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Abstract: Cropland evapotranspiration (ET) is the major source of water consumption in agricultural
systems. The precise management of agricultural ET helps optimize water resource usage in arid
and semiarid regions and requires field-scale ET data support. Due to the combined limitations of
satellite sensors and ET mechanisms, the current high-resolution ET models need further refinement
to meet the demands of field-scale ET management. In this research, we proposed a new field-scale
ET estimation method by developing an allocation factor to quantify field-level ET variations and
allocate coarse ET to the field scale. By regarding the agricultural field as the object of the ET parcel,
the allocation factor is calculated with combined high-resolution remote sensing indexes indicating
the field-level ET variations under different crop growth and land-surface water conditions. The
allocation ET results are validated at two ground observation stations and show improved accuracy
compared with that of the original coarse data. This allocated ET model provides reasonable spatial
results of field-level ET and is adequate for precise agricultural ET management. This allocation
method provides new insight into calculating field-level ET from coarse ET datasets and meets
the demands of wide application for controlling regional water consumption, supporting the ET
management theory in addressing the impacts of water scarcity on social and economic developments.

Keywords: agricultural water management; crop water consumption; remote sensing model; evapo-
transpiration allocation

1. Introduction

Land evapotranspiration (ET) is a major component of terrestrial water cycling and
groundwater consumption [1]. For basin-scale water balance, the major component of basin
water output is ET, followed by surface runoff and infiltration. It is estimated that nearly
70% of the total land precipitation and inflow is returned to the air by terrestrial ET. From
an agricultural water management perspective, ET is an important indicator of cropland
water consumption and water resource investment [2]. In arid and semiarid regions, social
and economic development is limited by the amount of available fresh water [3], and water
quotas for agricultural irrigation systems need judicious management, where the balance
between irrigation water supply and necessary crop water demand is optimally controlled
to maintain normal production [4]. The accurate and timely acquisition of crop ET is
critical for reflecting the status of cropland water and determining irrigation strategies [5].
Moreover, views on water management have shifted from the conventional focus on
increasing water income and cutting expenditures to the current focus on controlling water
consumption. The applications of ET-based water management and a water consumption-
oriented water rights allocation system have been demonstrated to be effective in the
Turpan Basin, China, which has raised the demand for high-accuracy and low-cost farm-
level ET monitoring methods [6,7].
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With its broad spatial coverage and high temporal resolution, remote sensing (RS)
technology provides a feasible approach to frequently monitor regional ET at low costs
and with high efficiency [8]. Accurate surface vegetation cover, albedo, and temperature
data provide a solid foundation for the simulation of ET-related physical and physiological
processes [9]. Many RS-based ET models have been developed and applied at global and
regional scales depending on multiple theories, including the ETWatch model based on the
parametrized surface energy balance theory [10], the MOD16 series product based on the
global MODIS satellite data and meteorological data [11], the GLEAM product based on
the water balance theory [12], and the PML ET product focused on the plant water carbon
stomata mechanism [13]. These RS-based ET products provide regional and global ET
results at daily or eight-day intervals with moderate spatial resolutions, usually at 500-m to
one-km scales. Such ET data have been adopted for studying regional ecological impacts
on water resources [14-16], modeling land-surface processes [17], analyzing water cycling,
and evaluating regional available water resources [16]. However, the spatial scales of
these moderate-resolution ET products are too coarse for agricultural water management,
especially within small irrigation districts that usually occupy tens to hundreds of square
meters, and detailed spatial information is omitted from km-level ET data. Ground-level
field ET measurement methods, such as lysimeters, sap flows, and eddy covariances
(ECs), are high in cost and require careful management [18]. The combination of precise
agricultural ET management and RS technology has developed a strong demand for ET
models that show detailed cropland water consumption at the field scale.

Due to the limitations of satellite sensors, high-resolution spatial data usually have
long temporal intervals, such as the Landsat series at 30-m resolution and 16-day intervals
and the Sentinel-2 data at 10-60-m resolutions and five-day intervals. For agricultural
ET monitoring and water consumption applications, the daily scale is ideal for timely
evaluations and adjustments of agricultural activities [8]. Considering the impacts of clouds
on optical RS data, the temporal gap could be 10 days or even longer. Such long temporal
intervals are not satisfactory in many RS-based ET models, and daily ET variations could
accumulate and lead to large errors in the monthly and crop ET estimates during growing
seasons. The current km-level RS-based ET models are widely applied and highly accurate,
and these models help address the limitations of field ET estimation and provide insights
into agricultural water applications. Restrained by the inability of high-resolution satellite
sensors to meet temporal requirements, the calculation of fine-resolution ET inevitably
relies on data downscaling methods that combine high- and low-resolution RS datasets.
The downscaling methods mainly focus on the pixel level of satellite images [19].

