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Abstract: New types of remote sensed land cover datasets provide key evidence for understanding
global environmental change. However, low data consistency makes understanding the changes
unclear. China has become a hot spot of land cover change in the world due to climate change and
a series of human measures, such as ecological engineering, land consolidation, and urbanization.
However, due to the inconsistencies in interpretation of signs and thresholds, the understanding of
yearly-continued land cover changes in China is still unclear. We aim to produce China’s land cover
fraction dataset from 2001 to 2015 by weighted consistency analysis. We compare the Moderate-
resolution Imaging Spectroradiometer land cover dataset (MCD12Q1), the Climate Change Initiative
Land Cover (CCI-LC) datasets, and a new land cover fraction dataset named China-LCFMCD-CCI,
produced with a 1 km resolution. The obvious increased forest areas only accounted for 4.6% of
the total forest areas, and were mainly distributed in northeast China. Approximately 75.8% of the
grassland and shrubland areas decreased in size, and these areas were relatively concentrated in
northeast and south China. The obvious increased areas of cropland (3.7%) were equal to the obvious
decreased areas (3.6%), and the increased cropland areas were in northwest China. The change in
bare land was not obvious, as the obvious increased areas only accounted for 0.75% of the bare land
areas. The results not only prove that the data fusion of the weighted consistency method is feasible
to form a land cover fraction dataset, but also helps to fully reveal the trends in land cover fraction
change in China.

Keywords: land cover; accuracy analysis; data fusion; weight consistency; uncertainty

1. Introduction

Land cover is a dynamic variable that changes rapidly across the globe [1,2]. Therefore,
high-quality and timely land cover information is important for addressing global environ-
mental change issues [3]. Global land cover datasets provide fundamental information on
land surfaces and are important variables in environmental research [2,4,5]. With the con-
tinuous development of remote sensing technology, various global and regional land cover
products have emerged, such as International Geosphere-Biosphere Programme, Data and
Information Systems (IGBP-DIS) land cover [6], Global Land Cover 2000 (GLC2000) [7],
Globeland30 [8], and so on. However, due to the differences in sensor types, spatial and
temporal resolution, interpretation marks, classification methods, and thresholds, the
datasets have uncertainty and poor comparability [9,10]. To identify the relative certain
trends in land cover change, there is an urgent need for interactive verification between
multi-source data.
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China is experiencing both fast climate change and rapid urbanization, which have
brought about food security issues as well as environmental security issues [11]. More-
over, China has implemented a series of policies influencing land cover change. China’s
ecological engineering programs, such as the Grain for Green Program, have increased
vegetation coverage and changed the forest cover across tens of millions of hectares [12,13].
China’s land consolidation has focused on two core objectives: replenishing arable land
and improving agricultural infrastructure [14,15]. China’s land consolidation has supplied
2.8 million hectares of cropland and promoted the sustainable development of rural areas.
From 2000 to 2010, the total cropland decreased by 0.7% [16]. To slow down the loss
of farmland caused by urbanization, China has implemented the strategy of balancing
cultivated land occupation and compensation, which requires the same proportion of
cultivated land expansion to compensate for the loss in cultivated land [17]. In addition,
China has implemented a number of land conservation projects, including soil and water
conservation projects and grassland ecological conservation programs [18]. Therefore, as
China has become a prominent area of global land cover change through a series of land
use policies, it is urgent to identify the land cover change in China through interactive
verification of more data sources in order to form a more rational judgement of land cover
change trends and uncertain regions.

