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Abstract: In this work, we provide an innovative route for analysing urban expansion and population
growth and their link to the consumption of construction materials by combining satellite data with
material consumption analysis within the Hanoi Province (Vietnam). Urban expansion is investigated
with the use of landcover maps for the period 1975–2020 derived from satellite. During this period,
artificial surfaces and agricultural areas have increased by 11.6% and 15.5%, respectively, while
forests have decreased by 26.7%. We have used publicly available datasets to calculate and forecast
the construction materials consumption and measure its statistical correlation with urban expansion
between 2007 and 2018. Our results show that official figures for sand consumption are currently
underestimated, and that by 2030, steel and sand and gravel consumption will increase even further
by three and two times, respectively. Our analysis uses a new method to assess urban development
and associated impacts by combining socio-economic and Earth Observation datasets. The analysis
can provide evidence, underpin decision-making by authorities, policymakers, urban planners
and sustainability experts, as well as support the development of informed strategies for resource
consumption. It can also provide important information for identifying areas of land conservation
and ecological greenways during urban planning.

Keywords: land cover; material consumption analysis; construction materials; cloud computing;
machine learning

1. Introduction

Rapidly urbanising populations around the world are placing increased pressure on
the environment, the process of land use planning and the management of resources [1–3].
An improved understanding of the speed and scale of development and the structure
evolution of cities is therefore essential to assess the impacts of urbanisation and for the
development of policies directed towards resource efficiency and sustainability. Reducing
the impact of the human footprint on the planet is becoming a priority in the agendas of
national and international institutions because it is recognized as critical to underpinning
economic development, as proven by objective 11 (Sustainable Cities and Communities) of
the United Nations’ Sustainable Development Goals (SGDs; https://sdgs.un.org/goals).

These issues are particularly important for lower-middle income countries like Vietnam [4],
which are growing rapidly in terms of their economies, population numbers and standards
of living [5]. Vietnam’s population increased at an average growth rate of 1.1% between
2007 and 2018 and this trend is almost double in urban areas like the Hanoi Province (1.9%)
due to both migration and political interventions, as highlighted by the General Statistics
Office for Vietnam (GSOV) [6], and explained in more detail in Section 2. This growth
increases the demand for natural resources, whether this is land, raw materials for the
construction of buildings and infrastructure, water or energy. Of particular interest is the
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consumption of construction materials in urban development, because increasing supplies
within a short timeline often puts a strain on the environment and stock, production and
reserves available from the local mineral sector [7].

There are various methods available for monitoring resource consumption [8], such as
life cycle assessment (LCA), material input per unit of service (MIPS), materials flow analy-
sis (MFA), substance flow analysis (SFA), ecological footprint (EF) and even environmental
impact assessment. The focus and purpose of different methodologies is quite diverse.
For example LCA and MIPS are product-oriented, ecological footprint and environmental
impact assessment are used to determine the ecological and environmental impacts associ-
ated with regions or processes and SFA is used to model material flows related to specific
substances. None of the above methods find common use in urban planning to monitor
and forecast material flows for assessing supply disruption, undertaking assessments of re-
source efficiency, or quantifying potential environmental impacts associated with resource
extraction, processing, use and disposal.

Methods such as Material Flow Analysis (MFA) that focus on spatial and social units
are used to develop a systemic understanding of the material distribution in the urban
environment [9]. MFA is a data intensive process and is highly dependent on a combination
of different datasets (e.g., building and road stocks, mineral production, population census,
construction statistics, etc.), which are not always available, complete or regularly updated,
especially at the regional or local scale.

Land Use/Land Cover (LULC) from Earth Observation (EO) satellite data can provide
critical information for constrainting such required datasets and for a better understanding
of the evolution and distribution of the built environment and of open-pit extraction sites
where the required raw material is extracted [10]. Being high-volume, low-value products,
many construction materials (e.g., aggregates) are relatively expensive to transport and
thus they tend to be sourced locally and can result in visible impact on the landscape [11].
This makes supply issues in rapidly urbanising areas a risk but linking EO data and
resource consumption provides an opportunity for sustainable urban growth strategies to
be developed.

The use of satellite derived information has increased rapidly in recent years for study-
ing urban growth phenomena [12]. This is due to the surge of freely available spaceborne
imagery, such as Landsat-8 from 2008 and Sentinel-2 from 2015, followed by the advent
of cloud-based computing platforms that provide rapid access to datasets on a planetary
scale [13] and the adoption of Machine Learning (ML) classification techniques [14].

However, the integration of LULC satellite data with the quantification of stocks and
flows of raw construction materials has not yet been widely explored.

This is particularly needed in the Hanoi Province where, despite the fact that mining
plays an important role for the economy of the area in terms of the supply of construction
materials, little is known about its attributes such as spatial extent, type, scale, status and
socio/environmental impacts. A recent study [15] has already highlighted concerns related
to the lack of a resource management strategy for the responsible extraction of construction
materials. Given that they represent a non-renewable resource, unsustainable mining
practices can cause negative environmental impact, excessive energy usage, and extreme
landscape alterations.

LULC offers a new perspective to analyse the building stock with high spatial and
temporal resolution and support sustainable urban development at the regional scale.
However, many users of the wealth of spatial datasets on LULC changes largely miss the
connection with the underlying economic, production, trade and consumption phenomena
that drives the observed changes [16].

