ASA score of ASLIC is the highest. Hence, we can conclude that the superpixel by ASLIC
algorithm is suitable for the study area of Hunshandake Sandy Land.

Figure 8. Cont.
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Figure 8. Visual superpixels generation maps and partial enlarged details for two algorithms. (a) SLIC
with Ns = 10, (b) ASLIC with Ns = 10, (c) SLIC with Ns = 30, (d) ASLIC with Ns = 30, (e) SLIC with
Ns = 50, and (f) ASLIC with Ns = 50.
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4.3. Classification Results

In this section, the classification results corresponding to three methods are shown in
Figure 10, which includes the results of unsupervised classification based on HFED and
spectral clustering with superpixels of [33] (HED-SC), unsupervised classification based
on the use of Neumann decomposition and Random Forest Classifier (ND-RF), and the
proposed classification method (ND-LSC). We adopt the overall accuracy (OA) and Kappa
coefficient to evaluate the performance of different methods. Accuracy is calculated by
Equation (30):

OA = TN
NG , Kappa = OA−Pe

1−Pe
(30)

where TN is the number of correct classifications for all the training samples and NG is the
total number of pixels in ground truth, Pe represents the proportion of misinterpretation
caused by accidental factors in the interpretation of remote sensing images. For each class,
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user’s accuracies (UA) and producer’s accuracies (PA) explained in Equation (31) are also
calculated [27].

PA = TP
TP+FP , UA = TP

TP+FN (31)

where TP is the true positive or the number of correctly detected class points, FP is the false
positive or the number of incorrectly detected class points, and FN is the false negative.

Figure 10. Classification results of three methods in the study area. (a) HFED and spectral clustering
with superpixels (HED-SC), (b) ND-RF, and (c) proposed method (ND-LSC).

The classification accuracies of these three classification methods are listed in Table 4.
It can be observed that the proposed method outperforms the others. On the one hand,
the OA of the proposed method is 95.22%, while the values of the other two methods are
89.68% and 90.02%, respectively. ND-LSC has the best kappa coefficient (0.9404). On the
other hand, for six out of seven classes, the proposed method performs better than ND-RF.
For vegetation, the classification precision improves up to from 79.89% for HED-SC to
97.87% for the proposed method. In addition, for each class, the proposed method obtains
better UA. In summary, our approach performs better on complex terrain classification.

Table 4. Confusion Matrix of the ND-LSC Method.

Class HED-SC ND-RF ND-LSC

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

RT 81.17 95.19 85.42 73.64 90.22 96.94
RD 89.05 64.51 91.35 68.69 98.75 95.45
SS 91.31 84.28 93.45 85.36 94.62 87.28
DL 87.82 89.64 86.19 90.39 93.21 87.13
SL 81.69 94.37 84.67 94.75 91.02 87.07
V 75.20 90.54 79.89 94.47 97.87 69.65
L 96.35 99.67 96.86 99.68 98.07 74.59

OA (%) 89.68 90.02 95.22

Kappa 0.8717 0.9205 0.9404

The findings in [11] also show that the parameters from the various polarimetric
decompositions benefit the overall accuracy of classification methods. Polarimetric de-
compositions represent the scattering mechanisms of natural environments by scattering
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models. For the dominant scattering mechanism from different decomposition, the LSC
scheme is able to better pick out small differences in the signal that characterizes the differ-
ent classes. The violin plots introduced in Figure 11 illustrate three scattering mechanisms
based on HFED, and ND decomposition shows differentiation between classes. Where
Figure 11a,b show the distribution of the double-bounce scattering power coefficient md
found within each class, Figure 11c,d show the distribution of the surface scattering power
coefficient ms found within each class Figure 11e,f show the distribution of the volume
scattering power coefficient mv found within each class. It can be seen that the md values
from the HFED shows little differentiation between classes compared from the ND, which
is generally associated with the double-bounce mechanism. However, the classes with the
lowest UA and PA are the SL, which have significant overlap in double-bounce scattering,
as seen in Figure 11a,b. In addition, for distribution of power coefficients mv and ms, com-
pared with ND decomposition, the scattering mechanism based on HFED shows that the
differences between classes are relatively small. In summary, the polarization parameters
from ND benefit to the better performance of LSC classification in the sandy land.