Most ET downscaling is conducted by downscaling the major parameters in the ET
calculation procedure and is combined with other available fine-resolution input data to
directly calculate high-resolution ET results. The DisALEXI model is an example of using
high-resolution surface temperature to produce a downscaled surface ET [20]. DisALEXI
has developed a framework of ET downscaling algorithm, which is to build up a link-
age of key parameters between coarse and high-resolution RS data, such as land surface
temperature (LST) and normalized difference vegetation index (NDVI) or other vege-
tation indexes [20-23]. The downscaling of LST has benefited from multiple research
developments on the downscaling of Landsat thermal bands combined with MODIS LST
data [24-26], such as the thermal sharpening (TSP), land surface temperature disaggrega-
tion (DLST), and temperature unmixing (TUM) methods [27,28]. LST downscaling methods
are abundantly developed using multiple spatial, temporal, and spectral resolution RS
data. However, the scale effects on the LST data and the unstable relationship of intermedi-
ate parameters with LST have limited the improvement of the input data accuracy and,
thus, limited the LST-based downscaling model [29]. Since crop transpiration processes
are accompanied by variability in crop photosynthetic processes [13] and can be moni-
tored with high-resolution optical satellite data, crop transpiration can be estimated with
stomatal behavior and biophysical conditions combined with meteorological data. The
surface resistance (rs) is an important factor in calculating daily ET and can be downscaled
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using one-km rs combined with 30-m satellite data and then input into the ET calculations.
The downscaling of rs provides fine-resolution information for the ET calculations and is
regarded as the basic approach to the spatial monitoring of ET for field-scale management.
Studies have shown that the rs-based ET downscaling approach requires the underlying
surfaces to be covered with some amount of plants, since its feasibility depends on the
biophysical activities of plants” transpiration through the stomata. For sparsely vegetated
regions, the accuracy of the rs-based ET downscaling approach is limited [21]. Those
algorithms focus on the relationship of each coarse resolution (m?) pixel and fine resolution
(m?!) pixels within it; the relationships of adjacent fine resolutions from different coarse
pixels are hardly considered, which could bring in some “edges”, as shown in Tan, Wu and
Yan’s [21] downscaling results.

Distinguished from pixel-level ET downscaling, the agricultural fields can be regarded
as objects that have homogeneous ET properties within each field and heterogeneous
properties between the fields. Studies on the ET mechanism and impact analysis of factors
on ET have revealed that ET is highly correlated with vegetation cover, soil moisture,
air temperature, and vapor pressure deficiency [14,15]. ET can vary among fields due
to differences in the soil moisture from irrigation, the transpiration abilities of different
crop breeds, fertilization, and growth conditions; thus, it is possible to use the differences
in soil water conditions and crop conditions as indicators of the ET differences between
fields. At different scales, ET impact factors can vary, and some of these factors can be
acquired from high-resolution RS data; this suggests possible approaches in which the field
ET within coarse ET pixels could be allocated by means of building relationships between
impact factors and ET at the field scale. Combining high-resolution RS data and moderate-
resolution actual ET products, field-scale actual ET can be calculated and applied for crop
water monitoring. We chose the ETWatch model as the moderate-resolution ET data, as
ETWatch is reliable for daily and monthly ET estimations across different climate types
and surface characteristics, especially in cropland regions. Its accuracy has been proven by
more than 50 research groups for water consumption structure and agricultural irrigation
management, including our research region, Haihe Basin and Heihe Basin [7,8,14,16,30].
For ET calculations at high resolution, ETWatch has also been used as input data in several
researches, including some downscaling methods [19,21].

To explore the appropriate methods of field ET monitoring and irrigation evaluation,
we discuss whether the field ET allocation method combining moderate-resolution ET
data and high-resolution satellite data is applicable. The model results are compared with
ground ET observations from two typical cropland stations in the North China Plain and
Northeast China, both of which are located in arid to semiarid regions. In this research,
a total of two years of Sentinel-2 optical data and coarse ET products from the ETWatch
model are combined with observations from two ground stations: Guantao from the Haihe
Basin, North China Plain and Daman from the Heihe Basin, Northwest China. In Section 2,
the data, proposed model, and other research methods are described in detail. Section 3
presents the model results and evaluation. Section 4 discusses the performance of the
model and its potential application in field-scale agricultural water management.

2. Materials and Methods
2.1. Method

Figure 1 shows the flowchart of the allocation method from 1 km ET data to agricul-
tural field scale. The crop growth conditions and field moistures are associated with the
crop transpiration capacity based on the stomatal behavior and soil water status, and both
influence the field ET. In our research, we neglected the possible transport of the horizontal
water vapor of adjacent fields; currently, horizonal vapor is analyzed on a large scale, such
as the global and continent levels [31]. Most of the current ET RS models have not taken
into account that the vapor amount moves horizontally, possibly due to the difficulty in
monitoring and estimating horizonal vapors at the regional level. Thus, we assumed that
the 1-km ET input data are accurate enough for allocation. One of our research regions,



Remote Sens. 2021, 13, 343

40f18

Daman, is located in the Zhangye Oasis, Heihe Basin. The oasis effect of the meteorological
parameter differences between an oasis and desert may affect the accuracy of allocation
results in heterogeneous regions [32]. To avoid the potential impact of the oasis effect, we
limited our research region to a cropland area close to the center of the oasis.
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Figure 1. Flowchart of the evapotranspiration (ET) allocation method. The upper figure is the
calculation algorithm, and the below figure is the three steps of field ET allocation from 1-km pixel ET
to 10-m pixel ET. NDVI: normalized difference vegetation index and LSWI: land surface water index.