The aim of this study is to analyse the relationship between LULC and population-
and economic-datasets during the 2007–2018 interval. Such a holistic approach provides
opportunities to quantify the consumption of resources associated with the past and current
infrastructure development like transport units and buildings. This information enables
national and local authorities to understand the volumes associated with the current use of
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construction materials and to plan and design effective policies and strategies for future
extraction and use of mineral resources, reducing negative environmental impacts and
ensuring the security of supply.

The paper is structured as follows: an overview of the study area is given in Section 2,
along with an overview of previous studies in the area. The datasets and the methodologies
used are described in Section 3 and the results are presented in Section 4. The discussion
(Section 5) focuses on the benefits and limitations of the methodology, while the conclusions
(Section 6) provide observations on the use of the approach for future planning policies.

2. Hanoi Province

Hanoi Province is located in the northern part of Vietnam, within the Red River delta
plain and nearly 90 km from the South China Sea. It encompasses Hanoi, the capital
and second largest city of Vietnam with 7.4 million inhabitants [6], and represents the
commercial, cultural and educational centre of Northern Vietnam. It is ranked as the third
province of the country in terms of GDP per capita [17], behind Bà Rịa-Vũng Tàu and Ho
Chi Minh City.

In 1986, the Government of Vietnam implemented economic reforms known as Doi
Moi (renovation) that supported private ownership, encouraged deregulation and foreign
investment [18]. Since then, the economy of Vietnam has achieved rapid growth in agricul-
tural and industrial production, construction and housing, exports and foreign investments.
Each of these have resulted in momentous landscape transformations as consequence of
rapid urbanization [19].

In 2008, the administrative boundary was enlarged to more than three times its
previous size and the Hanoi Province now encompasses an area of 3342.92 km2 and 30 sub-
divisions (29 districts and 1 town; Figure 1). Three years later, Hanoi’s lead planners
(Hanoi People’s Committee and the Vietnamese Ministry of Construction), together with
international consultancies, developed the Hanoi Capital Construction Master Plan (HC-
CMP). The latter is a framework to guide the city’s sustainable development to 2030 in
sectors like transportation, access to clean water, sanitation and housing and to establish a
socio-economic vision until 2050 [20]. Under the HCCMP, about 28% of the natural land
in 2011 will be converted to built-up land to accommodate the rising urban population of
Hanoi, projected to increase to ~9.2 million by 2030 [21]. As a result of the higher demands
for housing and infrastructure, the amount of land that is built upon in the Province is
projected to rise sharply, by almost three times, from 463.4 km2 in 2011 to more than 1295
km2 by 2030 [22]. Consequently, there is an urgent need for urban planners and local
authorities to monitor and regulate the upcoming urbanization and its environmental
impact. The increase in urban development will indeed require additional quantities of
raw materials, such as construction aggregates, cement, bricks and steel, whose extraction
and manufacture can have negative effects on the surrounding environment. In addition, if
an adequate supply of materials is not maintained, the ability to implement planed urban
growth can be negatively impacted.

This increased demand for raw materials in Vietnam is already evident as the pro-
duction of aggregates within Vietnam increased >60% between 2007 and 2018 (GSOV,
2018) [23].

The increasing demand for raw materials is already having negative consequences to
the environment (e.g., pollution, riverbank erosion). For example, the extraction of sand,
one of the primary materials used in numerous construction products, has led to informal
mining activities [24] due to the slow response from national and local institutions to regu-
late the rights and obligations of the mining companies, the insufficient and inconsistent
implementation of the legal framework and lack of good mining practices [25].
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Figure 1. Location map of the main administrative boundaries of the 30 districts within the Hanoi 
Province with an indication of the pre-2008 Hanoi Province in green and the newly added area in 
white, previously known as Ha Tay Province. Coordinate system: WGS1984, UTM Zone 48N. 

Despite the availability of datasets on production, trade and demand for construc-
tion-related mineral commodities (on a national level) and population, no study has 
correlated this information with Earth Observation datasets in Hanoi so far. 

In Reference [26], information has been used to assess the current and future (up to 
2030) material supply and demand, based on measured and predicted population 
growth, without including local data on the building stock, which was not available at 
the time. Recently, Reference [27] defined an MFA by not considering data on land cover 
but assumptions based on generic information about the total domestic net floor area 
derived from planning documents and expert knowledge without accounting for the 
different types of roads and buildings within each of these categories and the impact of 
informal mining activities. Neither of these studies considered the spatial aspects related 
to raw material consumption for Hanoi. 

Similarly, environmental information, mainly represented by LULC maps [28–31], 
has not been analysed in connection with socio-economic driving factors, but to quantify 
changes in built-up areas. 

We therefore aim to integrate, for the first time, LULC maps with existing datatsets 
available on population and housing, and with new calculations for material consump-

Figure 1. Location map of the main administrative boundaries of the 30 districts within the Hanoi
Province with an indication of the pre-2008 Hanoi Province in green and the newly added area in
white, previously known as Ha Tay Province. Coordinate system: WGS1984, UTM Zone 48N.

Despite the availability of datasets on production, trade and demand for construction-
related mineral commodities (on a national level) and population, no study has correlated
this information with Earth Observation datasets in Hanoi so far.

In Reference [26], information has been used to assess the current and future (up
to 2030) material supply and demand, based on measured and predicted population
growth, without including local data on the building stock, which was not available at the
time. Recently, Reference [27] defined an MFA by not considering data on land cover but
assumptions based on generic information about the total domestic net floor area derived
from planning documents and expert knowledge without accounting for the different types
of roads and buildings within each of these categories and the impact of informal mining
activities. Neither of these studies considered the spatial aspects related to raw material
consumption for Hanoi.
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Similarly, environmental information, mainly represented by LULC maps [28–31],
has not been analysed in connection with socio-economic driving factors, but to quantify
changes in built-up areas.

