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Abstract: Forests play a vital role in combating gradual developmental deficiencies and balancing
regional ecosystems, yet they are constantly disturbed by man-made or natural events. Therefore,
developing a timely and accurate forest disturbance detection strategy is urgently needed. The
accuracy of traditional detection algorithms depends on the selection of thresholds or the formulation
of complete rules, which inevitably reduces the accuracy and automation level of detection. In
this paper, we propose a new multitemporal convolutional network framework (MT-CNN). It is an
integrated method that can realize long-term, large-scale forest interference detection and distin-
guish the types (forest fire and harvest/deforestation) of disturbances without human intervention.
Firstly, it uses the sliding window technique to calculate an adaptive threshold to identify potential
interference points, and then a multitemporal CNN network is designed to render the disturbance
types with various disturbance duration periods. To illustrate the detection accuracy of MT-CNN,
we conducted experiments in a large-scale forest area (about 990 km2) on the west coast of the
United States (including northwest California and west Oregon) with long time-series Landsat data
from 1986 to 2020. Based on the manually annotated labels, the evaluation results show that the
overall accuracies of disturbance point detection and disturbance type recognition reach 90%. Also,
this method is able to detect multiple disturbances that continuously occurred in the same pixel.
Moreover, we found that forest disturbances that caused forest fire repeatedly appear without a
significant coupling effect with annual temporal and precipitation variations. Potentially, our method
is able to provide large-scale forest disturbance mapping with detailed disturbance information to
support forest inventory management and sustainable development.

Keywords: forest disturbance mapping; multitemporal CNN; large-scale long time-series; distur-
bance type

1. Introduction

Amid radical global environmental degradation, forests with worldwide coverage
play a vital role in promoting human sustainable development. In terms of balancing the
regional ecology system, forests are also able to regulate regional climate as well as carbon
and water cycles [1–3]. Nevertheless, most existing forest ecosystems are continuously
disturbed by natural and human-made events, such as fires, pests, and deforestation,
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which seriously harms the local ecosystem and wildlife population structure [4,5]. It is
urgently needed to develop appropriate land management strategies using accurate forest
disturbance maps through long time-series archived remote sensing data. Conventional
forest ecology methods often require intensive field investigation and consume abundant
resources, but it is difficult to achieve satisfactory forest disturbance detection results on
large-scales [6]. Therefore, developing a timely and accurate forest disturbance detection
strategy is urgently needed.

Earth observation satellites are designed to acquire land surface images constantly
with a long-time span and large-scale coverage, which was long considered an ideal
solution to comprehensively investigate forest disturbances [7]. Since the free opening of
the U.S. Geological Service (USGS) Landsat data archive in 2008, it provides large amounts
of medium-resolution optical imagery dating back to 1972 [8,9]. Densely formed time-
series remote sensing data can dynamically identify the annual forest disturbance and
characterize the magnitude and duration of the disturbance [10]. Aiming to detect forest
disturbances, intensive studies emerged for the sake of abundant time-series remote sensing
imagery, which significantly promoted the relevant research. However, direct identifying
forest disturbances almost impossible due to substantial random noises produced by
atmospheric effects, the sunlit angle variation, and sensor degradation. Therefore, the
challenge of detecting large-scale forest disturbance is how to identify disturbance signals
from a large amount of noisy background.