Based on the two classes of virtually unchanged and field-variant parameters that
influence the ET, the ET capacity of each field can be evaluated. Thus, we can assume that,
between adjacent fields within a coarse ET pixel, some allocation factors derived from the
field-variant parameters can be regarded as equivalent to the ET capacity of each field. The
relation above can be summarized using the following equation:

ETferd, © ETfield, © - - EThield; = AFfiea, : AFfietd, : + -+ AFfiela, 1)

where ETg g, represents the ET of the ith field (i = 1, 2, --- n) within each coarse ET pixel,
and AFy;, 4, represents the allocation factor of the field i (i=1, 2, --- n) within each coarse
ET pixel. Additionally, the relationship between the ET of field i and the coarse ET pixel
can be expressed as follows:

L L @)

where AFcoarse represents the mean allocation factor of the coarse pixel. With Equation (2),
each field ET within the coarse ET pixel can be calculated based on the allocation factor,
which can also be regarded as the allocation of the coarse pixel-level ET (approximately
1-km level) to the farm-level (10 m level) ET. In the actual practice of field ET allocation,
the allocation factor should be calculated from high-resolution RS data that can show the
inner coarse-pixel farm-level spatial heterogeneity. The following section will introduce
how the allocation factor is derived.

Conventional ET direct calculation methods focus on the estimation of the latent heat
flux, including the Penman-Monteith (PM) equation [33] and the Priestley-Taylor equation
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(PT equation) [34-36]. Recently, several studies have revealed that the PT equation is
suitable for conditions with sufficient soil moisture, such as irrigated cropland. The PT
equation is independent from surface and aerodynamic resistances and is calculated with
meteorological data and the coefficient «. The PT equation has been developed primarily for
potential ET estimation; for actual ET applications, the « coefficient should be adjusted with
several constraint functions, such as surface wetness (w), temperature (t), and crop fraction
of absorbed photosynthesis active radiation (fapar) [36]. Here, we used the vegetation
cover fraction (FVC) to represent the fapar limit, as many studies have done [11,13]. We
used the RS-based land surface water index (LSWI) as the soil water constraint. The LSWT is
the normalization of the near-infrared (NIR) and shortwave-infrared (SWIR) bands [37-39].
The PT equation can be expressed as follows:

LE = f(Iswi, fuc, t)a

i3y Ri=0) ©
where « is the PT coefficient and is initially set to 1.26, A and < are the same as in the PM
equation, f(Iswi) represents the surface wetness, and low surface moisture conditions limit
the ET volume, f(t) represents the temperature constraint, and the optimal temperature
of the crops is the optimal temperature for transpiration, f(foc) represents the radiation
constraint, and a low FVC limits the net radiation for the ET process.

As we focused on the cropland, crop transpiration is the major component of ET.
We proposed an assumption that, at the field scale within coarse pixels (1-km level), the
daily environmental conditions (air temperature, relative humidity, wind speed, and
net radiation) are virtually unchanged, and the spatial differences in the meteorological
factors are compared with two automatic weather source (AWS) matrices. Based on this
assumption, some parts of the PT equation can be neglected at the field scale: A and y
are calculated from the relative humidity and air temperature, R, is mostly concerned
with the solar shortwave radiation calculated from the sunshine duration and surface
longwave radiation derived from the surface emissivity and air temperature, and these
climatic parts can be neglected, since cropland fields are homogeneous in vegetation type
and the emissivity differences are small between fields. We neglected the Ry, part of the
field allocation factor, and G can be regarded as a constant part of R, [40], so G is also
neglected. By these terms, we deduced the calculation of the field allocation factors using
ET constraint functions.

We proposed our field allocation factor calculation equation is as follows:

. FVCyax — FVC . LSWyax — LSWI
AFfierg. =1 — 1 . 1), 4
fields max (mln<FVCmax - Fvcmin ’ )l 0) max (mln(LSWImax - LSWImin ’ ) 0) ( )

. (NDVI-0.1
FVC = FVCjax X max <m1n<(19_m,1>,0> 5)
band,,;, — bandy,;
L WI — nir swir
5 band,;, + bandg,;, ©)

where LSWlax indicates the high moisture condition, LSWI i, indicates the dry condition,
and the FVCpax is set as 0.95. This method assumes that the pixel has no vegetation cover
with a NDVI < 0.1 and is fully covered with a NDVI > 0.9. band,,;, is the near-infrared band
reflectance, and band,,;, is the shortwave-infrared band (SWIR) reflectance. We used the
Sentienl-2 satellite SWIR band 11 (1613.7 nm) to calculate the LSWI, which is sensitive
to the surface water status; the Sentinel 2 band 11-based LSWI has recently been widely
applied with good performances for reflecting the surface moisture condition in agricultural
applications [41], such as crop intensity mapping [42], plantation dynamics [43], leaf area
index, and aboveground biomass estimation [44].

The field ET allocation from coarse ET pixels involves the allocation of a single pixel
between fields and the adjustment of fields that span pixels. Figure 2 shows the flowchart
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of the field ET allocation process. Based on Equation (2), the allocation is conducted with
the following procedures:

Step 1 is the allocation of fields at each coarse ET pixel. Field ET within the same
coarse ET pixel is allocated using the allocation factor:

.= @)
! AF 1km

where ET1yy, is the coarse ET pixel value at the 1-km level, and AFy;,4, is the allocation
factor of field i. AFjy,, is the mean allocation factor of the area that corresponds to the 1-km
ET pixel calculated from high-resolution RS data.
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Figure 2. Locations and land cover types of the research regions. The flux station locations are marked
on the maps, with photos of the flux footprints shown below. The flux observation footprints are
calculated using the flux footprint prediction model [45]. EC: eddy covariance and AWS: automatic
weather source.