We therefore aim to integrate, for the first time, LULC maps with existing datatsets
available on population and housing, and with new calculations for material consumption,
for a better understanding of the environmental and economic changes characterizing the
expansion of the built environment in the Hanoi Province.

3. Materials and Methods

The analysis of the urban growth described in this paper has considered the extraction
of LULC maps from satellite data (Section 3.1) and consumption data from population,
housing, trade, supply and demand data (Section 3.2). Section 3.3 details how we have
finally combined the two datasets.

3.1. Satellite Data

In this study, we used the Google Earth Engine (GEE) platform to access a total of
286 medium resolution (MR) satelite imagery for ninteen different years across the period
1975–2020. Cloud free images acquired on a single date were considered to derive the LULC
maps and when the whole province could not be covered, a mosaic of different MR images
across different dates within the same year was created (for more details on the input
images used, see Supplementary Materials S1). This method allows for the production of
spatially contiguous, cloud and haze-free, temporal series of surface reflectance composites
of satellite data. If the mosaic did not allow the whole Province to be covered for a particular
year, that year has been exluded in this work.

The MR dataset includes (for a detailed list of the satellite imagery used, see Appendix A):

• 18 Sentinel-2 (S2) acquisitions, from 2020 to 2015 with 10 m, 30 m and 60 m pixel
spacing according to the thirteen spectral bands (from visible, RGB, to short-wave
infrared). The S-2 imagery used corresponds to the Bottom-Of-Atmosphere (BOA)
corrected reflectance. Cloud-free images were obtained by using the S2 QA (Quality
Assurance) band to identify the presence of dense and cirrus clouds (ESA, 2020) [32].

• 2 Landsat-8 (L-8) images for the years 2014 and 2013 with 30 m pixel spacing along
the RGB spectrum. The L-8 imagery used have been atmospherically corrected using
LaSRC (USGS, 2019a) [33] and includes a cloud, shadow, water and snow mask, as
well as a per-pixel saturation mask.

• 264 Landsat-5 (L-5) images for the period 2012 to 1986 with 30 m pixel spacing along
the RGB spectrum. The L-5 imagery used have been atmospherically corrected using
LEDAPS [34], and include a cloud, shadow, water and snow mask, as well as a
per-pixel saturation mask.

• 2 Landsat-2 (L-2) for 1975 with 60 m pixel spacing along the Green, Red and Near-
Infared spectrum. The L-2 imagery used belongs to the Tier 1 collection whose Digital
Numbers (DNs) represent scaled, calibrated at-sensor radiance.

LULC maps have been processed in GEE computing platform using the Classification
and Regression Trees (CART) classifier [35], a supervised and non-parametric ML classi-
fication algorithm often used for LULC analysis for its high accuracy and flexibility [36].
CART, unlike logistic and linear regression, does not develop a prediction equation, instead
data are partitioned along the predictor axes into subsets with homogeneous values of
the dependent variable, a process represented by a decision tree that can be used to make
predictions from new observations [37]. At each node of the tree, one attribute of the
data that most effectively splits its set of samples into subsets enriched in one class or the
other is selected. BOA surface reflectance values have been used to train the classifier
over user-made training sample sites. The data were randomly divided into training and
validation samples with a proportion of 80% and 20%, respectively.

As the imagery was acquired at different times of the season across the years, each
year was given its own independent training samples in order to overcome issues such as
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seasonal changes of land surface (e.g., phenology) that can alter the CART classifier in each
image collection.

Given the different resolutions across the sensors, the training sites were assigned to
a single layer encompassing the five main (level-one) land cover categories identified in
the Corine nomenclature guidelines [38]: artificial surfaces, agricultural areas, forest and
semi-natural areas, wetlands and water bodies (Table 1). In addition, the changes in land
use types over time were detected and analysed from the resulting maps.

Table 1. The five categories of Land Use/Land Cover (LULC) classes used in this study.

Classes Include

Artificial Surfaces Urban fabric; industrial, commercial and transport units;
mine, dump and construction sites

Agricultural areas Arable land; permanent crops; pastures

Forest and seminatural areas Forest areas and open space with little or no vegetation

Wetlands Inland wetlands; paddy fields

Water bodies Rivers; artificial canals; lakes

Dense and evenly distributed validation samples covering urban areas and non-urban
areas were needed to assure the fairness and rationality of the validation. The validation
points have been used to build a confusion matrix through which the overall accuracy of
our classification has been assessed [39].

The different time intervals across the satellite data did not allow a maximum a
posteriori Markov Random Field analysis (MAP-MRF) [40] to be performed to improve
the overall accuracy. However, a post-classification reanalysis of the LULC data has been
done by considering the pixel trajectories. The latter provides the complete sequence of
land cover classes over the analysed period of time for every pixel [41]. It consequently
uncovered additional information on the time and type of land cover transition, which
can include single-steps (only one land cover change) or multiple-steps (more than one
land cover change). It has been used as a tool to remove the occurrence of illogical or
transient land-cover transitions in resulting land-cover change (for more details on post-
classification, see Supplementary Materials S2). For example, a transition from urban to
wetlands or to forests is considered illogical as it is unrealistic in most situations and would
definitely not occur in a short time period.

3.2. Construction Materials Consumption Data

Five construction materials have been considered in this study: crushed rock aggre-
gates, sand and gravel, cement, steel and bricks.