The conventional forest disturbance identification strategy in remote sensing society
is to use the vegetation index (such as the normalized difference vegetation index (NDVI)
and normalized burn ratio (NBR)) quantifying the degree of changes compared to the
standard unchanged targets’ profile [11,12]. For instance, The VCT algorithm designed
the integrated forest Z-score (IFZ) index to represent the possibility of forest pixels and
developed a set of rules to determine forest disturbances [13,14]. Such methods usually
require predefined standard time-series curves before iterative comparison for disturbance
determination [15]. However, due to the influence of random noise, even the same type
of forest may present great differences in time-series vegetation indices. For this reason,
the conventional difference measurements (such as Euclidean distance or Mahalanobis
distance) are often failed to calculate inconsistency between the target time-series and
standard ones. To alleviate the above problem, Landtrendr method uses straight-line
segments to fit the representative features of the Landsat time-series signals. It simplifies
the complex time-series into straight-line feature comparison, which reduces random
noise interference to a certain degree [16]. Following a different strategy, dynamic time
warping (DTW) constructs the optimal nonlinear alignment between two time-series,
which can overcome the time deviation effectively [17,18]. Meanwhile, The Breaks For
Additive Season and Trend Monitor (BFAST) algorithm decomposes Landsat time-series
pixels into the trend, season, and noise components and determines forest disturbance by
continually comparing the disturbed time-series profile with the historically stable forest
profile [19,20]. Moreover, the CCDC algorithm constructs a physical prediction model
and detects disturbance points by comparing the prediction with the real-time series. The
model can adapt to noise when given enough coefficients [21,22]. Currently, CCDC was
integrated on the Google Earth Engine (GEE) platform and plays as the benchmark for
forest disturbance validation [23–25]. Still, these methods are built on prior knowledge
or assumptions, and the process of disturbances detection must go through a series of
iterative curve filtering or parameter optimization. Therefore, the accuracy of detection
solely depends on the selection of threshold parameters and complete rule formulation,
which inevitably deteriorate the detection accuracies and automation levels [26]. Thus,
it is necessary to develop self-adaptative and autonomous detection methods for the
improvement of forest disturbance identification.

Deep learning strategies, which extract high-level features through hierarchy struc-
tures, were widely used in time-series information extraction tasks [27]. Compared with
traditional methods based on hand-crafted rules or thresholds, the high-level features
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learned by deep learning are more representative [28]. At present, deep networks such as
CNN and LSTM were intensively used for large-scale agricultural and forestry monitoring,
such as forest coverage prediction and crop phenology detection [29,30]. Specifically, Kong
et al. (2018) [31] proposed a strategy to learn stable forest time-series with LSTM network
from historical data, which then allows for the forest disturbance detection to be identified
by comparing the predicted data and real data. Ban et al. (2020) [32] achieved near real-
time localization of forest fires with the assistance of a multilayer CNN framework. Thus,
the mentioned studies are designated to detect forest disturbances given the abnormality.
Still, the types of disturbances (i.e., fire, deforestation) is often needed before a reasonable
decision can be made for forest protection.

For a typical forest disturbance time-series, it can be decomposed into two subpro-
files that are the disturbance process (shown as a rapid decline in the values of vegeta-
tion index) and a duration process (shown as a slow recovery of the vegetation values),
respectively [33]. For example, after a forest fire event, the ecological forest infrastructure
is fully destroyed, and it will take 10 years or more to restore to the original level, while for
most deforestations, it can be quickly restored within few years (i.e., 3–5) [12,34,35]. But,
most of the existing forest disturbance detection methods focus on the fixed-scale for dis-
turbance process recognition and neglecting the recovery process measurement. Therefore,
the relationship between disturbance types and their scale-variate duration process is often
overlooked [36]. Moreover, different disturbances may constantly occur through a specific
temporal range. How to iteratively detect forest disturbances also remains unexploited.

To solve the above problems, we propose a multitemporal convolutional network
framework (MT-CNN) to recognize different types of forest disturbances. Specifically, we
first detect potential forest disturbance points through a set of sliding windows techniques,
which inevitably may contain a certain degree of noise. After that, the rough detection
results are further being refined with a well-trained multitemporal CNN network. In
addition, during the process of refinement, the disturbance types of the forest also to be
determined. The main contributions of this paper are:

(1) The sliding window scheme is being integrated with multiscale temporal CNN for
forest disturbance type recognition with various duration periods.

(2) The proposed MT-CNN can simultaneously achieve long-term and large-scale multi-
ple forest disturbance detection without human intervention.

(3) The prediction accuracy of forest disturbances is above 90% on the USA west coast
region with the past 35 years of Landsat time-series data.