Step 2 is the adjustment of fields that span pixels. Some large fields may cover different
coarse pixels, and each part of the field is calculated with a different allocated ET value
with different 1-km pixels. The final field ET result is adjusted and unified based on the
area and allocated ET value of every part of the field from different 1-km pixels using the
following equation:

ETeld; pixel. A field: pixel:
ET. _ )y field;,pixel, £ field;pixel;
field;

Afield, ®)
where i indicates the field, and j indicates the covered 1-km pixel of field i. The ET amount
is accumulated from the allocated ET multiplied by the field area in pixel j. Then, the
summation is divided by the total field area to give the final field ET result.

For Step 3, the final ET data of the field can be derived using a transformation of
Equation (6), with the mean allocation factor of the field and the high-resolution allocation
factor, and the final ET data can be acquired:

9
AFfiel )
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2.2. Data
2.2.1. Research Region

The model was developed and tested at two cropland research stations: Guantao
Station (115.1274 E, 36.5150 N) located in the Haihe Basin, North China Plain and Daman
Station (100.3722 E, 38.8555 N) located in the Heihe Basin, Northwest China. The locations
and land cover types of the two stations are shown in Figure 2. Both stations are cultivated
with maize, and the climate types between the two sites are different. Guantao Station is
located in a temperate monsoon climate in the south with a winter wheat and summer
maize crop rotation, and the research region was chosen as the 10 km x 12 km cropland
region. The annual average precipitation of Guantao is 560 mm, and the average tempera-
ture is 13 °C. Daman Station is located in a temperate continental climate that is typical
of semiarid and semi-humid regions in the Heihe River Basin, Northwest China with a
10 km x 10 km cropland region. The annual average precipitation of Daman is 110 mm,
and the annual mean temperature is 7 °C; only April-October, with high temperatures,
is suitable for crop cultivation. The precipitation of both regions is not sufficient for crop
growth and requires additional irrigation.

2.2.2. Remote-Sensing Data

In this research, the coarse ET data were calculated by ETWatch. The input data
were mainly MOD09GA reflectance data, MOD11A1 surface temperature data [46], and
MCD43B1 BRDF data. All MODIS datasets were acquired from the NASA Land Pro-
cesses Distributed Active Archive Center (LP DAAC) (https:/ /lpdaac.usgs.gov/) and then
processed for the research region at a 1-km spatial resolution after geometric correction,
radiance calibration, and atmospheric correction. Considering the impact of clouds on
the surface reflectance, we used the Savitzky-Golay filter method (S-G filter) to extend the
cloud-free days albedo to a daily scale at each pixel. The SG filter method has been widely
used in the temporal extension of the NDVI [47] and albedo [48] in many researches.

For the field-scale ET model, we used Sentinel 2 satellite data from the European
Commission’s Copernicus program [49]. The data were downloaded using the Google
Earth engine and were already processed with atmospheric correction and transformed
into bottom of air (BOA) reflectance data. The bands used were mainly the 10-m resolution
red band (red, 664.6 nm), near-infrared band (NIR, 832.8 nm), and shortwave-infrared band
(SWIR, 1613.7 nm), which are sensitive to vegetation and ground water dynamics. The
three bands were then applied in the NDVI and LSWI calculations.

The cropland distribution map in this research was extracted from the 30-m resolution
ChinaCover dataset developed by the Aerospace Information Research Institute, Chinese
Academy of Sciences [50]. The ChinaCover land use map divided the land cover into six
major classes: forest, grassland, cropland, built-up, waterbody, and bare land.

2.2.3. ETWatch Model Data

In this research, we used the ETWatch model as the coarse ET input. The ETWatch
model was developed by Wu [51]. The ETWatch model is based on the surface energy
balance theory that the energy for evapotranspiration, latent heat flux, is regarded as the
residual of the surface net radiation (R,) which is the input energy from solar radiation,
sensible heat flux (H), which is a major output energy from the energy balance for heating
the air, soil heat flux (Gyp), which takes up a small proportion of the net radiation for heating
the soil. Thus, the calculation of ET is based on the precise estimation of the Ry, H, and Go.
Considering the cloud impact on satellite images to retrieve land surface characteristics,
temporal extension methods are needed to extend the ET results from cloud-free days to a
daily scale. The calculation processes of the ETWatch model involves several steps. First,
on cloud-free days, the instantaneous latent heat and sensible heat from a satellite pass
by moment are calculated with the surface energy balance theory and parametric models;
then, the instantaneous ratio of latent heat (LE) to sensible heat (H) is acquired. Second,
the instantaneous LE result is extended to a daily scale using the evaporation fraction,
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which assumes the ratio of LE to H remains little changed during the day, and the daily net
radiation is calculated using meteorological data and the sunshine duration data. Based on
the daily LE results, the rs on cloud-free days can be retrieved with an inverse form of the
Penman-Monteith (PM) equation. Third, the daily rs is extended from the cloud-free day rs
results by a time scale extension model developed from the Jarvis model [52]. Finally, the
daily ET is calculated based on the PM equation with the daily rs and daily net radiation.
After tens of years of development, ETWatch is robust when applied, and researchers
have developed many parametric models [53], such as the net radiation model, sunshine
duration model from stationary satellite data, sensible heat flux model [54], aerodynamic
roughness length model [55], and the 1 time scale extension model. ETWatch has been
validated for various climates and land cover types, including the semi-humid semiarid
Haihe Basin [10], arid Loess Plateau area [14], Heihe Basin [54], and extremely arid Turpan
Basin, Xinjiang [7]. These applications have proven the quality of the ETWatch model and
shown that it is reliable for this research [8].