The publically available data at a province level resolution has been used to analyse
past construction material demand and supply in Hanoi, following the so-called ‘top-down’
approach [42]. Additional information has been extracted from downscaling data from
the national level statistics to province level, albeit based on some assumptions. These
calculations can then be projected forward using forecasted information for population
growth. The datasets utilised in the analysis of current and future construction materials
for the Hanoi Province in this study were:

• Population in numbers of persons for Vietnam as a whole and the Hanoi province by
from 1995 to 2018. To ensure consistent comparison across all years, the population of
what was Ha Tay Province prior to 2008 (see Figure 1) was combined with the data for
the Hanoi Province in all years [6].

• Projections of future population from 2019 to 2030 [43]. These projections are based
on component analysis of the 2014 Intercensal Population and Housing Survey and
take into account parameters such as age, mortality fertility and migration.
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• Area of housing floors constructed per year in Hanoi in 2010 and from 2013 to 2017
(all the years available [6]).

• Mineral production statistics for Vietnam [23]. Data for aggregates are given in
thousand cubic metres; therefore, some assumptions have been made to convert these
figures into kg and the following densities were applied: crushed rock 2500 kg/m3

and sand and pebbles 1640 kg/m3. The densities applied were based on those the
authors have used for previous work and were derived via consultation with the
UK aggregates industry [26]. From 2007, information on the construction material
production is consistent, so this year has been selected as the start year for our analysis.

• Mineral trade statistics for Vietnam taken from the UN Commodity Trade Database,
a database of international trade statistics collated by the UN. Vietnam only report
monetary value for trade so the imports and exports, reported by other countries in
kg, to and from Vietnam were used instead [44]. We considered the 2007–2018 time
interval only.

Calculations of apparent consumption were made for each of the five commodities
using Equation (1):

AC = P + I − E ± SC (1)

where AC = apparent consumption, P = production, I = import, E = export and SC = stock
change. Units are expressed as tonnes. Data for stock changes are not normally available,
but over long time trends, it can be assumed that positive and negative stock changes
balance each other out and effectively become zero.

The calculation for apparent consumption for sand and gravel was made more com-
plex by the fact that reported sand data are expected to be underestimated due to issues
with informal mining that is taking place along the Red River Delta where it is dredged
from the river bed and banks [24].

We estimate that sand production and consumption was much higher than reported
figures. As a result, cement has been used as a proxy for sand to predict future consumption
using the methodology of sand production outlined by the UN Environment Programme
(UNEP) [45], because there is a clear relationship between cement and sand in the pro-
duction of concrete, the main use for both commodites in construction. This is not ideal,
however, as sand is also used (in lesser quantities) in non-concrete applications such as
mortar, road construction, construction fill etc.

The per capita consumption of construction materials will vary across a country like
Vietnam because the type and quality of housing is likely to vary and the amount of indus-
trial activity will be different. However, the assumption that the per capita consumption
is similar across Vietnam amd allows the national level minerals production and trade
statistics to be applied to a single province. It also provides a method by which predictions
of future consumption of construction materials can be made because of the availability of
data for expected population growth.

The production accounts for how the rate of urbanization highly influences the per
capita consumption, as the more people move into urban centres, the more demand for
housing, transport and other infrastructure accelerates.

For the projected figures, the average annual growth rate of consumption per capita
in kg/person was calculated by applying the average percentage change for a time range
with recorded data (9 years, 2008–2016) to the previous year’s consumption per capita.
This per capita figure was then factored up using the GSOV and UNFPA [43] figures to
calculate consumption for Hanoi for each year from 2019 until 2030, the last year for which
population forecast is available [21]. This process is shown in Equation (2):

PCHi = CPCi−1 +

(
∑n

i PCCPC
n × 100

× CPCi−1

)
× HP (2)
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where PCH = projected consumption for Hanoi for the ith year, n = total number of years,
CPC = consumption per capita for Vietnam, PCCPC = yearly percentage change in per
capita consumption and HP = projected population for the Hanoi Province.

This top-down approach (Figure 2) is based solely on material consumption and
population statistics and does not account for the complexity of our urban systems. For
example, it does not account for changes in the building stock, in social trend and prefer-
ences, in transport infrastructure and other components of the urban environment, which
may differentiate per capita consumption to the projection made. However, despite these
limitations, the method provides a useful broad-brush approach for analysing Hanoi’s
expansion in the recent past and for forecasting the quantities of materials that may be
needed to support future growth in line with the city expansion and the population growth.
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Figure 2. Schematic diagram explaining the steps involved in the top-down future supply and
demand balance calculation.

Despite information in the area of housing, floors constructed are only available for
a few years at the city level, and these data were included in the analysis because they
provide an additional type of information to population growth by illustrating changes
that may affect the styles of building and population density. Both of these have a direct
impact on material consumption.

3.3. Method for Combining Datasets

Combining the satellite data (spatial) with material AC, population and construction
of housing floors data firstly requires that datasets be converted to the same spatial or tem-
poral reference system. The material apparent consumption and the other data mentioned
in Section 3.2 are not available as a geospatial dataset and consequently only a temporal
comparison has been possible.

To enable a correlation over the overlapping time interval, the following datasets have
been analysed for every year available:

• Areas of artificial areas (km2) vs population (in thousand persons) between 2010 and
2017 (excluding 2011 and 2012).

• Areas of artificial areas (km2) vs area of housing floors constructed (m2) between 1996
and 2018 (excluding 1997, 2002, 2010, 2012 and 2016).
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• Areas of artificial areas (km2) vs the AC of the five construction materials (t) between
2007 and 2018 (excluding 2010, 2012 and 2016).

