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Abstract: The sustainable development goals of the United Nations, as well as the era of pandemics
have introduced serious challenges for agricultural production and management. Precise manage-
ment of agricultural practices based on satellite-borne remote sensing has been considered an effective
means for monitoring cropping patterns and crop-farming patterns. Therefore, we proposed a simple
and generic approach to identify multi-year cotton-cropping patterns based on time series of Landsat
and Sentinel-2 images, with few ground samples that covered many years, a simple classification
algorithm, and had a high classification accuracy. In this approach, we extended the size of training
samples using active learning, and we employed a random forest algorithm to extract multi-year
cotton planting patterns based on dense time series of Landsat and Sentinel-2 data from 2014 to 2018.
We created annual crop cultivation maps based on training samples with an accuracy greater than
95.69%. The accuracy of multi-year cotton cropping patterns was 96.93%. The proposed approach
was effective and robust in identifying multi-year cropping patterns, and it could be applied in
other regions.

Keywords: multi-year cotton-cropping patterns; classification; temporal trajectory pattern; time
series remote sensing

1. Introduction

It is estimated that by 2050, the total global population will reach 9.8 billion [1,2], and
the number of people affected by hunger will surpass 840 million by 2030 [3]. Ensuring
food security plays a vital role in realizing global sustainable development goals (SDGs).
In 2015, the United Nations proposed a sustainable development goal by 2030 titled “Zero
Hunger” [3], which aims to establish a sustainable agricultural system to reduce the risk
of hunger. Thus, improving agricultural systems and promoting sustainable agricultural
development are beneficial for stabilizing the global food supply.

Cropping pattern mapping is important for precision agriculture and can provide
scientific evidence for decision-makers. Achieving efficient and accurate inter/intra map-
ping for cropping patterns is critical to the sustainable development of agriculture [4–6].
Satellite remote sensing has been proven to be an effective tool to monitor changes in
crop cultivation [7–10]. Thus, many scholars have studied farming modes (such as single,
rotation, and intercropping) [11,12], crop-planting types [13,14], and agronomic practices
(e.g., irrigation, farming methods, crop variety selection, and cultivation management) [15].

Generally, crop-planting type mapping using remote sensing has been the most
reported; for example, annual crop type maps based on time series remote sensing im-
ages [16,17] or single-phase remote sensing images [18,19] have been extracted. Moreover,
some studies [20,21] have proven that the classification results of crop-planting types using
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time series remote sensing images are relatively better than those based on single-phase
remote sensing images. Therefore, multi-sensor remote sensing image fusion can obtain
crop types by constricting time series observations [22], especially combining the use of
Landsat-8 OLI and Sentinel-2 MSI remote sensing images [23]. Additionally, many studies
have focused on analyzing crop succession (e.g., monoculture, rotation, and fallow) [15].
For example, Stern et al. (2012) [10] mapped the 10-year corn-soybean rotation dynam-
ics using an annual remote sensing classification product. Tong et al. (2017) [24] used
MODIS-NDVI seasonal metrics to separate cropped land and fallowed land. Furthermore,
Bégué et al. (2018) [15] reported research on crop patterns (i.e., the yearly sequence of
the spatial arrangement of crops). Due to the need for accurate phenological cycles, the
definition of crop patterns depends on the use of high-temporal resolution data to capture
the seasonal variability of crop growth [25]. Studies on crop patterns have mainly focused
on a single year. For example, Zhang et al. (2008) [25] used MODIS data in 2004 to map
double-cropping systems in northern China. Qiu et al. (2014) [26] mapped double-cropping
croplands based on single-year MODIS-EVI data. Few studies have reported on multi-
year crop pattern mapping, while the interannual change in the cropping patterns caused
by agronomic practices (e.g., farming mode) [27] is important for precise agricultural
management. Moreover, a study reported by Petitjen et al. (2012) [28] showed that crop
classification based on time series remote sensing images suffered from a lack of sufficient
ground truths to train supervised classification algorithms. However, the active learning
method promoted by Tuia et al. (2011) [29] can efficiently expand the training sample sizes
based on limited ground truth samples, which has been used and confirmed by Li et al.
(2014) [30].