2.2.4. Crop Field Segmentation Map

In this research, we used the simple linear iterative clustering (SLIC) method for
cropland field detection [56]. The SLIC method is a common method applied in medical
image processing, RS segmentation, and computer object identification [57]. SLIC is
developed based on an iterative algorithm with the k-means clustering theory. The cluster
that best fits each pixel is chosen from the neighboring cluster cores instead of applying a
cluster calculation with all cores in the image. By this method, SLIC can conduct k-means
clustering at high speeds with low computing resources and can be applied in image
segmentation. In agricultural cropland fields, the image values within the field are quite
similar to each other and are divided by field boundaries, roads, and built-up human
facilities. The different growing conditions from different agricultural activities can be
seen with satellite NDVL. In this research, we used the temporal series NDVI files of maize
growing, peaking, and mature periods to perform cropland segmentation with the SLIC
method. Figure 3 shows the cropland segmentation results. The cropland segmentation is
further used in field-scale ET allocation as the basic cropland field.

(b)

Figure 3. Field extraction from the simple linear iterative clustering (SLIC) method in the research

regions: (a) Guantao field and (b) Daman field.

2.2.5. Site Observation Data

For model validation, ground observational EC data were gathered from two stations.
Daman observations were acquired from the National Tibetan Plateau Data Center (https:
//data.tpdc.ac.cn/en/) under the HIWATER eco-hydrological experiment with multiple
ground observation instruments [58-60]. Guantao observational data were collected from
our experimental site [5,10]. The equipment of each of the two EC stations included a 3D
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Sonic Anemometer and Infrared Gas Analyzer, and the data were processed under standard
approaches [8,61,62]. The EC stations were accompanied by automatic weather observation
instruments (AWSs), and the meteorological observations included air temperature, relative
humidity, wind velocity and direction, air pressure, precipitation, and four-component
radiation. Quality control of meteorological observational data was applied. The footprints
of the EC observations were calculated using the flux footprint prediction model [45]. For
analysis of the spatial heterogeneity of meteorological parameters and solar radiation, four
separate AWSs from the Guantao observation matrix and three separate AWSs from Daman
were chosen for observations of the air temperature, relative humidity, wind speed, and
net radiation. The locations of the AWSs are marked in Figure 2. The Guantao AWSs were
located at distances of 1 to 2 km, and the Daman AWSs were located at distances of 2-5 km,
which matched the coarse km-scale ET pixel and subpixel levels.

To evaluate the spatial heterogeneity at the field level of the major meteorological
parameters that impact the ET, we compared the growing season’s air temperature (T,),
relative humidity (RH), wind speed (WS), and net radiation (R,) using two site AWS
observation matrices. At the Daman site, the AWS was installed at 4 m high and the
radiometer at 4.5 m. At the Guantao site, the installment height of the AWS was 10 m,
and the radiometer was 15 m. The results showed that, during the main crop-growing
period (June-September), at a daily scale on average, the Guantao AWS observation matrix
differences in the T,, RH, WS, and R,, were 0.07-0.26 °C, 0.5-2%, 0.4-1.0 m /s, and 6.6 W/m?2,
respectively, and the Daman AWS observation matrix differences in the T,, RH, WS, and R,
were <0.3 °C, <3%, 0.4-1.0 m/s, and 10 W/m?, respectively. The relatively small differences
in the AWS observation matrix results indicated that the variations in the T,, RH, WS, and
Ry, were small at the subpixel 1-5 km level, which covered the scope of the fields in this
research and demonstrated that our neglect of the meteorological and radiation differences
in the PT equation was acceptable for deriving the ET allocation factors.

2.3. Model Evaluation

The accuracy assessment was based on three statistical indicators: correlation factor
(R), root mean square error (RMSE), and William’s index of differences (d). Detailed
calculation methods of the statistical indicators are shown below:

N v M (e gle :s)
VI (G =12, (- %)

(10)

RMSE =, /% f (Y; — X;)? (11)
i=1
n V. 2
d — 1 _ i=1 (Yl Xl) (12)

i (1% = X] + X% - X])*

where X; is the model result, Y; is the validation data, and X and Y represent the average
values of the model result and validation data, respectively.