Currently, there are several remote sensed land cover datasets that can be applied in
China. Although MCD12Q1 has a relatively low spatial resolution (500 m), it has a continu-
ous time series from 2001 to 2015. In addition, MCD12Q1 contains a variety of classification
schemes, including IGBP classification, the University of Maryland (UMD) classification,
leaf area index (LAI) classification, Biome-biogeochemical cycle (BGC) classification, plant
functional type (PFT) classification, and FAO (Food and Agriculture Organization) -land
cover classification system land cover (LCCS). The Climate Change Initiative Land Cover
(CCI-LC) dataset has a spatial resolution of 300 m and was classified into 22 types of land
cover [19]. The greatest advantage of CCI-LC is that it had a continuous time series from
1992 to 2015. Finer than these global datasets, China’s land cover datasets are often at a 30
m resolution. China land cover is a high-resolution dataset based on the land cover data of
the ten-year change of the environment in China and the classified data were accurately
matched with Landsat Thematic Mapper (TM) images and then classified via deep learning
(http://data.casearth.cn/). The Global Land Cover Fine Surface Covering 30 (GLC-FCS30)
dataset also has a high resolution of 30 m and combines a multitemporal classification
model and a spatial-temporal spectral library [20]. The spatial-temporal spectral library
was developed by CCI-LC and the MODIS Version 6 Nadir bidirectional reflectance dis-
tribution function adjusted reflectance (NBAR) product (MCD43A4) [20]. Globeland30,
with an overall accuracy of over 80%, is the first work to map global land cover at a 30 m
resolution [21]. Globeland30 holds more than 20,000 images, mainly from TM, enhanced
thematic mapper plus (ETM+), and the Chinese HJ-1 satellite images, so that it can provide
details on land cover patterns [22]. However, there is currently no unified view on the
changing tendency of China’s land cover because continuous time series datasets are often
at the global scale, and there is a lack of evidence on whether one dataset is more reliable
than others for different areas of China.

Data consistency analysis is a conventional method for evaluating land cover datasets
that usually reflects the quality and practicality of the datasets better than the overall
accuracy [23]. The commonly used methods of land cover consistency analysis include
the sample point verification method, the superposition analysis method, and the Boolean
analysis method [5,24–27]. Fritz et al. [25] used three independent validation works to
evaluate the consistency of the existing 1 km dataset. Liang et al. [27] used two sets of
sample points collected from the Arctic region to assess the accuracy of CCI-LC, Global
Land Cover by the National Mapping Organization (GLCNMO), Globeland30, and MODIS.
Bai et al. [24] found that MODIS LC has the highest consistency compared with the Global
Land Cover Characterization (GLCC), University of Maryland land cover product (UMd),
Global Land Cover 2000 project data (GLC2000), and GLOBCOVER land cover (GlobCover)

http://data.casearth.cn/
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products via superposition analysis. Among the abovementioned methods, the weighted
consistency analysis method can overcome the shortcomings associated with the difficulty
of data acquisition in the sample verification method and the lack of a continuous time
series in the superposition analysis method [24,27].

Although the Chinese products of land cover datasets may have higher precision than
the global ones, most of the land cover datasets in China are category variables and lack
of fraction variables, and they are lack of continuous time series. To obtain the spatial
consistency of the dataset with long time series is a reasonable approach for improving
the spatiotemporal accuracy of China’s land cover datasets. Thus, the hypothesis of this
study should be forming a land cover fraction dataset in China based on the weighted
consistency data fusion method.

In order to produce a set of land cover fraction datasets in continuous year series,
three research steps were designed: (1) to evaluate the consistency of multi-source land
cover data by various methods; (2) to fuse MCD12 and CCI-LC data through a consistency
analysis to form a time series land cover fraction map; and (3) to analyse the tendency of
land cover change in China from 2001 to 2015.

2. Materials and Methods
2.1. The Land Cover in China

Around 75% of China’s land is covered with forest, grassland, and cropland (Figure 1) [28].
Remote sensed evidence showed the land cover change in China was significant [29]. The
urban area has rapidly expanded with the economic development in China [30]. The forest
decreased during the last decade of the 20st century, and increased in the first decade of
the 21st century, while the grassland, wetland, and unused land continued decreasing in
21st century [31].
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Figure 1. The main land cover of China (Globeland30 product of 2010).

2.2. Data Source and Pre-Processing

In this study, we used five land cover datasets for the consistency analysis and data
fusion, and then we used different land cover type datasets to validate the results (Table 1).

(1) CCI-LC with the United Nations (UN) Land Cover Classification System (LCCS) is
created by the European Space Agency [19] and is available at an annual scale.

(2) MCD12Q1 with the IGBP land cover classification scheme is produced by the
United States Geological Survey [32], and it is also a dataset for successive years.

(3) China land cover is developed by the Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences, and it includes eight land cover types [33].
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(4) GLC-FCS30, with a fine classification scheme that includes 22 land-cover types,
is generated by the Institute of Remote Sensing and Digital Earth, Chinese Academy of
Sciences [20].

(5) Globeland30 was developed by the National Geomatics Center of China and
includes 10 land cover types [8].