• Population (in thousand persons) vs the AC of the five construction materials (t)
between 2007 and 2018.

• Housing floors constructed (m2) vs the AC of the five construction materials (t) be-
tween 2010 and 2017 (excluding 2011 and 2012).

The statistical strength of these correlations has been expressed by the R-squared (R2)
value. R2 is a statistical measure of fit that indicates how much variation of a dependent
variable is explained by the independent variable in a regression model.

4. Results
4.1. Land Use/Land Cover (LULC)

The LULC maps associated with the urban expansion are summarised in Figure 3. The
whole collection of LULC maps for every class is provided in Supplementary Materials S3.
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The CART supervised classification was an iterative process that involved visually
identifying misclassified areas, increasing the number of samples, and subsequently re-
running the classifier and accuracy assessment. This step was necessary because of the
heterogeneity of the land cover classes in the study area and their quick changes over time.
On average the accuracy of the LULC maps, after the correction detailed in Supplementary
Materials S2, is 82% with higher values (up to 98%) in S-2 and VHR imagery and lower
values (down to ~70%) with Landsat data (see Appendix A). An average increase of ~2%
in the overall accuracy is due to the post-classification reanalysis. Regardless of the sensors,
the water bodies’ class has the highest accuracies over the years (Table 2).

Table 2. Accuracy assessment of the LULC classification for the Hanoi Province for each class over
the different years.

Class Average Accuracy

artificial surfaces 0.86

agricultural areas 0.81

forest and seminatural areas 0.86

wetlands 0.74

water bodies 0.99

In general, the LULC maps reveal that Hanoi Province is a largely agricultural domi-
nated landscape and this is uniformly distributed throughout the whole Province. The area
of artificial surface has expanded from that seen in 1975, especially towards the west and
south, along with the rise of small new conurbations in Thach That and Chuon My and the
expansion of the airport area in Soc Son. Hanoi’s urban spatial development is based on a
model that is shaping many emerging cities in Asia, and includes a central core and small
and medium satellite urban areas connected by a network of ring roads and radial axes.

Despite the reduction in forest cover, there are four main forest areas that still char-
acterize the edge of the Province (Supplementary Materials S3): the Ba Vi national park,
the Khu Sinh Thái Thiên Phú Lâm ecological park and two forests in Mỹ Ðức. Most of the
forest clearance is due to conversion to agricultural areas in the central part of the Province
and to new extraction sites or urban developments in Ba Vi and Sóc Sơn districts.

During the Sentinel-2 period (2015–2020), mining areas represent ~3% of the artificial
surfaces areas, most of them are located along the river courses. A significant difference in
the spatial density of mines is observed between Mỹ Ðức District (lower) and the adjacent
Hòa Bình Province (higher).

Temporally, the largest change in LULC is related to the increase in artificial surfaces
from 9.8% of the Province in 1975 to 21.4% in 2020 at the expense of forest and seminatural
areas whose size has fallen from 32.5% in 1975 to 5.8% in 2020. The increase in artificial
surfaces between the beginning of the 1990s and 2010s is >200 km2 in agreement with
values reported in [28] for the same interval. Agricultural areas have always represented
the majority of the LULC with a sharp increase from 51% in 1975 to >70% during the 1980s
and 1990s and then a gradual decline to 66.5% in 2020 (Figure 4).
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Based on the trajectories analysis, between 1975 and 2020, only 18% of the Hanoi
Province has not changed land cover and this is mostly represented by agricultural areas.
Wetlands are not surprisingly ephemeral features so no pixel has been continuousoly
classified in this category during the last 45 years. The low number of illogical transitions
in the trajectories (<0.004%) confirms the high quality of our LULC changes (Supplementary
Materials S2).

Around 37% of the Hanoi Province trajectories can be considered to be a stable one-
step change, meaning that, during the time periods analyzed, only one transition between
different land covers has occurred. Additionally, 45% of LULC involved two or more
changes, meaning land cover had changed from one class to a second class which has
successively changed again. This highlights a very dynamic environment within the Hanoi
urban catchment.

The two most common one-step changes are from forest to agricultural areas (for
a total of ~120 km2), especially between 1996 and 2001, and from agricultural areas to
artificial surfaces (for a total of ~25 km2).

The combined analysis of the LULC trends and trajectories shows that the growth of
the artificial surfaces (or simply urban growth) occurred at a yearly average rate of 0.26%
across the 1975–2020 period. This expansion has mainly occurred at the expense of forests
and seminatural areas until the 2000s and of agricultural areas afterwards.

4.2. Past and Future Consumption of the Construction Materials

The projections of material consumption for the selected construction materials are
shown in Figure 5. This shows forecast consumption (vertical axis) for Hanoi to 2030.
Confidence intervals, with a significance level of 0.05, are provided for the forecasted
values to assess our prediction accuracy. Due to uncertainties around sand and gravel
production figures, both the reported data for consumption and the projections made for
estimated consumption using cement as a proxy to 2030 are plotted.

The AC calculated in this work is 1.8 times higher than the consumption reported in
the official figures for 2018 and is projected to increase to 2.4 times by 2030.

The graphs indicate that, for all the commodities considered within this study, consid-
erable increases in demand are to be expected.