Thus, we propose a simple classification strategy to identify the multi-year cotton
cropping mode for precise cotton field management based on the freely available Landsat
and Sentinel-2 high-temporal resolution images. Specifically, we aimed to (1) map pixel-
based intra-annual crop classification using random forest algorithm; (2) map the multi-year
cotton-cropping pattern based on time series of Landsat and Senitinel-2 remote sensing
images and the expanded training sample sizes of multi-year cotton cropping patterns
using the random forest classification algorithm.

2. Materials and Methods
2.1. Study Area

The study area is located in Alar city, which covers 48,518 ha. Alar is a typical arid
zone oasis irrigation district in northwestern China at the southern foot of the Tianshan
Mountains and the northern edge of the Taklimakan Desert. Alar has a distinct temper-
ate continental climate, with aridity and low rainfall, an average annual temperature of
3.8–19.3 ◦C, and an average annual rainfall of 11.9–91.9 mm with sufficient sunshine [31].
The Aksu River, Hotan River, and Yerqiang River converge in Alar City, which forms
the Tarim River [32], and the regional soil is formed by the alluvial deposits of the Tarim
River. The Tarim River is the main source of irrigation water in this area, and the water
sources feeding the river are primarily glaciers and snow melt water [33]. Alar is in a stage
of rapid development of the agricultural economy. In the past half century, cotton has
been the main cash crop with a planting area exceeding 80% [31]. It has become the main
agricultural, forestry, and animal husbandry irrigation area in southern Xinjiang and an
important cotton, forest, and fruit industrial base (Figure 1).

2.2. Landsat and Sentinel Image Collection and Preprocessing

We selected 60 roughly cloud-free Landsat-7 ETM+, Landsat-8 OLI, and Sentinel-2
MSI remote sensing images that covered the study area during 2014–2018 from the United
States Geological Survey (USGS) and European Space Agency (ESA) (Figure 2). Only
visible blue and red bands, and the near-infrared (NIR) bands of images collected were
used. We further resampled the 10-m spatial resolution Sentinel-2 MSI images (visible-blue,
visible-red, and NIR) to 30 m. Although the time series Landsat-8 and Sentinel-2 remote
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sensing images composed relatively complete crop phenological curves, the supplement
of several Landsat-7 remote sensing images covering the crop non-growing season could
eliminate the effects of winter wheat on the true multi-year crop growth curves (Figure 2).
Landsat-7 remote sensing images covering the regions in the left of the study area had a
data gap, due to the Scan Line Corrector (SLC) failure. Therefore, we filled those images
gaps by using the upper and lower pixels of those strips from the same image using ENVI
software [34].

Figure 1. Location of the study area in China.

Figure 2. Available Landsat and Sentinel-2 time series that covered the study area from 2014 to 2018.

2.3. Training and Validation Samples

We collected ground truth samples in 2021 using handheld GPS, including 31 cotton,
64 orchard, and 12 rice samples. Meanwhile, we obtained crop type samples during 2014–
2018 at Xinjiang Aksu Oasis Farmland Ecosystem National Field Scientific Observation and
Research Station (hereafter, Aksu Station) where the study area was located in. We collected
questionnaires about multi-year crop cultivations and their locations by interviewing the
local farmers. Based on the coupled information, we obtained the detailed crop cultivation



Remote Sens. 2021, 13, 5183 4 of 17

change information during 2014–2018 for each ground truth sample. Furthermore, we
acquired the intra-year crop growth curves and multi-year cropping curves for the truth
ground samples based on time series remote sensing derived enhanced vegetation index
(EVI) curves and false color composite of Landsat and Sentinel-2 remote sensing images
using the active learning. The high spatial resolution remote sensing images on Google
Earth could assist in selecting samples of crop cultivation and orchard pattern. Based on
the above-mentioned knowledge on annual crop cultivation and multi-year cropping mode
for the ground truth samples, we expanded the sample sizes for using the active learning.
Active learning had been confirmed an effective method for selecting and expanding
samples [29]. We added unlabeled samples as training samples based on identical spectral-
temporal features of existing ground truth samples through the above-mentioned prior
knowledge [30].