The remainder of this paper is organized as follows: the research data and the details
of the MT-CNN method are described in Section 2, and Section 3, respectively. Section 4
introduces the experiment of forest disturbance type detection and shows the experimental
results. Discussion and conclusion are presented in Sections 5 and 6, respectively.

2. Study Area and Data Preparation
2.1. Study Area

To fully demonstrate the performance of our proposed forest disturbance detection
method, we conducted tests on a large-scale area at the west coast of USA. As shown in
Figure 1), it is mainly located in northwestern California and western Oregon. The region
mainly has a Mediterranean climate, with dry summers and rainy winters. Due to its
unique geographical location, the region has a variety of forest types. Among them, the
coastal area is mainly wet temperate rain forest, and the inland area has a large area of
coniferous forest. Affected by the vast forest area and human activities, forest fires and
anthropogenic deforestation constantly occurred.
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Figure 1. Study on west coast area of USA. Area A is dominated by forest decline, while Area B is
dominated by wildfires.

2.2. Time-Series Data Acquisitions
2.2.1. Landsat Data

We constructed long time-series data from 1986 to 2020 for the study area, mainly
consisting of annual composite images of Landsat in June, July, and August for each year.
Among them, Landsat5 TM and Landsat8 OLI are the main data sources, while Landsat7
ETM+ is the auxiliary data to make up for the lack of data observation. To reduce the
influence of clouds and cloud shadows, we do cloud masking for each image, and use
the median of all available images each year as the annual composite pixel value. For
forest disturbance detection, deforestation is manifested by the decrease of near-infrared
(NIR) reflectance and forest fire has an obviously increase in short-wave infrared(SWIR2)
reflectance [37,38]. Therefore, we preprocessed long time-series data to normalized burn
ratio (NBR), as it can effectively distinguish different types of forest disturbances such as
forest fire and deforestation. The NBR is formulated as NBR = (NIR−SWIR2)

(NIR+SWIR2)
.

We drew some typical NBR curves in this area. As shown in Figure 2, wildfires and
deforestation showed different characteristics in NBR time-series curves. For example,
harvest/deforestation activities are usually only lasting for a short period, while a quick
recovery can be observed. Differently, the forest fires usually with a long recovery period
compared to human intervened deforestation.

Moreover, Since the long time-series data was constructed between three different
sensors, TM and ETM+ were harmonized into OLI processing to maintain consistency [39].
All of the above processes are done on the GEE platform.

2.2.2. Disturbance Reference Data

We learned that in 2002, 2018, and 2020, several catastrophic wildfires occurred in
Medford and Eugene in southern Oregon through related articles and fire monitoring
websites (see area B in Figure 1). Meanwhile, the ever-increasing demand for the wood
industry also caused the constant decline in forest inventory.We found a large number of
harvest/deforestation areas from google earth platform (see area A in Figure 1). There-
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fore,we refer to two types of disturbances, that are harvest/deforestation and forest fires,
as our forest disturbance detection objectives [40].

Figure 2. The typical time-series curves for different types of forest disturbances. (a) represents fire
disturbance while (b) represents harvest/deforestation.

To validate the forest disturbance results by the proposed MT-CNN method, we obtained
the high-precision forest disturbance samples by interactively combining the forest disturbance
events and TimeSync interpretation tool [41]. We first convert the Landsat time series data
into the standard format required by Timesync, and then visually distinguished fire and
harvest/deforestation samples from nonchange ones combined with spatial information and
NBR index.To ensure the uniform distribution of the samples, we randomly select a certain
number of samples in area A and area B. In the end, we get 6000 samples in area A and area
B, respectively (12,000 in total), of which 2000 stable forest samples were in each of the two
regions, as shown in Figure 3.

Figure 3. Two annotated areas with different types of forest disturbances. Harvest/deforestation
disturbance samples are shown in left, while fire disturbance samples are shown in right.