Based on the historical data, the highest increase (relative to 2007) is observed for steel
(+286%) followed by crushed rock (+106%), while the forecasted increase in AC for bricks
is much smaller (+13%).
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For each material, the predicted rise in forecasted demand to 2030 is summarised in
Table 3. This analysis shows that for some of the commodities demand is likely to more
than double over the next 12 years. For materials where supply shortfalls are already an
issue, this increased demand will form a serious challenge in sourcing raw materials. There
is a clear need for pro-active strategies and planning to maintain supply and to avoid
negative effects, such as unlicensed extraction.

Table 3. Forecast material demand for the Hanoi Province.

Construction Material Forecasted Demand in 2030 Compared to 2018 Data

Cement Increase 1.4-fold

Steel Increase 3-fold

Bricks Increase 1.2-fold

Crushed rock Increase 1.6-fold

Sand & gravel (adjusted) Increase 2-fold

Sand & gravel (not-adjusted) Increased 1.5-fold

4.3. Combination of the LULC Maps and Construction Material Analysis

The correlation scatterplots (Figure 6) revealed a strong positive correlation between
the areas of artificial surfaces and population change (R2 = 0.73). All artificial surfaces
are the result of human actions and therefore it is logical that an increase in population
will inevitably result in a larger area that is artificial rather than natural. Conversely, the
R-squared between artificial surfaces and the construction of housing floors was weaker
(R2 = 0.015).
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and R2 values for each variable are provided.

This suggests that the increase in artificial surfaces is connected to the rising popula-
tion, but the increase in artificial surfaces is not entirely due to the construction of housing.
The latter is not unexpected because the artificial surfaces category includes a wider range
of land uses than just housing, such as roads, industrial or commercial premises and also
mineral extraction sites.

The data for housing floors construction also relate to new housing and do not include
the existing housing stock.
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Artificial surfaces have the highest R-squared correlation with the apparent consump-
tion of cement, steel, crushed rock and the adjusted sand (Figure 7) with R2 between 0.51
and 0.78.
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Almost no correlation was observed with bricks (R2 = 0.03) and non-adjusted sand
(R2 = 0.08). The former indicates that the amount of artificial surface in Hanoi has little
effect on the quantities of bricks produced. This suggests that much of the construction
taking place in Hanoi is being carried out with concrete instead of bricks and this is further
supported by the strong correlation between artificial surfaces and crushed rock, cement
and (adjusted) sand. The weaker correlation with non-adjusted sand data suggests a
possible under-reporting of sand production in these figures.
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The slope of these R-squared correlations reveal that, for every additional km2 of
artificial surfaces created, ~9.8 × 103 t of cement, ~4.7 × 103 of steel and ~2.9 × 104 of
(adjusted) sand and gravel are needed.

The regression analysis using population as dependent variables (Figure 8) revealed
that population growth has the strongest relationship with apparent consumption of
cement, steel, crushed rock and sand and gravel (using the adjusted figures).
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These relationships have R2 between 0.63 and 0.84. A low correlation is observed
between population and AC of bricks and between population and AC of (not-adjusted)
sand and gravel.

Positive relationships between apparent material consumption and population are to
be expected because as the population in a city grows more construction of housing and
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infrastructure is required, which is inveitably reflected in the increasing area of artificial
surfaces (see Figure 6).

Conversely, the areas of housing floors constructed [6] has a poor correlation with the
AC of all the construction materials (Figure 9). The housing floor constructed per person
has doubled from 44 m2 per person in 2010 to 93 m2 per person in 2018, a value much
higher than the population increase during the same time interval (+13%). This suggests
that housing is not the primary driver for material consumption over the time period for
which data are available. This is not wholly unexpected because the expanation of the
city region will also include other types of construction, including new roads, railways
and other infrastructure to support the population growth, as well as commercial and
industrial buildings.
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Figure 9. Correlation between the area of housing floor constructed and AC of bricks, cement, (adjusted) sand & gravel,
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In this case the relationships have low R2 (never exceeding 0.14) or a negative slope
(bricks), which means that housing floor construction is not an indicative parameter for
deriving AC of construction materials.

5. Discussion

We presented a method for combining mineral consumption and population statistics
with satellite data in the Hanoi Province. The methods rely on quick access to EO databases,
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supervised classification of LULC maps followed by comparison with AC data derived
from socio-economic datasets.

Due to economic development and administrative extension, Hanoi has experienced
considerable changes in land cover, which are mainly driven by urban expansion, leading
to an increase in residential, industrial and agricultural areas. Population growth, economic
development and policy reform have played important roles in driving all of these changes.

Traditionally, data on urbanisation has come from census counts and population
surveys, which are published infrequently, vary in terms of resolution and precision, and
are subject to the availability of resources and the capacity to acquire reliable data [46].
Significant progress in the availability of remotely sensed data, ML techniques and cloud-
based computing platforms have now added the capability to analyse the rate and pace of
urbanisation in relationship with census datasets.

While the decadal satellite-derived maps present gaps, especially in the 1970s and
1980s due to lack of cloud-free acquisitions, the land cover change analysis encompasses
sufficient information to map the Hanoi city expansion over the last 45 years.

Our findings show that most of the land cover changes involve deforestation to
agricultural areas and, to a lesser extent, from forest to artificial surfaces (including mining)
until the 2000s.

Thereafter, further temporal analysis of land cover changes and the LULC trajectories
show a gradual shift to mainly the conversion of agricultural areas into artificial surfaces.

A reduction in agricultural areas at the same time as population is increasing in the
city suggests that agricultural produce must be coming from further afield to feed people
in Hanoi.