The number of field samples is listed in Figure 3. “Non_Cotton” contained three
categories: vegetation (veg), non_vegetation (non_veg), and water class. Next, we used an
automatic method on data splitting functions in the R package to separate all samples into
training and validation samples, which accounted for 30% and 70%, respectively.

Figure 3. Number of samples for each annual year, in which 30% are training samples and 70% are
verification samples.

2.4. Methods

The flow chart illustrated how the multi-year cotton farming pattern was extracted
(Figure 4). First, we obtained the EVI from the time series Landsat and Sentinel remote
sensing images. Next, we expanded the training and validation sample sizes by active
learning based on ground truth samples. Second, we implemented the intra-annual cotton
classification based on the annual temporal patterns using random forest classifications.
Third, we labeled and expanded multi-year cotton cropping pattern samples references on
intra-annual classification, multi-year crop EVI curves, and time series false color composite
of Landsat and Sentinel-2 remote sensing images. Finally, we obtained the multi-year cotton
cropping patterns using the random forest classification algorithm and then implemented
the accuracy assessment for each classification category.
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Figure 4. Flow chart of this study.

2.4.1. Annual Crop Phenological Pattern Identification

We generated EVI data derived from Landsat and Sentinel-2 remote sensing images
using the ENVI software. Next, we used time series EVI data to construct the growth
process of cotton and other crops, since the EVI was highly sensitive to biomass, was
not easily saturated with high vegetation coverage, and reduced atmospheric and soil
effects [2,35]. Finally, we used the Savitzky–Golay filter [36] in the ENVI software to smooth
the EVI curve to obtain the filtered EVI time series curve (Figure 5). The formula for EVI is
as follows,

EVI = G
ρNIR − ρRed

ρNIR + C1ρRed − C2ρBlue + L
(1)

where ρNIR, ρRed and ρBlue are the reflectance of the NIR, red, and blue bands after
atmospheric correction, respectively; L is the soil-adjusting coefficient and equals 1; G is
the gain factor and equals 2.5; C1 and C2 are the coefficients of the aerosol resistance term
(C1 = 6 and C2 = 7.5, respectively).

Figure 5. Temporal EVI of different land cover types in 2014.

2.4.2. Training Samples for Multi-Year Cotton-Cropping Patterns

To extract the crop succession pattern between 2014 and 2018, we defined cotton-
planting succession based on the trajectory of the annual land use classification, which
contained monoculture (i.e., only cotton planted for five consecutive years), cotton-rice
rotation (i.e., cotton rotation with rice in any given year), reclamation (i.e., changing to
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cotton from other uses), abandonment (i.e., cotton was not planted for more than two
years), cotton-fallow (i.e., cotton rotation with bare land in any given year for no more
than one year), and other classes (i.e., veg, non_veg, orchard, and water class) (Table 1;
Figure 6a,b). Next, we selected a total of 1293 training samples (30% of the total samples)
and 3000 validation samples (70% of the total samples) using an automatic method on
data splitting functions in the R package for identifying and assessing multi-year cotton-
cropping patterns (Table 2).

Table 1. Rules of multi-year cotton-farming pattern identification.

Multi-Year Cotton-
Farming Patterns Definition of Rules Temporal Phenological Patterns

Monoculture

Cotton was planted over five
consecutive years in a particular

field. This process was referred to
as continuous cotton cropping.

Abandonment
Farmers stop growing cotton and

other crops for more than two
consecutive years.

Fallow
Cotton-farmed area rotation with
bare land in a given year for no

more than one year.

Reclamation
Certain crop fields were changed

from other land-use classes to
cotton.
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Table 1. Cont.

Multi-Year Cotton-Farming
Patterns Definition of Rules Temporal Phenological Patterns

Cotton-rice rotation
Rotating cotton with rice in a given

year with the aim to enable
regeneration of soil fertility.