(6) The Global Artificial Impervious Area (GAIA) is mapped by the Department of
Earth System Science, Tsinghua University using the full archive of 30 m resolution Landsat
images on the Google Earth Engine platform [34].

(7) The global cropland-percentage-map is produced by the Institute of Agricultural
Resources and Regional Planning, Chinese Academy of Agricultural Sciences, and it can
be used for producing the global dataset of agricultural production for 2010 [35].

(8) Globeland30-WTR2010 is produced by the National Geomatics Center of China
and uses three types of water body extraction algorithms to automatically extract land
surface water [36].

(9) The Hansen-GFC (global forest change) is mapped by the University of Maryland,
and it can observe global forest loss and gain from 2001 to 2012 [37].

As the datasets have different resolutions from 30 m to 500 m, the spatial resolution is
unified to 1 km using the nearest neighbour method in the categorical variable consistency
analysis (Figure 2). Since the datasets have different classification systems, e.g., CCI-LC
uses the LCCS systems with 22 land cover types and MCD12Q1 uses IGBP systems with
17 types, we re-classed the land cover types into 8 or 9 types (Table 2) (China land cover
does not include shrubland).

Figure 2. Flowchart of the produce of land cover fraction dataset in China (Drawing by Origin 2019).
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Table 1. Characteristics of multi-source land cover datasets.

Dataset Resolution (m) Time Classification Method Source

CCI-LC 300 2001–2015 Unsupervised
classification https://www.esa-landcover-cci.org/

China land
cover 30 2005–2010 Deep learning http://data.casearth.cn/

GAIA 30 2015 Exclusion-inclusion
framework http://data.ess.tsinghua.edu.cn/

GLC-FCS30 30 2015 Spatial-temporal spectral
library http://data.casearth.cn/

Global-
cropland-

percentage-map
500 2010 Self-adapting Statistics

Allocation Model https://doi.org/10.7910/DVN/ZWSFAA

Globeland30 30 2000–2010 Pixel-Object-Knowledge http://www.globeland30.com
Globeland30-

WTR2010 30 2010 Decision tree http://www.geodoi.ac.cn

Hansen-GFC 30 2000 Decision tree http://earthenginepartners.appspot.com/
science-2013-global-forest

MCD12Q1 500 2001–2015 Decision tree https://ladsweb.modaps.eosdis.nasa.gov/

Table 2. Merged classification system.

Type CCI-LC MCD12Q1
(IGBP) Globeland30 GLC-FCS30 China Land Cover

Forest

40/50/60/61/62
/70/71/72/

80/81/82/90/
100/160/170

1/2/3/4/5 20
12/50/60/61/
62/70/71/72/
80/81/82/90

1

Grassland 110/130 8/9/10 30 11/130 2
Shrubland 120/121/122 6/7 40 120/121/122 /
Cropland 10/11/12/20/30 12/14 10 10/20 6
Wetland 180 11 50 180 3

Water 210 17 60 210 4/5
Construction 190 13 80 190 7

Bare land 140/150/151/152/
153/200/201/202 16 90 140/150/152/153/

200/201/202 9

Permanent snow and ice 220 15 100 220 10

2.3. Consistency Analysis
2.3.1. Relative Consistency Analysis

The relative consistency analysis includes the category similarity analysis, the overall
and category accuracy analysis, and fraction consistency analysis, which are the spatial
statistical results of any two datasets in four land cover datasets [38]. Since 2010 was
the only year of overlap among all land cover datasets, we only analysed the relative
consistency of the land cover datasets in 2010.

Category similarity is obtained by summing the areas of different land types and
calculating the correlation coefficients of the different land type areas of the two land cover
datasets. The formula is:

Ri =
∑n

i=1 (Xi − X)(Yi −Y)√
∑n

i=1 (Xi − X)
2
∑n

i=1 (Yi −Y)2
(1)

where Ri is the correlation coefficient (category similarity) of two land cover datasets, i is
the land cover type, Xi represents the area of type i in land cover dataset X, Yi refers to
the area of type i in land cover dataset Y, X is the average of the total area of all types in

https://www.esa-landcover-cci.org/
http://data.casearth.cn/
http://data.ess.tsinghua.edu.cn/
http://data.casearth.cn/
https://doi.org/10.7910/DVN/ZWSFAA
http://www.globeland30.com
http://www.geodoi.ac.cn
http://earthenginepartners.appspot.com/science-2013-global-forest
http://earthenginepartners.appspot.com/science-2013-global-forest
https://ladsweb.modaps.eosdis.nasa.gov/
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dataset X, Y refers to the average of the total area of all types in dataset Y, and n is the total
number of land cover types. In this part, n is 8 because the China land cover dataset does
not include shrubland.