Compared to land cover changes observed worldwide, the average urban growth
rate for Hanoi (0.26%) extracted between 1975 and 2020 is in line with urban growth rates
observed between 1986 and 2010 in western world cities like Portland (USA), Prague
(Czech Republic) and Frankfurt (Germany) but still below the rates (≥1.4%) of major Asian
cities like Tianjin (China), Seoul (South Korea) and Bangkok (Thailand) [10,47]. The Hanoi
urban growth rate is also below the rate of the largest city of Vietnam, Ho Chi Minh (0.94%),
observed between 1990 and 2010 [48].

At this pace, Hanoi’s artificial areas will be at ~850 km2 by 2030, below the target of
1295 km2 of constructed land expected by the HCCMP, which includes five new satellite
towns (Hoa Lac, Son Tay, Xuan Mai, Phu Xuyen and Soc Son) that are only partially
developed in 2020.

The resolution of the satellite imagery is still not sufficient to characterize and quantify
the building stock (e.g., residential, commercial) for a full MFA, but it is sufficient to
characterise the past and current consumption of construction materials and to analyse
their future demand. Higher resolution data will be needed to disentangle the different
types of construction within the building stock and transport infrastructures, which at the
moment are all included in the artificial surfaces class.

Similarly, we do not have enough information on the local geology or mine databases
to separate the different types of materials extracted from the mines mapped in the Hanoi
Province. Bringing this type of information into the analysis would allow for an under-
standing of how the mineral extraction industry can meet the demand on construction
going forward.

Mining plays an important role for the economy of the Hanoi Province. However,
little is known about its attributes, such as area, type, scale, and current status as well as
socio-environmental impacts. The large extension of small-scale mining raises a concern
regarding its socio-environment impacts for the Hanoi ecosystems and for local people,
since it does not always follow environmental protocols [15].

The forecasted material consumption shows that, in 2030, crushed rock aggregates
and sand and gravel will be the most required commodities by far (~57 Mt and ~26 Mt
respectively) and steel will be the material with the highest increase in usage (three times
more than its use in 2018). This is perhaps unsurprising given the reliance on both concrete
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(the main component of which is aggregates in the form of sand with crushed rock or
gravel) and steel in modern urban development.

Whilst steel, due to its high value, is an internationally traded commodity, sand and
gravel represent a high-bulk and low-value commodity. Sand and gravel are therefore
normally sourced within tens of kilometers from the point of consumption, which means
that the future increase in its AC will likely result into additional land cover changes within
the Hanoi Province.

Additionally, the forecast identifies a huge volume of sand and gravel needed over
the next 10 years in an already stressed market [26]. If sand and gravel cannot be supplied
locally, this increasing demand can potentially outstrip the supply and result in a shortage.
This might cause delays in construction, economic difficulties as a result of volatile prices
and development targets to be missed.

The comparison of LULC and AC of construction materials presented in this work
enables the characterisation of the spatio-temporal patterns of material metabolism for
the infrastructure development. More importantly, it facilitates the investigation of the
correlation between material utilisation, socio-economic development and environmental
impact on a more refined level so that effective policies could be derived for sustainable
infrastructure planning and environmental management of the HCCMP.

We considered a top-down approach made of a total of 20 correlations between
artificial surfaces, population, housing floor constructed and AC of construction materials,
which revealed the following main points:

- A clear correlation between the growth of population, artificial surfaces and AC of
(adjusted) sand and gravel, cement, steel and crushed rock. The strength of the
relationship between apparent consumption and population is a clear illustration of
the need to plan for materials supply wherever population growth is expected.

- The poor correlation between the construction of housing floors and the AC of con-
struction materials results from the former growing more than the latter and an overall
increase of the surface of housing floors constructed per person. So far, little data is
available to draw a specific conclusion from this comparison. It is likely that this trend
can be explained by either different construction practices used for housing through
the years, the decreasing proportion of construction materials used for housing com-
pared to the quantity used for transport units and commercial infrastructure or the
import of additional construction materials from other provinces of Vietnam.

- The AC of bricks is unrelated to population or artificial surfaces and is strongly and
negatively related to housing floor construction. Such relationship means that the
tonnes of bricks consumed per cubic metre of housing floor constructed are falling.
Because housing is usually one of the largest processes by which the new bricks are
being used (or consumed) this can be indicative of changing standards or building
styles used for house contruction or that this material is mainly exported to elsewhere
within the country.

- The official figures for the production of sand and gravel (non-adjusted) are poorly re-
lated to population, housing floor construction and artificial surfaces, which suggests
a level of under-reporting of sand and gravel production occurring. We have therefore
used cement as a proxy to estimate AC and forecast consumpion of sand and gravel.
According to the revised calculation (see Section 3.2), the reported (official) values are
currently almost two times lower than the likely true level of AC. Our adjusted values
are much more strongly related to the changes in artificial surfaces and population.
The weak correlation with the reported levels of sand production strongly supports
the suggestion that these figures are under-representing the amount of sand that is
being produced. It is very likely, therefore, that additional sand is being produced to
meet the demand of construction in Hanoi and that this is originating from ‘unofficial’
sources within the province. As noted earlier, there is evidence for sand extraction
taking place from river beds and banks in the Hanoi region [24], and, if this is not
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regulated, could have severe negative and irreversible effects on the environmental
conditions of the rivers.