To further illustrate the effectiveness of the proposed approach, six classification
strategies are implemented to discuss the impact of accuracy indices (%) with different
superpixels sizes. The parameter Ns ranges from 10 to 50, with an interval of 10. Figure 12
displays the experiment results. It can be seen that almost every classification strategy
has the highest accuracy when Ns = 30. The classification accuracy of ND-SLIC-LSC
exceeds those of HFED-SLIC-LSC and HFEDE-SLIC-LSC, because ND more accurately
obtains the polarization scattering power (ms, md, mv). HFED-ASLIC-LSC has better
classification accuracy than HFED-SLIC-LSC; because ASLIC generates superpixels, it has
a stronger adaptation ability, and selection of spatial features is acquired to greatly improve
classification accuracy. Thus, the proposed ND-ASLIC-LSC has the best accuracy—more
than 94%.

Based on above discussions, several conclusions can be draw from experimental
results. On the one hand, the proposed method (ND_LSC) obtains the best performance
seen as OA (95.41%) and Kappa coefficient (0.943) in two categories of experiments, ie,
it can better obtain a higher OA and Kappa coefficient by taking full advantage of the
polarimetric features and spatial information. On the other hand, the performance using
ND strategy is better than other decomposition strategies resulting from scattering powers
(ms, md and mv) can be extracted more efficiently through the ND strategy. Secondly, the
application of LSC is more in line with characteristics of its large area. The feature vector X
combined with spatial coordinate information constitutes the input vector of ASLIC, which
is used to generate superpixels.

Figure 11. Cont.
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Figure 11. The violin plots of the power coefficient (ms, md and mv) based on ND and HFED extracted
from the training areas of each class. (a) HFED_ md, (b) ND_ md, (c) HFED_ ms, (d) ND_ ms, (e) HFED_
mv, (f) ND_ mv.

Figure 12. Classification accuracies with different number of superpixels with different strategies.

To fully understand the consistency of classification results with real features, a field
survey was conducted with Sangendalai town as the center. Several major types of land
cover are selected for further analysis. Real photographs of land cover are shown in
Figure 13, including vegetable I, vegetable II, semi-vegetation sand, lake I, lake II, saline
land I, saline land II, sandy land I, sandy land II, road I, road II, and residents. The
ground truth is used as a reference for the analysis of classification results. The geographic
locations corresponding to the latitude and longitude of different land covers are recorded
and displayed in Table 5. We compare the actual land cover with the result of the proposed
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classification method. It can be seen that Figure 13a,b show both types of vegetation,
which correspond to two test samples in the green area. The green dense area represents
vegetation II, and the sparse area represents vegetation I in Figure 10c. Most of the saline-
alkali land is distributed around the lake by observing Figure 13d–g. Correspondingly, the
yellow area surrounds the purple in Figure 10c. There are two typical roads in Figure 13j,k,
one surrounded by buildings and the other by vegetation. It can be seen from Figure 10c
that some light blue thin lines cross areas and surround light green areas. Some light-blue
blocks are seen by the lake. This phenomenon will be discussed below.

Figure 13. Ground truth photographs. (a) vegetable I, (b) vegetable II, (c) semi-vegetation sand, (d) lake I, (e) lake II, (f)
saline land I, (g) saline land II, (h) sandy land I, (i) sandy land II, (j) road I, (k) road II, and (l) resident.

Table 5. Latitude, longitude, and sampling time of different features.