Remote Sens. 2021, 13, 5183 8 of 17

Table 2. Training and validation samples for multi-year cotton-cropping patterns.

Categories Training Samples Validation Samples

Abandonment 157 365
Reclamation 130 301
Monoculture 138 320

Fallow 95 220
Rotation in 2014 33 74
Rotation in 2015 76 175
Rotation in 2016 155 360
Rotation in 2017 146 339
Rotation in 2018 124 289

Others 239 557
Total 1293 3000

Figure 6. (a) Five-year temporal EVI of cotton-rice rotation. (b) Five-year temporal EVI of cotton succession (rotation,
reclamation, fallow, and abandonment).

2.4.3. Random Forest Classification

The random forest (RF) algorithm [37] is an automatic learning method based on
the creation of different decision trees [38]. The RF algorithm has been proven to be an
effective and robust method in crop type identification [39,40]. Therefore, we employed
the RF algorithm in the EnMAP-Box (an open-source plug-in for QGIS). The number of
trees created by randomly selecting samples from the training samples was set to 1000.
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Lawrence et al. (2006) [41] proved that there was no increase in the number of errors
beyond the creation of 1000 classification trees. We used the EVI time series phenological
pattern (Figure 5; Table 1) as input variables in the RF classification method.

2.4.4. Classification Accuracy Assessment

The accuracy of the pixel-based intra-annual crop cultivation and multi-year cotton
cropping pattern classification was evaluated in terms of overall accuracy (OA), producer’s
accuracy (PA), user’s accuracy (UA) metrics, and Kappa coefficient [23]. Figure 3 shows
the spatial distribution of the validation samples for intra-annual crop cultivation classifi-
cation, while Table 2 shows the distribution of the validation samples for multi-year cotton
cropping pattern classification. Moreover, we spatially validated the multi-year cotton
cropping pattern using ground truth data collected at the Aksu Station.

3. Results
3.1. Intra-Annual Cotton Mapping Based on the RF Method

We employed a pixel-based RF classification approach to obtain annual cotton and
other crop types. According to the annual classification map, cotton was the primary crop
type in the study area, followed by orchards, while the tertiary crop type was rice (Figure 7).
The spatial and temporal distribution of cotton and orchard crops was stable, while the
rice crop distribution changed every year due to cotton-rice rotation (Figure 7).

The highest OA was obtained in 2014, at 98.58%, followed by 2015 at 98.16%. The
lowest OA of the classification was in 2017, with 95.69%. In addition to the orchard
classification in 2015 and 2018 and the crop classification in 2017, the difference between
UA and PA was lower than 2% in terms of classification of each type (Table 3).

Table 3. Accuracy of the intra-annual crop mapping based on the RF classification method.

UA/PA (%)
OA (%) Kappa

Cotton Rice Orchard Others

2014 98.32/99.57 100.00/98.65 97.37/99.57 99.03/97.84 98.58 0.98
2015 98.53/98.90 96.43/98.90 99.44/94.65 96.98/98.90 98.16 0.97
2016 98.95/97.25 98.63/99.72 96.79/94.76 96.80/97.92 97.8 0.97
2017 97.57/92.74 94.38/99.12 96.74/91.28 95.07/97.12 95.69 0.94
2018 95.13/96.70 97.25/97.92 98.41/95.38 97.12/96.88 96.84 0.96