Some of the studied correlations are not as strong as expected, which may suggest
some other factors (e.g., political or cultural) play important roles in affecting the change of
construction materials. Further investigation of the driving factors is needed along with
the support of data at a refined spatial/temporal scale. While current levels of publicly
available data are sufficient for the analysis of material supply and demand at the national
level, the analysis of material flows at the city level require considerable assumptions and
estimation to be made by scaling national level data to the city level. New data and over a
longer period at city level would allow for the development of a more comprehensive ap-
proach than the top-down method we adopted. Our top-down approach is based solely on
material flows and population statistics and does not take into account urban growth plans,
building stock information and the metabolism of urban development over time. In that
sense, it is ‘simplistic’ and could be improved by incorporating some of the aforementioned
factors into the model to drive a bottom-up material flows quantification [26]. Material
flow analysis is suitable as a method for quantifying material input and use flows, but if
we would like to quantify the impacts of materials to the environment, then additional
data and methods would have to be considered (e.g., environmental impact assessment,
LCA) [8].

The contrast between the smooth linear trend shown in projected consumption and
more complex trends from measured statistical data illustrates the limitations of such
simplistic modelling and how economic and political factors, which can alter such trends
considerably, can only be constrained by confidence intervals.

The comparison between LULC maps with AC provides it is still an added value
for a better understanding of possible future demand for construction materials in the
area which can be used to develop informed regulatory framework, as requested in Refer-
ence [15], and can guarantee the balance between promoting sustainable economic growth
prosperity and guaranteeing environmental protection. Such efforts go in the direction of
two United Nations SDGs: no.11 (Sustainable Cities and Communities) and 12 (Responsible
Consumption and Production).

From our analysis, we can state that, over the last 20 years, the reduction in forest
and seminatural areas has been very limited. However, if the targeted urban growth
is to be achieved in Hanoi, then the main threat to forest preservation is related to the
increasing request for building plots and mining concessions, in particular for steel and
sand and gravel.

6. Conclusions

The Hanoi Master Plan 2030 has been designed by the Vietnamese government to
accommodate the growing population from 6.7 million in 2010 to 9.2 million by 2030 and
promote economic development in the capital region. Indeed, urban areas in Vietnam
contribute to most of the country’s annual GDP and will create expanding markets for
construction materials.

The rapid urbanisation has already determined drastic environmental changes in
terms of land use [28,29] and despite this, an analysis of the impacts in terms of land use
changes and future demand and supply of construction materials does not yet exist in the
literature and has not been included in the city’s main planning document, the HCCMP.

In this regard, satellite data have provided information on how we can assess the
impact of the increasing population and demand for construction materials on landscape
change. The latter is information that is easy to retrieve, especially at the national scale
in Europe and North America, while LULC maps can be produced, based entirely on
open-source data and software. Therefore, our methodology has the potential to be repli-
cated elsewhere.

For the Hanoi Province, our work has identified the construction materials whose
supply and exploration needs to be prioritised and where new legislative framework can
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be put in place to regulate and support businesses to realise more sustainable supply chains
that can preserve or mitigate the impact of urbanisation on the natural landscape.

We have therefore analysed and demonstrated the close correlation among land cover
changes, population growth and the apparent consumption of construction materials.
These correlations provide reliable and consistent information to top-level institutions
such as Provincial People’s committee, MONRE and MOC (Ministry of Construction) to
support more effective policies for the responsible use of non-renewable mineral resources
or future strategies for an adequate supply of construction materials, proportionally to the
urban expansion.

We aim to develop a full MFA for the Hanoi Province through higher resolution satel-
lite data. The latter will provide information on the building stock and the infrastructure
that will further shorten the distance between EO data to conventional economic tools.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072
-4292/13/3/334/s1, Supplementary Material S1: Images used to derive Land Use/Land Cover
(LULC) maps; Supplementary Material S2: LULC trajectories correction; Supplementary Material S3:
LULC maps.
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Appendix A

The satellite data used have a cloud coverage of ≤2% of the Hanoi Province and spans
nineteen different years, years with cloud cover have a ‘*’:

• 3 S-2 images acquired on 9/3/2020. Overall accuracy: 98%.
• 2 S-2 images acquired on 10/12/2019. Overall accuracy: 88%.
• 2 S-2 images acquired on 31/10/2018. Overall accuracy: 93%.
• 4 S-2 images acquired on 20/12/2017. Overall accuracy: 91%.
• 7 S-2 images acquired in 2015 *. Overall accuracy: 93%.
• 2 L-8 images acquired on 19/1/2014 *. Overall accuracy: 85%.
• 17 L-5 images acquired between July and November 2011 *. Overall accuracy: 78%.
• 2 L-5 images acquired on 5/11/2009 *. Overall accuracy: 89%.
• 35 L-5 images acquired in 2008. Overall accuracy: 87%.
• 36 L-5 images acquired in 2005. Overall accuracy: 83%.
• 2 L-5 images acquired on 9/12/2004. Overall accuracy: 86%.
• 43 L-5 images acquired on 2003. Overall accuracy: 86%.
• 35 L-5 images acquired on 2001. Overall accuracy: 75%.
• 2 L-5 images acquired on 30/9/1996. Overall accuracy: 85%.
• 39 L-5 images acquired in 1992. Overall accuracy: 74%.
• 2 L-5 images acquired on 20/11/1991. Overall accuracy: 80%.

https://www.mdpi.com/2072-4292/13/3/334/s1
https://www.mdpi.com/2072-4292/13/3/334/s1
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• 49 L-5 images acquired in 1989. Overall accuracy: 83%.
• 2 L-5 images acquired on 1/7/1986. Overall accuracy: 80%.
• 2 L-2 images acquired on 29/12/1975. Overall accuracy: 86%.
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