3. Methodology

The proposed MT-CNN mainly consists of three modular units, that is, the data
preparation module, the time-series breakpoint detection module, and the multiscale
CNN disturbance type identification module. Specifically, we first construct the Landsat
time-series stack and compute the NBR index to amplify forest disturbance signals. Then,
a sliding window technique is applied to filter time-series signals which aim to detect
possible breakpoints for forest disturbances. In this process, the thresholds for potential
forest disturbances are automatically calculated by a self-adaptive scheme without human
intervention. As a result, both real and pseudo disturbances may be detected. Finally, the
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rough detection results are input into the multitemporal CNN model to determine the
type of forest disturbance and eliminate false detections. Based on the two-step detection
process, various forest disturbances and their types can be determined through long time
series data. The flowchart of the proposed MT-CNN method is shown in Figure 4.

Figure 4. Flowchart of proposed integrated MT-CNN. (1) yearly composite data are prepared for
analysis; (2) disturbance point is detected with sliding window technique; (3) disturbance type
recognition with multitemporal time-series fragments.

3.1. Disturbance Point Detection

For most forest disturbance scenarios, the disturbance point is defined as the timing
of a sudden decrease in the NBR value. Therefore, the sharp decline of NBR detection is
the key to determine the forest disturbance time. For this purpose, we use a self-adaptive
sliding window strategy to achieve disturbance point detection. For a given time series
t = t1, t2, . . . , tn, the corresponding NBR value is denoted by Vt. We use two sliding
windows side by side along with the time series to calculate the index difference between
windows for disturbance points detection. Suppose that Ti represents the time interval
that in range of [ti, ti+b] with window size b, Ti = [Vi, Vi+1, . . . , Vi+b]. To catch the overall
trend information, we compute the 2-norm for each window to represent the statistical
characteristics of the signal. The discrepancy measurement for each sliding window can be
expressed as:

N(Ti) = ‖Ti‖2 =
√

V2
ti
+ V2

ti+1
+ · · ·+ V2

ti+b−1
(1)

where N(Ti) represents the L2-norm of the given time-series signals. We predict the
disturbance point by the self-adaptive dynamic threshold technique. Specifically, the
possible disturbance points are automatically evaluated by a quartile statistical method.
Firstly, we arrange the window trend signals obtained in the previous step from small to
large and get the values q1 and q3 of their 1/4 and 3/4 positions according to the linear
rule. Then the interquartile range (r) of the signal can be expressed as:

r = (q3 − q1) (2)
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We take the self-adaptive factor σ on the quarterback difference as the abnormal
threshold, then the range of normal data can be expressed as:

range = [q1 − σ · r, q3 + σ · r] (3)

Since, the forest disturbance scene usually shows that the NBR value suddenly drops,
so we only take the lower bound of this range. The range formula of the disturbance point
is N(Ti) ≤ q1 − σ · r.

3.2. MT-CNN for Disturbance Type Recognition

The flowchart of our proposed multitemporal CNN framework is shown in Figure 5.
To achieve the purpose of disturbance type recognition, we developed a multitemporal
scheme to extract rapid decline and recovery process time-series fragments through forest
regions at different scales. Meanwhile, the convolutional neural network is applied to
automatically detect the disturbance types of the extracted time-series fragments. Specif-
ically, we extracted the multitemporal fragments with various lengths l = [3, 4, 5, . . . , L]
begin with the disturbance points detected in Section 3.1. For the part with insufficient
length, the last point of the time series is replicated to the extent of desired lengths. For the
extracted time-series fragments at different scales [S1, S2, S3, . . . , SL], we use multitemporal
convolutional neural networks to extract cross-scale disturbance features.

d1
d2
d3
...

dL

 =


wn

1 0 0 0 0
0 wn

2 0 0 0
0 0 wn

3 0 0

0 0 0
. . . 0

0 0 0 0 wn
L




s1
s2
s3
...

sL

+


bn

1
bn

2
bn

3
...

bn
L

 (4)

where dL represents the time-series fragments at different temporal scales, wn
L and bn