3.2. Multi-Year Cotton Cropping Pattern Identification

We obtained the pixel-based multi-year cotton cropping patterns using the RF clas-
sification method and extended training samples (Figure 8). The monoculture category
was mainly distributed in the center of study area. The monoculture cotton class occupied
the highest area in the nine cotton-farming pattern categories (expect the other class) with
81.83 km2 (Figure 9). The reclamation cotton field clearly had northerly development,
which was previously unused land (Figures 6 and 8) and increased by approximately
26.12 km2. Rotation cotton was mostly located in outside areas. The cotton-rice rotation
class area continued to increase over the study period by 73.19 km2. It was noticeable
that the area of cotton-rice rotation rose year by year, from 7.92 km2 to 26.92 km2 over the
period shown (Figure 9). Although the study area occupied a small part of Alar city, this
phenomenon showed the condition of cropland that was used tended to be better in Alar
city due to rotation being an effective agronomic practice for soil fertility maintenance and
for tackling pests [15]. The eastern part of the research area was the main abandonment
cotton distribution area with 14.71 km2. Moreover, the overall accuracy of the multi-year
cropping pattern was 96.93%, and the kappa coefficient was 0.97. In addition to the other
classes and rotation in the 2015 class, the difference between UA and PA was lower than
3.5% in terms of other crop class classifications (Table 4).
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Figure 7. Annual cotton classification maps over the 5-year period from 2014 to 2018.
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Table 4. Accuracy assessment of the multi-year cotton-cropping pattern classification.

Class UA/PA (%) Class UA/PA (%)

Abandonment 100.00/97.53 Rotation in 2014 93.33/94.59
Fallow 100.00/98.64 Rotation in 2015 100.00/94.86

Monoculture 98.38/95.00 Rotation in 2016 99.44/98.89
Reclamation 97.95/95.02 Rotation in 2017 99.09/96.17

Other 90.41/99.82 Rotation in 2018 95.76/93.77

OA (%) 96.93
Kappa 0.97

Figure 8. Multi-year cotton-cropping pattern between 2014 and 2018.

Figure 9. Area of multi-year cotton-cropping patterns from 2014 to 2018; (a) pixel-based multi-year
cotton cropping pattern, (b) GIS-driven multi-year cotton cropping pattern.

3.3. GIS-Driven Multi-Year Cotton Cropping Pattern Extraction

Meanwhile, we used the GIS overlay analysis method proposed by Martínez-Casasno-
vas et al. (2005) [11] to derive the spatial and temporal dynamics of cotton cultivation
based on intra-annual cotton classification maps. Next, we combined the temporal tra-
jectories of multi-year cotton cropping patterns into ten categories (Figure 10) using the
same rules proposed in the Table 1. The GIS-driven spatial distribution of ten multi-year
cotton cropping categories was similar to the result using the pixel-based random forest
classification (Figure 8). Differently, the GIS-derived reclamation category area was larger
(60.55 km2) than that using the RF classification method (Figure 9). Similarly, compared
to the RF classification method, the GIS-derived follow type and monoculture type were
larger, respectively. The area of GIS-driven cotton rotation types in different years increased
during the period from 2014 to 2018, while the annual increase speed was lower than that
using the RF classification method.
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Moreover, we evaluated the accuracy of the GIS-driven multi-year cotton cropping
pattern and the result showed that the OA and Kappa coefficient were 87.8% and 0.86
(Table 5), respectively. It was noticeable that the PA of the monoculture type was only
49.69%. The UA of the rotation in 2014 type and the fallow type were relatively low, with
83.15% and 85.94%, respectively.

Figure 10. GIS-driven multi-year cotton-planting pattern from 2014 to 2018.

Table 5. Accuracy assessment of GIS-driven cotton cropping pattern.

Class UA/PA (%) Class UA/PA (%)

Abandonment 99.72/98.08 Rotation in 2014 83.15/100.00
Fallow 85.94/100.00 Rotation in 2015 100.00/99.43

Monoculture 98.44/49.69 Rotation in 2016 100.00/94.44
Reclamation 96.78/100.00 Rotation in 2017 100.00/94.10