3. Results
3.1. Field-Scale ET Allocation Factor

In this research, we developed an allocation factor that indicates the ET capacity
variations of different fields. Combining the coarse ET dataset (1 km), the field-scale ET
can be allocated at a high resolution (10 m). The effectiveness of the allocation factor
in representing the ET differences is essential, and we performed a correlation analysis
between the site ET observations and RS-based allocation factors in Daman and Guantao.
The correlation results are shown in Figure 4. We compared the eight-day average ET
observations and allocation factors. Based on the previous definition, the allocation factor
can be regarded as an indicator of long-term ET trends, and an eight-day average can
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decrease the daily variations for comparison. We found that the allocation factor has a
satisfactory correlation with the EC ET data. At the Daman and Guantao Stations, the
correlation coefficients of the allocation factors and site EC ET observations are greater than
0.77, indicating significant correlations (p < 0.01). As shown in Figure 4, the ET amount can
be reduced during rainy days, during which the RH is saturated and the vapor pressure
deficit (VPD) between the air and leaf surfaces is small, which slows the transpiration speed.
The allocation factor cannot reflect the differences in rainfall events. Considering that the
daily meteorological variations such as VPD and temperature strongly influence the ET
variations and are not considered when composing the allocation factors, the correlation
result is sufficient for field-level allocation. The daily site ET variations are presented with
the allocation factors in Figure 4a,c. Since daily ET is sensitive to daily meteorological
changes, the site ET is more variable than the allocation factor, which is smoothed between
days with the S-G filter method. Both at the daily scale and at eight-day intervals, the
allocation factor corresponds well with the ET variation and can be used for further field
ET modeling.
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Guantao —=— Observed ET y =3.6371x + 1.3052 .
‘ Allocation factor | 4 o 5 | R?=0.6015 . e
64 B rain _ 160 T | =1 ¥
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Figure 4. The correlation between the allocation factors and site ET observations. (a,c) The daily comparisons of the

proposed allocation factor and observed ground ET in Guantao and Daman; the ET observations are derived from the site

EC towers, and rainfall data are derived from the site rain gauge observations. (b,d) The correlations between the allocation

factor and site ET at 8-day intervals. The correlation factor R was greater than 0.77 at both sites and statistically significant

(p <0.01).

3.2. Field ET Allocation Performances Based on the ETWatch Model

The accuracy of the field model ET was evaluated using the site ET observations from
the ground EC instruments. Detailed evaluation indicator values are exhibited in Table 1.
Figure 5 shows the model validation of the allocated field-scale ET results. Compared with
the site ET observations, the allocated ET is very accurate. At Daman and Guantao Stations,
the correlation coefficients R? of the field model ET are higher (0.954 for Guantao and
0.941 for Daman) and the root mean square errors are lower (0.98 mm/day for Guantao and
1.59 mm/day for Daman) than those of the ETWatch performances (R? 0.949 for Guantao
and 0.890 for Daman and RMSE 0.946 mm/day for Guantao and 1.67 mm/day for Daman).
Figure 6 shows the temporal variations in the field model ET and site observations. The
field model ET is well-correlated with the site observations during the peak growing
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periods of maize (June-August) and can precisely exhibit the variations in daily ET in
the field. These model validation results show that the field-scale ET model allocated
from the ETWatch 1-km-level dataset has achieved high accuracy according to the site
observations and with the appropriate coarse ET data. Field-scale allocation can provide
improved accuracy and present ET distributions with more resemblances to the actual field
conditions than those of lower-resolution models, and the spatial distribution of the field
model ET is presented in Figures 7 and 8.

Table 1. Site evaluation of the field model evapotranspiration (ET) allocated from the ETWatch data.
R2: correlation coefficient, RMSE: root mean square error, and d: William's index of differences.

S ETWatch Field Model ET
ite
Adj. R? RMSE d Adj. R? RMSE d
Guantao 0.949 0.946 0.915 0.954 0.981 0.916
Daman 0.890 1.67 0.874 0.941 1.50 0.931
10 12
y=1.138x y=1117x
adj. R? = 0.954 adj. R?=0.941 0 e
81RMSE=098 mm/day S RMSE=150 mm/day ~ w'e 2%° 7
h {n=141 . i g{n=150 P =
T 6 of 2 5 3 L.
.8 [N -8 o, * . Ha
1S Py 9 e = . ® .. s,
o 44 St .« o ° . °
i Yol I ° g
21 &N S 2
g2 . Py 7
o 3 Guantao g "3 Daman
0 2 4 6 8 10 0 4 8 12

Observed ET (mm/day) Observed ET (mm/day)

Figure 5. Model validation of the field model ET with the site observations. R?: correlation coefficient
and RMSE: root mean square error.
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Figure 6. Temporal development of the field model ET at the two research stations. In each panel,
the red line indicates the field model ET, and the black line indicates the site observed ET from the
eddy covariance instruments.
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Figure 8. The spatial distribution of the ET allocation results in the Daman research region.

The spatial distribution of the ET allocation is presented in Figure 7 for Guantao and
Figure 8 for Daman. Compared with the coarse ET data, the field-scale allocated ET has
more spatial details that can show the temporal development of the water consumption
results in each field. Since the coarse ET pixel is computed based on the comprehensive
characteristics of the 1-km? region, the high- and low-ET areas are averaged in the coarse ET
results; however, the allocated ET data revealed the high- and low-ET regions and remain
consistent in the total ET amount between the coarse ET and allocated field ET. The concept
of water balance was initially adopted with the ET allocation approaches. At the monthly
level, the field model ET can show the spatiotemporal development of maize in each field
at the farm level and be used for agricultural water consumption management. ET is the
major water consumption pathway of irrigation systems, and precise ET monitoring is
essential in achieving water usage cuts, especially in arid, water-scarce regions. The field
ET map provides foundational data for water management.