L repre-
sent learnable weights and bias for the multitemporal CNN framework. With increasing
length of time series fragments, the number of layers n of convolutional layer and subsam-
pling layer can be automatically adjusted. To accurately measure the general disturbance
characteristics for each temporal scale, we proposed an overall multitemporal attention
mechanism to the CNN framework. This process aims to learn the relative features of each
time-series fragment relative to the whole time-series, so as to increase its discrimination.
For the attention mechanism,we have

am
l =

M

∑
m=1

exp
(
(qS)

Tdm
l

)
∑N

j=1 exp
(
(qS)

Tdm
l

) (5)

where qS represents the whole time-series, am
l represents the attention indicator of the deep

features extracted from multitemporal CNN for the specific scale l. M represents the dimen-
sion of extracted deep features. During the training process, the multitemporal attention
term gradually learns the relationship between the disturbance types and multitemporal
deep features. Since the weights of the cross-scale network are determined, the probability
of disturbance type for each scale also can be deduced. This process can be represented as:

p1
p2
p3
...

pL

 = σ




d1
d2
d3
...

dL

+


d1am

1
d2am

2
d3am

3
...

dLam
L



 (6)

Finally, the output probabilities of cross-scale CNNs are connected through the fully
connected layer, allowing the model to be trained by optimizing a multiscale loss function.
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In this process, we get the final prediction for each sample across all-scale time-series
fragments on forest disturbance types. Specifically, to strengthen the cross-scale ability of
MT-CNN, we integrated all probabilities on various time-series fragments to get the final
prediction. Therefore, the final forest disturbance prediction can be formulated as

y(l, c) = max

(
L

∑
l=1

C

∑
c=1

WPc
l

)
, ∀c ∈ [1, 2, . . . , C] (7)

where C describes the number of forest disturbance types. Thus, in this process, CNN
predictions at different scales are integrated into the final predict disturbance types. In
addition, this modular is also able to correct the false detection in Section 3.1.

Figure 5. Flowchart of the multitemporal CNN framework.

4. Experiments and Results

In this section, we apply the MT-CNN algorithm to two areas on the west coast of the
United States that contain specific types of disturbances for qualitative evaluation (area A
and area B in Figure 1). To illustrate the capability of the proposed method, we randomly
select 50% of the manually labeled samples as the training set and the rest as the test
ones. Accuracy metrics such as users’ accuracy, producers’ accuracy, confusion matrix, and
precision rate are used to evaluate the detection accuracy of forest disturbance. In addition,
we also analyzed the evaluation results into three levels: disturbance type, disturbance
time, and the number of occurrences for each time-series signal. In the following sections,
we conduct a qualitative and quantitative evaluation of the disturbance detection in the
study area.

4.1. Large-Scale Forest Disturbance Mapping

To demonstrate the robustness of the proposed method, we used the MT-CNN method
to predict forest disturbances over a large-scale area of the USA west coast. With the
proposed modular, the forest disturbances with different types are accurately identified.
The forest disturbance results are illustrated in Figure 6.

Firstly, for the disturbance point detection from Figure 6a, we can conclude that
most disturbances occurred in 2002 and 2019 as there were two devastating wildfires
broke out. From 1986 to 2020, the yearly area of forest disturbances has witnessed a
continuous increase, especially since the year 2001. From a regional perspective, small
forest disturbances can be observed in the north region of the study area, while the large
disturbance areas are mainly located in the south region. Before the year 2000, forest
disturbances are sparsely distributed in the study area and the majority of them are near
the fringe area of the deep forest. While, after the year 2000, large-scale forest disturbances
are frequently observed, especially for the mountainous and deep forest regions.
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Figure 6. (a–c) Disturbance mapping results on disturbance point, type, and frequency.

Secondly, for the disturbance type identification from Figure 6b, the majority distur-
bance type of our study area is fire instead of harvest/deforestation. In general, there are
10,894,868 pixels of detected fire disturbances and 4,361,100 pixels of harvest/deforestation
disturbances. Similarly, to the disturbance year, a large area of fire disturbances occurred
in the south region of the study area, while the north part of the study area is mainly with
harvest/deforestation. With the spatial integration of disturbance point and disturbance
type, we can conclude that sparsely distributed forest disturbances in the north region
are mainly harvest/deforestation. The reason for this phenomenon probably is human
intervened urbanization. While for the south region of the study area, forest fire is the
prominent impact factor for forest sustainability.