Overall and category accuracy analysis indicate the overall accuracy and user accuracy
among each land cover dataset. Recently, confusion matrices have become a common
method for evaluating the accuracy of land cover datasets [39,40]. The confusion matrix
can describe the accuracy index of land cover datasets and obtain the corresponding
information for each pixel in each dataset [9]. A confusion matrix includes the overall
accuracy (OA), user accuracy (UA), producer accuracy (PA), and Kappa coefficient. OA
and Kappa represent the overall accuracy, and PA represents the category accuracy. The
formulas of each index are as follows:

OA =
∑r

i=1 xii

N
×100%, (2)

PA =
xii
x+i
×100%, (3)

Kappa =
N·∑r

i=1 xii −∑r
i=1(xi+·x+i)

N2 −∑r
i=1(xi+·x+i)

, (4)

where N is the total number of pixels, r is the number of types (r = 8), xii represents the
pixels of the correct classification, x+i refers to the number of pixels of type i in the reference
dataset, and xi+ stands for the number of pixels of type i in the evaluated dataset.

Fraction consistency (FC) analysis can calculate the fractions of different land types
in a larger-scale grid. We used the “Block Statistics” tool of ArcGIS 10.2 to analyse the
percentage of each land cover type in 1 km grids. For example, if we set the forest of
Globeland30 to 1, and set the rest of the land types to 0, and then perform a block statistical
analysis, we can obtain the proportion of the Globeland30 forest on the 1 km grid. After
the block statistics of all land types in different land cover datasets, a fraction consistency
analysis can be performed. The formula is as follows:

FCij =
∑4

j proij

4
, (5)

where FCij represents the fraction consistency of land cover type i in dataset j and proij
refers to the fraction of land cover type i in dataset j. The number 4 represents four land
cover datasets: CCI-LC, MCD12Q1, China land cover, and Globeland30.

2.3.2. Weighted Consistency Analysis

In the weighted consistency analysis, we chose CCI-LC and MCD12Q1 as the two
datasets for weighting. Because the time distribution of the datasets is not consistent,
we only selected datasets of the same year for the analysis. For example, for the CCI-LC
dataset, we chose Globeland30 (2000), China land cover (2005), Globeland30 (2010), China
land cover (2010), and GLC-FCS30 (2015) to analyse the weighted consistency. Then, the
weight was calculated, which represents the proportions of the CCI-LC and MCD12Q1
datasets in the fractions of the different land cover types in the 1 km grid. The weight was
calculated on the basis of data fusion, and its calculation formula is as follows:

Wi-CCI =
∑k FCi-CCI-k

4
, (6)

Wi-MCD =
∑k FCi-MCD-k

3
, (7)

where Wi-CCI is the weight of the CCI-LC dataset in land use type i and Wi-MCD is the
weight of the MCD12Q1 dataset in land use type i. In Formula (6), k equals 2000, 2005,
2010, or 2015, and in Formula (7), k equals 2005, 2010, or 2015. FCi-CCI-k and FCi-MCD-k refer
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to the fraction consistency of land cover type i in the CCI-LC or MCD12Q1 dataset in year
k, respectively.

2.4. Data Fusion

We fused CCI-LC and MCD12Q1 according to their weights. Due to the small shrub-
land area in China and the lack of a shrubland cover type in the China land cover dataset,
we merged grassland and shrubland for data fusion. We also overlayed all of the land
cover types to better show the probability distribution of various land cover types. The
formula for data fusion is as follows:

China-LCFMCD-CCI =
FCi-CCI ·Wi-CCI+FCi-MCD·Wi-MCD

∑n
i=1 Wi-CCI ·FCi-CCI + ∑n

i=1 Wi-MCD·FCi-MCD
, (8)

where FCi-CCI and FCi-MCD are the FC of land cover type i in CCI-LC and MCD12Q1,
respectively, n is the total number of land cover types, and Wi-CCI and Wi-MCD are the
weights of land cover type i in CCI-LC and MCD12Q1, respectively.