3.3. Comparison with the Pixel-Level Downscaling Method

Figure 9 shows the spatial distribution map comparison between the original coarse
ET datasets and the allocated ET results. The spatial distribution of a pixel-level ET
downscaling approach based on surface resistance is also shown. The results show that
the spatial texture is improved, and more spatial ET information can be extracted from the
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1km ET

allocated ET. Since the coarse ET pixel can be regarded as the average value of the inner
pixel regions, the differences in the field-level ET are erased, and the spatial information
of the coarse-resolution ET is limited. The allocated ET can finely capture the spatial
differences in ET capacities between fields under different irrigation and fertilization
strategies and other agricultural activities. Comparing different coarse ET data sources,
the allocated ET values are dependent on the original ET data, and the total regional ET
amounts of the original coarse ET and the allocated ET are equivalent based on the water
balance; thus, with sufficiently accurate coarse ET models, the accuracy of the allocated ET
results is guaranteed.

ET (mm)
0 - 50

[ 50 - 80
[180-100
[ 1100 -120
[1120-140
[ 140 - 160
[ 160 - 200
I 200 - 250
I 250 -

Field ET Downscaled ET

Figure 9. The spatial distribution comparison of monthly fine-resolution ET data with the surface resistance (rs)-based
downscaling ET method [21] in July. The 1-km ET data are calculated with the ETWatch model, and the field ET is derived
with the allocation method from this research. The downscaled ET is based on the surface resistance downscaling approach.

The downscaling methods are currently aimed at the pixel levels, for which the
process flow can be described as follows. The values of a chosen factor at each high-
resolution pixel within a coarse-pixel area are compared against the average value of the
coarse pixel. Each factor can be directly correlated with the ET. Despite the differences in
downscaling methods, with pixel-level calculations, the small differences between adjacent
coarse pixels can be magnified in the downscaling process and show differences similar
to “boundaries” in downscaled fine-resolution ET results, as shown in Figure 9. The ET
based on downscaled surface resistance shows apparent differences at the boundaries of
the coarse ET dataset. Since our allocation method is based on agricultural fields, the field
is regarded as the independent object of ET allocation. We consider the allocation between
the cropland fields and the ET within the fields; thus, our results are more reasonable
in spatial distributions, with the ET differences mainly located at the agricultural field
boundaries and in line with the actual situations.

4. Discussion
4.1. The ET Allocation Method Performance

In this research, we proposed a new method to calculate high-resolution ET from
coarse ET datasets that can better fit the agricultural field scale for applications in water
management. We viewed agricultural fields as the basic ET objects for ET allocation from
coarse resolutions to high resolutions and developed ET allocation factors by quantifying
the ET capacity based on the surface moisture and crop physiological parameters. Our
model was practical to apply, because it utilized the abundant ET datasets at the km-
resolution level. The model performance was evaluated using two cropland stations,
Guantao in the Haihe Basin and Daman of the Huailai Station, both of which are maize
cultivation research stations. The validation results were satisfactory, and the evaluation
indicators (R2, RMSE, and d) had better performances in the allocated field model ET than
in the original km-level ET (Table 1 and Figure 9).
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Based on the derivation of the PT equation, our field ET allocation model captured the
variations between fields in the main ET parameters, which reflected the crop’s capacity to
absorb solar radiation, represented by the FVC from the NDVI and ground water status
from the LSWI. These variation parameters were combined to form what we called the
field allocation factor in this research and acted as the driving parameter of the ET field
allocation model. The mechanism of the allocation model was that between different crop
fields; the ET capacity of the fields relied on the proposed variation parameters, which were
highly correlated with the ET and present large spatial diversity. The ET allocation model
acceptably neglected the meteorological conditions, which were uniformly distributed in
the homogeneous cropland fields at the coarse-km level. It can be seen in Figure 4 that the
proposed allocation factors had similar trends but smaller fluctuations than those of the
observed ET variations. One reason is that the NDVI and LSWI input data were processed
with the S-G filter method to acquire the daily-scale data, which applied a smoothing
effect to the five-day interval data. Another major reason was that NDVI and LSWI were
not sensitive to temporal variations, since they reflected the surface variables, such as
chlorophyll, crop growth conditions, and water contents; this is only the reason that the
S-G filter method is suitable for temporal extension. As the S-G filter method has been
commonly adopted in the temporal extension of remote sensing-based indexes, the errors
and residuals in the daily smoothed data were acceptable. Since the allocation is conducted
at the spatial level, the temporal variations in climate data do not participate in the ET
allocation processes and have small spatial effects at the field level. Thus, the temporal
differences in the variability between the allocation factor and actual ET have minor effects
on the allocation model. For the allocation factor, we used the NDVI and LSWI; during
the dense canopy period, such as the peak growth period of maize, the LSWI reflected
more of the water content in vegetation instead of the soil water content. At this period,
the crop transpiration takes the majority of the ET with high FVC and low radiation for
soil evaporation, FVC plays the major role of allocation, and the influence of the LSWI on
the ET allocation is limited.