Thirdly, from the perspective of disturbance frequency, we can identify the most
unstable area that suffers from continuous disturbances, as shown in Figure 6c. For
the detected forest disturbances, there is 69.1% (9,704,841) pixels had occurred one-time
disturbance over the last 3 decades. Another 27.4% detected pixels had encountered two-
time disturbances, such as fire-fire or harvest/deforestation-fire. Combining the mapping
results of disturbance point and type, we can deduce that high-frequency forest disturbance
areas are located in the deep forest region. Meanwhile, the disturbance type is mainly
forest fire with the first appearance in the year 1990. Over the last three decades, this region
is continuously suffered from forest fire disturbance until 2020.

In general, the study area has mainly two types of forest disturbances, i.e., fire and
harvest/deforestation. Most disturbances that occurred in this region is caused by wildfire
outbreak. Compared to that of the existing forest disturbance detection algorithm, the
MT-CNN is able to detect repeatedly occurred disturbances with types over the given
time-series signal. Therefore, we can deduce useful information for forest risks analysis
and management. To further evaluate the performance of MT-CNN on forest disturbance
detection, we performed a quantitative evaluation on two smaller study areas (area A and
area B in Figure 7) with exhausted annotation labels. According to the disturbance point,
type, and frequency identification, we compared the prediction results of the MT-CNN
with human labeled data.

4.2. Quantitative Evaluation on Forest Disturbance Detection

For area A, the major disturbance type is harvest/deforestation caused by human
logging.To validate the harvest/deforestation samples, we visually inspected the distur-
bance area by comparing historical high-resolution satellite images from Google Earth.
Two sub-regions (c and d) had occurred deforestation event for the year of 1990 and 2009,
respectively. While, for area B, there are two massive forest fire that occurred in sub-regions
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a and b (as shown in Figure 7). With the accurately labeled data, we further validate
the disturbance detection results through the perspective of disturbance point, type, and
frequency.

Figure 7. Finer-scale illustration of forest disturbance events with specific year.

4.2.1. Disturbance Point Accuracy Analysis

The disturbance point represents the beginning of forest disturbances from the time-
series signal. Therefore, the accurate identification of disturbance points is a prerequisite
for forest disturbance type understanding. To identify the disturbance point within the
time-series data, the sliding window technique is applied to progressively detect suspected
forest disturbances. With the automatic weights learning mechanism, the probability of
being a forest disturbance can be determined.

We mapped the disturbance point of areas A and B consecutively with the help of
MT-CNN. To better illustrate the prediction accuracy of the proposed method. We created
three accumulated forest disturbance maps for area A in the year 1994, 2002, and 2015, and
for area B in the year 1990, 2000, and 2009 (as shown in Figure 8), respectively. For area
A, we can see that fire disturbance (the Biscuit Complex wildfire (2002)) have occurred in
the year 2002 for the black square window. It continuously expanded to larger areas, a
specific disturbance region inside of red box have appeared in the year 2015 (the Buckskin
wildfire (2015)). For area B, there are several deforestation events that happened inside
of this area. At the beginning, a few number of disturbance pixels are identified in the
year 1990. Then, a few disturbances are identified in 2000 with rectangular-like shapes,
which mainly produced by timber harvest, as shown in the green and yellow box. In 2009,
massive disturbances can be observed around the outskirts area of previous logging sites.
These maps are consistent with the time of the disturbances observed by Google Earth. The
mapping results indicate that the proposed MT-CNN is able to continuously detect the
disturbance point regardless of the types.