2.5. Contrast with High Resolution Dataset

We selected four different land cover type datasets to validate China-LCFMCD-CCI,
including GAIA, the Global-cropland-percentage-map, Hansen-GFC and Globeland30-
WTR2010. Because these datasets are the most reliable high-resolution datasets with full
coverage available in China. Similarly, the block statistical analysis conducted on four
datasets. We also compared the four datasets with CCI-LC and MCD12Q1. The values of
different datasets were obtained by randomly taking 10,000 points for each land cover type,
and then the coefficient of determination (R2) and root mean square error (RMSE) between
the datasets were calculated. If the R2 values between the China-LCFMCD-CCI and the other
four datasets was higher than the R2 values between MCD12Q1, CCI-LC and the other
four datasets, it meant that our results were closer to the results on the fine resolution scale
and had a higher credibility than those of CCI-LC and MCD12Q1.

In addition, we calculate the relative deviation (RD) to represent uncertainty of the
results, and the formula is as follows:

RDi =
China-LCFMCD-CCI-i − S

S
(9)

where RDi are the relative deviation of land cover type i. S are the average between
China-LCFMCD-CCI and GAIA, the Global-cropland-percentage-map, Hansen-GFC and
Globeland30-WTR2010, respectively.

2.6. Change of Land Cover Fraction

We analysed the temporal and spatial variations in the land cover fraction in China
and the different sample regions. On the time scale, we performed a linear regression
analysis on China-LCFMCD-CCI from 2001 to 2015 and calculated the slope of the regression
equation. From the slope map, we can find changes in the fraction of land cover in China
from 2001 to 2015 with obvious change areas with |Slope| > 0.02. On the spatial scale, to
show the changes of China-LCFMCD-CCI for the different land cover types from 2001 to 2015,
we selected four sample regions from four different land cover types (Forest, Grassland
and Shrubland, Cropland, Bare land) to analyse the changes of the average values. We
performed a Mann–Kendall test on the data to calculate its significance (tested by MATLAB
2019a). If |Z-score| is greater than or equal to 1.28, it passes the significance test at 10%
level; if |Z-score| is greater than or equal to 1.64, it passes significance test at 5% level; if
|Z-score| is greater than or equal to 2.32, it passes significance test at 1% level.
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3. Results
3.1. Consistency of the Datasets

The correlation coefficients of the five land cover datasets were quite different, ranging
from 0.57 to 0.98 (Figure 3a). The category similarity (correlation coefficient) between
Globeland30 and CCI-LC was the highest, while the category similarity between China
land cover and MCD12Q1 was the lowest (Figure 3a). The correlation coefficients between
CCI-LC and MCD12Q1 was relatively high (0.84). The mean value of the category similarity
between CCI-LC and the other three datasets was 0.86, and the mean value between
MCD12Q1 and the other three datasets was 0.78. Therefore, these results show that
Globeland30 has the best category similarity among different land cover types and that
China land cover has the worst category similarity.
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Land Cover (CCI-LC)).

The OA between Globeland30 and CCI-LC was the highest (0.73) (Figure 3a). The
second highest OA was between Globeland30 and MCD12Q1 (0.69). The OA between
Globeland30 and China land cover ranked third (0.69). Meanwhile, the lowest OA was
between China land cover and CCI-LC (0.68). The OA between Globeland30 and the other
three datasets was the highest, and the OA between China land cover and the other three
datasets was the lowest. There was little difference in the OA between the different datasets,
and it was always more than 0.60. Another indicator for assessing the overall consistency
is Kappa, which has similar characteristics to OA. The difference in Kappa between the
four datasets was not large. The highest Kappa was also found between Globeland30 and
CCI-LC (0.64), and the lowest Kappa was between CCI-LC and MCD12Q1 (0.58). The
highest Kappa values was between Globeland30 and the other three datasets, and the
lowest Kappa vales was between China land cover and the other three datasets. Based on
the OA and Kappa, Globeland30 has the highest overall accuracy, and MCD12Q1 has the
lowest overall accuracy.