Other 97.01/98.57 Rotation in 2018 100.00/90.07

OA (%) 87.8
Kappa 0.86

4. Discussion
4.1. Accuracy of Cotton Cropping Pattern Identification

We found that the overall accuracy of multi-year cotton cropping pattern classification
based on pixel-based RF classification (96.93%) was relatively higher than the classification
based on the GIS-driven method (87.8%). The comparisons demonstrate that annual crop
classification errors can accumulate to affect the accuracy of temporal trajectories of multi-
year cotton cropping patterns based on GIS spatial overlay analysis method. Conversely,
based on the labeled multi-year cotton cropping samples, we accurately obtained classifica-
tion results using the random forest classification method and minimized the accumulation
of errors from annual classifications. This accumulation of classification errors in a single
year had been reported in the identification of forest change patterns [42], arable land
change patterns [43], and vegetation restoration in arid zones [44]. Moreover, the multi-
year cotton cropping pattern classification using these two approaches at the Aksu Station
showed that our proposed approach accurately identified the following in 2015 type, which
was same with the true cotton-rice rotation practice, while the GIS-driven method was
incorrect (Figure 11). The above-mentioned evidence demonstrated that compared with
the method proposed by Martínez-Casasnovas et al. (2005) [11], the proposed approach in
this study could accurately obtain the multi-year cotton cropping patterns.

Although the random forest algorithm needed many samples to fill the demand of
constructing trees [30], we expanded the sample sizes through the active learning method
based on small ground truth sample sizes. Under the premise of ensuring the sample
size, RF had an excellent performance in intra-annual crop classification with the high
accuracy (Table 3), which was consistent with the report of Li et al. (2014) [30]. Furthermore,
we found that RF classification could accurately identify the multi-year cotton cropping
patterns (Table 4).



Remote Sens. 2021, 13, 5183 13 of 17

The user accuracy and producer accuracy of multi-year cotton-cropping patterns
based on Landsat and Sentinel time series greater than 90% indicated that the proposed
simple and generic strategy could effectively identify multi-year cotton-cropping patterns.
Compared with Schneibel et al. (2017) [45], who used the LandTrendr approach, which
was a time series segmentation algorithm belonging to spectral-temporal change analysis
approaches, to track multi-year cultivation abandonment and reclamation, our proposed
approach not only identified more categories of multi-year crop cropping patterns, but
also enabled to reduce the requirement for programming ability in image interpreters,
agronomists, and agricultural sectors.

Figure 11. Cotton cultivation patterns at the Aksu Station; all remote sensing images are in July of
each year; (a) multi-year cotton cropping pattern using RF method, (b) GIS-driven multi-year cotton
cropping pattern.

4.2. Advantage and Versatility of the Proposed Simple and Generic Approach

The significance and starting point of this research was to propose a simple and
generic strategy to identify multi-year cotton cropping patterns using Landsat and Sentinel-
2 time series for the precise management of farmland. The accuracies confirmed that
the recognized high-performance RF algorithm associated with the active learning-based
training samples could obtain an accurate cotton-cropping pattern from 2014 to 2018, which
could be utilized for other crops and regions.

In this study, we increased the training sample size by selecting unlabeled samples
from time series satellite-observed EVI curves that were similar to the temporal EVI patterns
corresponding to various multi-year cotton-cropping patterns. This active learning method
based on a small number of field survey samples could effectively resolve the difficult-to-
obtain dilemmas of selecting training samples from the field survey across consecutive
years. Thus, the proposed simple and generic approach in this study was convenient for
use in other regions to identify different cropping patterns based on time series remote
sensing images, since the limitation of training samples from continuous observations
over many years had been effectively resolved. More beneficially, increasingly many
satellites provided freely available Earth observation data with fine spatial, temporal, and
spectral resolutions; furthermore, they promoted remote sensing in the era of big data.
Specifically, the available Landsat series (including Landsat-8 and new launched Landsat-9)
and European Space Agency’s Sentinel series remote sensing images provided both high
temporal and spatial resolution advantages for dense Earth observations. The wall-to-wall
remote sensing images resolved the data quality problems caused by cloud cover noise
in globally tropical and subtropical regions and constructed growth curves based on the
monthly ten-day interval EVI and other vegetation index products. Thus, the proposed
approach in this study can expand application prospects to extend to the global scale.
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4.3. Implications for Precise Farmland Management

The proposed approach effectively and precisely extracted multi-year cotton-cropping
pattern based on freely available Landsat and Sentinel-2 time series and a small size of
ground truth samples. The approach was relatively robust with a high accuracy, and had
less requirement for programming ability, making it possible to be easily applied in other
regions. The innovation of our proposed approach aimed at the applications of multi-year
cotton cropping pattern recognition based on time series remote sensing images in the agro-
nomic practices and precise management of cotton cultivation modes across many years.
The accurate multi-year cotton cropping pattern recognition using our approach could track
inter-annual cotton cropping driven by annual agronomic management in real-time, which
could meet requirements of precisely agronomic management from different customers.