To quantitatively measure the accuracy of disturbance point detection, we compared
the annotated label with the predicted output. For the annotated label, we extracted the
staring magnitude as the standard disturbance point. Also, for the circumstance that
disturbance happened more than once given a time-series signal, we only extracted the
first disturbance point for comparison. The time span of our study area is more than
30 years; therefore, we re-grouped the detection results with 2-year bins for an easy plot.
We used another 50% annotated samples to test the accuracy of the proposed MT-CNN in
disturbance point detection. Given the 2-year bin as a statistic unit, the confusion matrix
in disturbance point detection is generated, as shown in Figure 9. The overall accuracy in
terms of disturbance point detection reaches 91%, and the kappa coefficient is 0.88. For
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the confusion matrix, the majority of detection accuracies are above 85%. For instance,
the disturbance point detection accuracy reaches 99% around the year 2010–2011. Low-
confident detection rates appeared at the beginning and end of time- series, where prior
information is limited and coupled with significant noises. For the no-change (NC) class,
the stable forests also demonstrated great variations in the time-series NBR index that
inevitably lead to false predictions.

Figure 8. Disturbance point detection results on area A and B. For area A, maps with forest fire in
years of 1994–2002–2015 are illustrated. For area B, maps with harvest/deforestation in years of
1990–2000–2009 are illustrated.

Figure 9. Confusion matrix of disturbance point detection from 1986 to 2020.

4.2.2. Disturbance Type Accuracy Analysis

Disturbance type identification is one of the most challenging tasks in time-series
analysis. The proposed MT-CNN developed a multitemporal scheme to capture change
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patterns from various time-series fragments. To feed MT-CNN, the time-series fragments
were extracted based on the disturbance point identified from the previous step. The
accumulative disturbance maps on two areas (area A and area B in Figure 7) are demon-
strated with two types of disturbance, that are, fire and harvest/deforestation, as shown in
Figure 10. We visually inspected the disturbance type maps and found clear boundaries
between stable forest and disturbances. For the left area B, the dominant disturbance type
is fire and it is mainly covered by the mountain area, while with the right area A, the domi-
nant disturbance type is deforestation caused by human intervention, as square-shaped
logging sites can be clearly observed.

Figure 10. Disturbance type identification on area A and area B. Left area B is dominated by forest
fire, while right area A is dominated by harvest/deforestation.

To quantitatively validate the disturbance type detection results, we used 5795 avail-
able test samples to calculate disturbance accuracy. For the classes of no change (stable
forest), fire, and harvest/deforestation, the user accuracy is 94%, 85%, 93%, and the pro-
ducer accuracy is 88%, 98%, 84%. The overall accuracy of disturbance type identification
as high as 90%, and the kappa coefficient is 0.85, as shown in Table 1. The results of
disturbance type detection further proved the robustness of the MT-CNN regardless of the
complex background.

Table 1. Accuracies of disturbance type identification.

Manual Annotation Users
AccuracyNo Change Fire Harvest/Deforestation

Algorithm
No change 1749 4 114 0.94
Fire 177 1952 177 0.85
harvest/deforestation 71 44 1507 0.93

Producers accuracy 0.88 0.98 0.84
Overall users accuracy 0.90 Overall accuracy 0.90
Overall producers accuracy 0.90 Kappa coefficient 0.85

4.2.3. Disturbance Frequency Accuracy Analysis

Compare to the disturbance point and type identification, the continuity of detection
is another important indicator to evaluate the detection ability of the proposed method.
To illustrate the continuity detection capability, we mapped the disturbance frequency for
every single pixel on areas A and B, as shown in Figure 11. In this figure, we counted
the disturbance times with one, two, and multiple (MT > 2) for each pixel,the statistical
results are shown in the Figure 12. For the left area A, most disturbed areas have a one-
time fire event, while inside the mountain area, 2-time disturbances also can be found. It
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indicates that this area suffers from continuous fire disturbances that significantly reduce
the stability of the forest. Meanwhile, for the right area B, a large proportion of detected
areas encountered more than 2-time disturbances. The reason for this phenomenon is
probably the regular harvest of planted trees. From a quantitative point of view, we
randomly selected 5795 test samples from areas A and B, and there were 3317 and 607
detected disturbances that occurred once or twice over the past 35 years. In general, the
proposed method illustrated great robustness in multiple-disturbance detection.