We also obtained the mean values of PA in different land cover types across the
four datasets (Figure 3b). The mean value of PA between CCI-LC and MCD12Q1 was the
highest (60.4%), and the lowest mean value of PA was between Globeland30 and MCD12Q1
(48.0%). The PA between the four datasets varied greatly with different land cover types.
We found that the mean value of PA in forests was the highest (76.6%) and the mean value
of PA in wetlands was the lowest (9.38%). The spectral characteristics of wetlands are not
obvious, and wetlands are easy to mix with other land objects in terms of their spatial
distribution [9]. The PA or category accuracy of wetlands was lower than that of other land
cover types. The PA in cropland, water, construction, and permanent snow and ice was the
highest between CCI-LC and MCD12Q1 compared with the other datasets. Similarly, the
PA in forest and bare land was the highest between Globeland30 and China land cover. In
addition, the highest PA in grassland was found between China land cover and MCD12Q1,
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and the highest PA in wetland was found between Globeland30 and CCI-LC. Overall, the
category accuracy of CCI-LC was the greatest in most of the land cover types.

The FC of different land cover types between the four datasets in 2010 had different
distributions (Figure 4). China’s forests are mainly distributed in the northeast and southern
regions. The regions with a higher FC were in the eastern mountains in the northeast,
the Hanzhong Basin and the southern wing of the Eastern Himalayas. In addition, the
eastern part of Taiwan has a high FC. Grassland is widely distributed in most areas of
China, where FC was high in the Qinghai-Tibet Plateau, in northern Xinjiang and in the
Inner Mongolia Plateau and the FC was relatively low in southern China. The cropland of
China is mainly distributed in eastern coastal regions. The Northeast Plain, Sanjiang Plain,
North China Plain and Sichuan Basin had a higher FC for cropland than the other regions.
Bare land is mainly distributed in western China, including Xinjiang, Tibet, Qinghai and
Inner Mongolia. Among these areas, most areas of Xinjiang and western Inner Mongolia
had a higher FC than Tibet and Qinghai. Because bare land had the highest average value
and grassland had the lowest, bare land had the best fraction consistency and grassland
had the worst.
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3.2. Data Fusion Product

We got the results of data fusion (Figure 5) and counted the average value of China-
LCFMCD-CCI in China among different land cover types from 2001 to 2015 (Figure 6). The
average values of grassland and shrubland were significantly larger than the other land
cover types (Figure 6). In addition, the interannual variation in the average value in
China was stable. Since China covers a large area, we selected four sample regions for
different land cover types to describe the characteristics of the China-LCFMCD-CCI and got
the changes in the average values for the sample regions from 2001 to 2015 (Figure 7).
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Figure 6. The average value of China-LCFMCD-CCI in different land cover types.

In forests, F1 stood for the Greater Khingan Mountains, which is an important forest
region in China, and its average value was increasing and fluctuating. F2 represented
the Loess Plateau, and its variation was the most stable of the four forest sample regions.
F3 denoted the Jiangnan Hills, and the average value in this region was decreasing. F4
represented the Sichuan Basin, and the average values in this region were higher than those
in the other sample regions, and showed a decreasing trend. The change rate of F1 was the
highest, and F2 was the lowest. In grassland and shrubland, the average of all four sample
regions showed slightly increasing trends. GS1 represented the Junggar Basin in northern
Xinjiang, GS2 represented the Inner Mongolia Plateau, GS3 represented the southeastern
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part of the Qinghai-Tibet Plateau and GS4 represented the Jiangnan Hills. In the four land
cover types, the change in the average values in cropland was the largest. C1 denoted
the Junggar Basin and had a growth rate of 38.8%. C2 represented the Northeast China
Plain, and it had a distinct increasing tendency. C3 stood for the Loess Plateau, and its
variation was the most stable among the four sample regions of cropland. C4 represented
the Yunnan-Kweichow Plateau, and it was the only one of the four sample regions to
show a decreasing trend. Since the distribution of bare land is mainly concentrated in
northwest China, our sample regions were also distributed in this area. B4 denoted the
Inner Mongolian Plateau, and its average value had an obvious decrease in 2001–2013. B1
represented the Junggar Basin, B2 represented the southern Kunlun Mountains, and B3
represented the Hexi Corridor. The variation trends of B1, B2, and B3 were relatively stable.
The changes in the grassland and shrubland were the most stable, while the changes in
cropland were the most volatile (Figure 7). The result of Mann–Kendall showed that most
of our result passes significance test at 1% level.
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***: 1%)).