4.2. Improvement to Pixel-Level ET Downscaling Methods

When applying ET methods to precise agricultural water management, the lack of
stable, accurate, high-resolution ET data has heavily restrained the attention on ET in water
management. Our method is different from previous ET downscaling methods, such as the
LST or vegetation index disaggregation, which usually concentrate on the spatial resolution
refinement of several ET model parameters and input them into the original ET models
for high-resolution ET calculations. Up to a point, this kind of ET downscaling approach
compensates for the absence of critical high-resolution input data in ET models, especially
in surface energy-related models. Restrained by the band characteristics and current sensor
technology, the daily temporal resolution of thermal infrared sensors is incompatible with a
10-m spatial resolution. Most of the LST downscaling methods combine MODIS daily 1-km
LST data with Landsat monthly 30-m LST data, and the large temporal gap between MODIS
and Landsat inevitably leads to errors in the spatial information and larger uncertainties in
the ET calculations, which limit their usefulness for product applications.

Another ET downscaling method is by directing the correlation of the ET with remote
sensing-based parameters such as the NDVI and LST and distributing the ET within coarse
pixels. This downscaling approach can be regarded as a pixel-oriented method, and the
downscaled results can be influenced by the coarse-pixel scale effect that the adjacent coarse
pixel brings into distinct edges, as shown in Figure 9. These models are validated with
high accuracy at the point level; however, the spatial distribution of the boundaries is not
similar to real cropland ET situations. Our model is distinguished from the pixel-oriented
downscaling method in that we regarded the agricultural field as the basic object of the
ET distribution units. Based on the water balance theory, the statistical results of coarse
ET and fine-resolution ET should remain equivalent, and ET can be allocated to each field.
The cropland field can avoid the impacts of coarse-pixel differences on the ET results, and
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the spatial texture has more resemblance to the actual field ET distribution than that of the
lower resolution models. After ET allocation among fields, the field ET is then downscaled
based on pixels within the field and is capable of reflecting more precise spatial information
of the inner field ET conditions. With the attributions of more mechanisms for ET variations
instead of linear correlations from downscaling methods, more emphasis on the essential
role of the field in km-level inner pixel ET allocation, and reasonable allocation approaches
between and within the fields, our field ET allocation model performs better than the
previous methods at estimating the ET with a refined resolution.

4.3. Future Application in Agricultural Water Management

At present, our model achieved satisfactory accuracy in the cropland. The calcula-
tion of the ETWatch one-km ET required spatially interpolated ground meteorological
parameters, which sustain an adequate accuracy at the km level while, at 10-m level, the
values may differ far from the real conditions under the influence of horizontal flow eddies.
We neglected the spatial differences of the meteorological parameters in relative homo-
geneous and plane underlaying surfaces such as croplands, as the ground observation
matrix showed that the meteorological parameters were little changed at the one-km level.
However, when applying the allocation method in rugged terrain, the differences of wind
speed, relative humidity, and air temperature should be concerned; the spatial diversity
of the meteorological parameters should be preliminarily analyzed before applying the
allocation model, as the meteorological condition homogeneity is the precondition of ap-
plying the allocation method. The movement of horizontal flow of the eddies carrying
vapors between fields is another potential impact factor on the accuracy of field-scale
ET. Wang and Dickinson’s [63] review on the Monin-Obukhov Similarity Theory (MOST)
showed that the MOST theory has potential in reflecting the turbulent fluxes at horizontally
homogeneous and stationary surface layers, which may shed light on solving horizontal
vapor estimations in future researches.

Modern water resource management requires advanced management theories to
harmonize the requirements of economic and social developments with limited water
resources. In agricultural water management, recent studies have added more emphasis to
the control of ET from cropland and irrigation systems. Fine-resolution ET that matches
the scale of cropland fields is needed to support policy decision-makers and set ET targets
for water consumption cuts. One potential application of the field-level ET model is in the
determination of water rights. The conventional determination of water rights involves
setting limits on farmers’ water withdrawal amounts, with no emphasis on how farmers use
the water or the return flows of irrigation water. However, these water rights management
methods neglect the water cycling mechanism where, with soil infiltration and ground
runoff, some of the withdrawn water can return to the regional water system, and ET is the
real water consumption that did not return to the local river or groundwater systems. Thus,
an ET-oriented water rights allocation system is more reasonable, and since different crops
have various ET amounts, the crop-planting structure should also be considered. In the
Turpan Basin, China, the local government has experimented with using ET to set farmers’
withdrawal amounts and has achieved considerable success in relieving the local water
use crisis by changing the crop-planting structure to low-ET crops and reducing the use
of high-ET irrigation methods [7,64]. These applications require accurate ET datasets that
match each farmer’s field, and our ET allocation model can provide the data foundation
for farm-level water management.

5. Conclusions

In this research, we proposed a method to calculate ET at the field scale by allocat-
ing coarse ETWatch ET data to fields based on the allocation factor derived from high-
resolution satellite data. The model achieved satisfactory accuracy compared with ground
observations from two maize-growing cropland stations and improvement in the spatial
representation and accuracy compared with coarse ET. The field model ET data are capable



Remote Sens. 2021, 13, 343 16 of 18

of field-scale water management in agricultural systems to precisely monitor the crop ET
status, providing insights into water management approaches based on ET and water
consumption. This allocation method can calculate field-scale ET with accuracy, stability,
and speed, the exact characteristics that meet the demands of a wide application based
on using ET data to control the regional water consumption, supporting ET management
theory in addressing the impacts of water scarcity on societal and economic developments.
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