Governments, farmers, and investors all need a wide range of real and reliable in-
formation about cotton cropping patterns across many years [46]. From the perspective
of governments, increases in cotton-rice rotation areas in Alar City from 2014 to 2018
illustrated that the protection of farmland and the improvement of soil quality policies
proposed by the local government [47] have been strictly enforced since the cotton-rice
rotation model could reduce the negative effects of pests and diseases [48]. Meanwhile,
the distribution of cotton-rice rotation provided precise spatial location information for
agronomic sectors to further cotton-fields rotation. Furthermore, increases in cotton-rice
rotation area proved that the Chinese government was actively responding to the SDGs
put forward by the United Nations [3].

However, the continuous cotton cropping sequence in the study area was more than
four consecutive years, which was different from other worldwide cotton planting regions.
The United States [49] and Pakistan [50] both adopted the short-term cotton sequential
planting model of one year or two consecutive years. Moreover, our results showed that al-
most half of the cotton-cropping fields in the study area had five consecutive years of contin-
uous cropping practice. According to the result of pixel-based multi-year cotton cultivation
classification (Figure 10), the monoculture class had 81.83 km2, while the rotation class only
had 73.19 km2 over the five consecutive years. Uzbekistan’s official recommendations [51]
requested the cotton cultivation sequence for 1–3 years. Therefore, our contributions could
provide new clues to the cotton cultivation modes regulated by the government, which
may have helped with decision-making on sustainable agricultural development.

The purpose of the proposed simple and generic approach was to effectively and
precisely manage multi-year cotton-cropping modes. Thus, based on the proposed simple
and generic approach and the generated results, we provided customized services for
three different levels of user needs. From the perspective of agricultural sectors, accurately
making agricultural policies, such as the governance of farmland abandonment, was
the primary concern. Correspondingly, the cotton-abandonment pattern was accurately
identified using the proposed approach, which could provide accurate geographic locations
and areas (Figure 6b). Additionally, the continuous cotton cropping mode was harmful
to cotton growth and yield formation, due to the increasing probability of pests and
diseases [47]. The obtained rotation patterns of cotton and rice in this study confirmed that
increasing the area provided spatial distribution for agricultural sectors. Moreover, the
geographic locations of the continuous cotton-cropping mode could attract the focus of
agricultural sectors. Our results could provide scientific evidence for policy and decision-
making against market disturbance in regard to farmer options for crop cultivation over
many years.

From the perspective of agricultural investment enterprises, multi-year cotton-cropping
patterns and the cultivation conditions of farmlands could provide precise basic data ob-
served over consecutive years, which could assist them in evaluating the potential future
cotton yield and possible cultivation scale. From the perspective of farmers, our results
could provide them with specific multi-year cotton-cropping patterns to each farmland and
assist farmers in selecting the corresponding farming modes, such as fallow and rotation.
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Our results could provide services to promote increases in cotton yield and optimize the
farmland productivity.

5. Conclusions

This study proposed a simple and generic approach to extract intra-annual cotton-
mapping and multi-year cotton-farming patterns, based on limited ground truth samples
and Landsat and Sentinel-2 time series. The results showed that the cotton and orchard
planted areas were stable, while the cotton-rice rotation frequently changed during 2014–
2018. The cotton-rice rotation area exhibited an increasing trend during 2014–2018, while
continuous cropping of cotton for more than five consecutive years remained at a high
percentage. Moreover, cotton reclamation expanded toward the north. The results indicated
that our proposed approach could accurately extract multi-year crop-planting patterns.
This research contributed to providing different levels of customized services regarding
multi-year cotton cropping for agricultural sectors, companies, and farmers. Our proposed
approach could be promoted to other regions due to the robust algorithm and freely
available remote sensing images.
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