Location Longitude and Latitude Land Cover

1 115◦56′52′′ E 42◦42′23′′ N Vegetable I
2 115◦56′17′′ E 42◦42′12′′ N Vegetable II
3 115◦55′25′′ E 42◦42′1′′ N Semi-vegetation Sand
4 115◦54′21′′ E 42◦35′57′′ N Lake I
5 115◦55′46′′ E 42◦35′9′′ N Lake II
6 115◦54′21′′ E 42◦35′57′′ N Saline Land I
7 115◦54′39′′ E 42◦35′47′′ N Saline Land II
8 115◦59′9′′ E 42◦43′2′′ N Sandy Land I
9 115◦57′58′′ E 42◦41′39′′ N Sandy Land II

10 115◦56′2′′ E 42◦41′58′′ N Road I
11 115◦56′22′′ E 42◦39′41′′ N Road II
12 115◦56′2′′ E 42◦41′58′′ N Residents

5. Discussion

We have proposed an unsupervised classification method (ND-LSC), which combines
the advantages of the ND strategy, the ASLIC algorithm, and the LSC algorithm. The
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experimental results in Hunshandake Sandy land manifested that the proposed method
accomplishes the best performances with regard to OA and Kappa. This is mainly attributed
to two aspects. On the one hand, an ND strategy method is adopted to extract polarimetric
scattering powers (ms, md and mv), which contribute to superpixels being more reasonably
generated by the ASLIC algorithm. On the other hand, the unsupervised classification-
based LSC algorithm calculates the similarity matrix between representative points of
superpixels generated by the ASLIC algorithm, which constructs a bipartite graph to solve
the problem of insufficient memory and slow speed for PolSAR image processing. The
following points in the experimental results are worth discussing.

• ND strategy can more effectively obtain polarization parameters than other decom-
position strateges. There are two main reasons for this phenomenon. One is that the
traditional decomposition strategy has a better performance for PolSAR imagery in
other fields, but the characteristics of Hunshandake Sandy land are not very ideal.
Another reason is that OAC and PAR are not performed and volume scattering models
cannot adapt to the environment in natural and artificial areas during decomposi-
tion, which affects the decomposition result. After OAC and PAR strategy, which
enhances the T11 and T22 elements of coherence matrix T3 power. Among them el-
ement T11 is relevant to surface scattering mechanism; element T22 is relevant to
double-scattering mechanism. In other words, classes dominated by surface scattering
and double-scattering mechanism can be classify accurately. Therefore, the polariza-
tion parameters extracted by ND strategy can be utilized to generate superpixels in
Hunshandake Sandy land.

• There are the details that cannot be ignored of the classification result in Figure 10b, the
obvious thing that can be observed is the road area around the lake. This phenomenon
is not commission errors, classifying areas that are not roads as roads. This could be put
down to the fact that both classes are predominantly surface scattering (water surface
and roads surface) with relatively low surface roughness. The ground is very smooth
after some small lakes degraded, which makes very similar to scattering mechanism of
road. This would indicate that this specific environment has a polarimetric signature
that could be associated with many classes.

However, there still are some disadvantages in the proposed method: (1) the algorithm
structure is relatively complex and time-consuming when compared with conventional
unsupervised classification methods. (2) This method has relative limitations and currently
has a good classification result in the Hunshandake sandy land.

6. Conclusions

We have proposed an unsupervised classification method for Hunshandake Sandy
Land. It integrates three key steps: the new decomposition (ND), superpixels segmenta-
tion, and the LSC algorithm. We have analyzed the capabilities of these steps to improve
classification performance. Specifically, three classification methods and six classification
strategies are discussed and applied to evaluate their effectiveness and feasibility. The
analysis shows that the proposed method has superior classification performance on OA
(95.41%) and kappa coefficient (0.943). Three years of data from Hunshandake Sandy Land
are utilized to verify the superiority of the method. We conclude the following: (1) the
ND strategy can better extract polarization scattering power compared with traditional
decomposition, especially to distinguish sandy land types and (2) the ASLIC algorithm
can further organize these ND-based polarization features combined with spatial coordi-
nate information to generate superpixels, which can improve classification performance.
Nevertheless, further investigation is still necessary for Hunshandake Sandy Land.
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