3.3. The Change of China-LCFMCD-CCI

Overall, the R2 values between China-LCFMCD-CCI and Hansen, Crop, GAIA, and
WTR-2010 were greater than those between MCD12Q1 and CCI-LC, and the other datasets,
while the RMSEs were less than those between the MCD12Q1 or CCI-LC and the other
datasets (Figure 8). This indicated that China-LCFMCD-CCI was reliable and could have
effectively reflected land-cover fractions in China and its changes from 2001 to 2015. The
R2 between GAIA and MCD12Q1 was the lowest (0.38), but the R2 between GAIA and
China-LCFMCD-CCI was relatively high (0.51). Although the R2 values between the datasets
were lower than 0.6, China-LCFMCD-CCI was a fusion of MCD12Q1 and CCI-LC and
improved the accuracy of MCD12Q1 or CCI-LC. Due to the relatively low resolution of
MCD12Q1 and CCI-LC, the spatial heterogeneity of their fraction on the 1 km grid cannot
be clearly reflected, which is improved by China-LCFMCD-CCI. The national average for
forest uncertainty was highest (16.5%) and the national average for cropland uncertainty
was lowest (1.46%). The national average for water uncertainty was 4.27% and the national



Remote Sens. 2021, 13, 341 12 of 17

average for construction uncertainty was 7.23%. The uncertainty showed that China-
LCFMCD-CCI were reliable.
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Figure 8. Comparison of R2 and root mean square error (RMSE) among China-LCFMCD-CCI,
MCD12Q1, CCI-LC, and different land cover type datasets. (Hansen: Hansen-GFC (global forest
change); LCF: China-LCFMCD-CCI; CCI: CCI-LC; MCD: MCD12Q1; crop: global cropland percentage
map; GAIA: Global Artificial Impervious Area; WTR2000: Globeland30-WTR2010).

We analysed the slope of China-LCFMCD-CCI change from 2001 to 2015 (Figure 9). For
forests, the area with a large change (0.02 < |Slope| < 0.1) was small, and the distribution
was not concentrated. The areas with obvious increases (slope between 0.02 and 0.1) only
accounted for 4.6% of the total forest area, and the areas with obvious decreases (slope
between −0.1 and −0.02) only accounted for 2.2%. Areas with an obvious decrease in
terms of forest were distributed in the Hanzhong Basin and its southern region. The
greater Khingan Mountains was an area in which the forest area obviously increased.
Similar to the changes in forest area, the areas with obvious changes in grassland and
shrubland were scattered and not concentrated. The area in which grassland and shrubland
obviously increased (3.6%) was smaller than the area in which grassland and shrubland
obviously decreased (4.6%). Most areas in China have experienced a decrease in grassland
and shrubland, but the areas with relatively concentrated decreases were the Greater
Khingan Mountains and southern China (Figure 9b). The area of grassland and shrubland
obviously increased in Sichuan Basin. For cropland, the areas with obvious increases
(3.7%) and decreases (3.6%) were (basically) essentially equal. Among them, the areas
with obvious decreases were Shandong Peninsula and Sichuan Basin, and the areas with
obvious increases were Junggar Basin and the Loess Plateau. For bare land, the areas with
little change (slope between −0.02 and 0.02, except 0) accounted for 85.8% of the bare land.
The areas with obvious decreases in bare land area were distributed in Junggar Basin and
Hetao. The areas with obvious increases in bare land accounted for only 0.75% of the total
bare land. In China as a whole, although the change rates of the average values from 2001
to 2015 in different land cover types were low, forests have increased, while grassland and
shrubland, cropland, and bare land have decreased.
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4. Discussion

We compared the change rate and change map in the case study area with the previous
findings (Table 3). Huang et al. [41] used all Landsat images from the Google Earth Engine
to create a dynamic map of the major land cover from 1985 to 2015 in Beijing, and they
found that the percentage of forest gain (21.8%) was greater than the percentage of forest
lost (2.1%) because the land was revegetated. In our study, the forest in Beijing increased
from 2001 to 2015, and the rate of increase was 10.06%. The annual change rate was similar
to that of Huang. Zhu et al. [42] incorporated the impact of the land cover change into the
assessment of greenness trends in Guangzhou from 2000 to 2014, and found that the area
forest loss (3.4 ± 0.5%) was slightly larger than the area of forest gain (2.4 ± 0.5%). In our
results, the forest in Guangzhou increased from 2001 to 2014, and the change rate (28.6%)
was obviously higher than 1.0 ± 0.5%. The areas where forests increase are mainly in the
northern and central parts of Guangzhou (Table 3c). Cao et al. [43] analysed the urban
expansion in Xishuangbanna and its impact on the land use pattern. They concluded that
the forest area in Xishuangbanna decreased from 12,326.49 km2 in 2000 to 11,478.11 km2 in
2010 [43]. In our results, the forest reduction rate of Xishuangbanna from 2001 to 2010 was
4.3%, and the main area where forest is reduced is east of Xishuangbanna (Table 3h).

Many studies have shown that Shanghai has experienced obvious urbanization and
urban land expansion [44–46]. In these studies, Cui et al. [44] showed that the percentage
of change for building land in Shanghai during 1980–2008 was 221.5%, and Feng et al. [45]
showed that the high-density built-up areas increased from 5% in 1995 to 12% in 2015. In
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our results, construction in Shanghai expanded at a 22.2% growth rate from 2001 to 2008
and was concentrated in central Shanghai. Shi et al. [47] mapped the impervious surface
change in Wuhan using Landsat time-series datasets from 1987 to 2016, and their results
show that the impervious surface area increased from 5.27% of the total land area in 2000
to 9.25% in 2011, growing at an annual average rate of 6.25%. In our results, the average
value of China-LCFMCD-CCI in the construction of Wuhan increased from 0.06 in 2001 to
0.09 in 2013, increasing with an annual average rate of 2.9%.

Table 3. Comparison with existing studies.

Land Cover Fraction Map
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Li et al. [48] obtained data on the land cover change from 2000 to 2015 through remote
sensing images of Chengdu and found that grassland was reduced by 7.5%. However, in
our study, the growth of grassland and shrubland in Chengdu was 26.3%, with obvious
increases in the middle of Chengdu. The reason for this difference may be that the study
of [48] did not include shrubland, resulting in low estimations of the change area and
change rate. Cadavid Restrepo et al. [49] assessed and quantified temporal and spatial
changes in land cover in the Ningxia Hui Autonomous Region and found that the pro-
portion of bare land fell from 40.3% in 2000 to 26.2% in 2015. In our study, the bare land
in Ningxia was reduced from 2001 to 2015, and the reduction rate was 49.7%, which was
significantly higher than the result reported by [49]. The reduction of bare land occurred
mainly in northern and central Ningxia (Table 3d). Li et al. explored the impact of land use
change on the ecosystem service value in West Jilin from 1976 to 2013, and found that the
conversion of grassland and wetland to cropland resulted in an increase of 45,500 hectares
in cropland in West Jilin from 2000 to 2013 [50]. Our conclusions were that the growth rate
of cropland in West Jilin was 11.0% from 2001 to 2013, and there was a significant increase
in the western part of West Jilin. Mu et al. used remote sensing data to identify the relative
influences of planning policies on trends in landscape patterns in Zhengzhou, and found
that the area of land covered by water in Zhengzhou increased from 141.3 km2 in 2000 to
198.0 km2 in 2013 [51]. Our study concluded that the area of land in Zhengzhou covered
by water increased by 66.5% between 2001 and 2013 and was mainly concentrated in the
northern part of Zhengzhou. In general, our study had a good consistency compared with
the previous studies.

5. Conclusions

We determined that the change in grassland and shrubland was the most stable and
the change in cultivated land fluctuated the most by the result of data fusion. The fraction of
forest in China increased by 2.96% between 2001 and 2015, while the fractions of grassland
and shrubland, cropland, and bare land decreased by 1.09%, 0.05%, 3.04%, respectively. Our
study shows that continued time series land cover datasets were important for identifying
land cover change, and our product can provide new evidence for studying China’s land
cover change. Based on the advantage of the datasets, the China-LCFMCD-CCI presented the
time series fraction of different land cover types in China from 2001 to 2015. By calculating
the slope, the areas where the fraction of the land cover changes were obvious for different
land cover types can be identified. Due to the limitations of the datasets, we were only able
to perform a consistency analysis of the 2010 dataset. In addition, the spatial resolution
of the China-LCFMCD-CCI is 1 km, which is relatively coarse. Therefore, more datasets are
required in the land cover fraction analysis to enhance the accuracy and resolution.
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