Figure 11. Mapping results of forest disturbance frequencies. Left area B is dominated by 1 or 2 times
disturbances while right area A dominated with more than 3 times number of forest disturbances
within 35 years.

Figure 12. Statistical results on multiple disturbance with 5795 selected test samples.

5. Discussion

The proposed MT-CNN uses an integrated strategy to identify forest disturbances
in terms of disturbance point, type, and frequency. Compared with the most existing
forest disturbance detection strategies, the proposed method focuses on identifying the
type of time-series fragments which include both decline and duration process. Since the
disturbance point is determined, the time-series fragments with various lengths/scales can
be fed into the MT-CNN for further type understanding. This multitemporal based forest
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disturbance detection strategy proved to be efficient at frequent, multiple-type disturbance
identification. Still, the proposed method requires multitemporal inputs, which left an open
question on temporal scale selection. In other words, how to choose the best temporal scale
for disturbance type identification is remains unexploited. In addition, from the disturbance
results of the USA west coast, we can observe the significant differences between the north
and south region over the past 35 years in terms of forest disturbances. Also, the continuous
fire disturbances happened inside of mountain areas, and the reason for this phenomenon
is worth noticing. Therefore, in this section, we discussed two important factors that could
impact the disturbance detection results.

5.1. Contribution of Multitemporal Scheme

To quantify the impact factor of a multitemporal scheme for disturbance detection. We
set up an ablation experiment with different lengths of time-series fragments as multitem-
poral inputs. For a specific length of the fragment, the MT-CNN is able to automatically
adjusted to fit the dimension of input data. To train and test the accuracy of disturbance
types, we split all available samples into 50% and 50%. To determine both the final estimate
of the expected accuracy and the standard deviation, we ran this train-test process 10 times
on every single temporal scale. The quantitative evaluation of prediction results is plotted
in a boxplot as shown in Figure 13. In this figure, boxes show the median and interquartile
range of commission and omission errors for fire or harvest/deforestation disturbance
type given a specific temporal scale, and whiskers show full data range. In general, the
commission error for harvest/deforestation is relatively lower than that of fire disturbances.
For omission error, it shows the opposite trend. With the increasing size of the temporal
fragment, the commission error of harvest/deforestation and the omission error of forest
fire witnessed a slow decline trend, and the values stay around 0.1 without significant
variations. However, for the commission error of the forest fire and the omission error of
the harvest/deforestation, there are three distinct valleys on the temporal scale of 3–4, 6–7,
and 9–10. Consequently, different scales temporal-series fragments have different abilities
to distinguish different disturbances types.

Figure 13. Overall accuracy regarding disturbance types with different lengths of temporal fragment.

Therefore, the multitemporal scheme is effective in terms of disturbance type iden-
tification. Specifically, for the fire disturbance, the predicted accuracies increase with the
larger input temporal scale. Meanwhile, the decline disturbance is not sensitive to the
temporal scale as it with smaller duration temporal window. The conclusion will further
guide us to select proper temporal scales for various forest disturbances.

5.2. Influencing Factors of Forest Disturbance

The study area is located on the west coast of the USA, which is dominated by a
Mediterranean climate. With the increasing crisis of global warming, this area is continu-
ously impacted by heatwaves and wildfires. In the northern region of the study area, the
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low-altitude forests with intense human management are much more protected against
wildfires, but regular tree harvesting is a major disturbance. The northwest region is the
most stable region, and it greatly benefits from cooler temperatures and sufficient precipi-
tation. By contrast, for the southern region, mountains with solid rocks and high-altitude
drive plants tend to be extremely dry and flammable. From the previous disturbance
maps, we can conclude that forests in the southern region continuously suffer from fire
disturbances. The extremely large-scale wildfires broke out in the years 2002 and 2015. The
frequency of fire disturbances in the southern mountain area is relatively high, especially
for deep forest regions. Comparatively, for the northern region, most disturbances are forest
decline caused by human activities. These harvest/deforestation regions are near to cities
or towns, to where timber can be easily transported. However, the relationship between
terrain features (such as DEM), weather indicators (precipitation and temperature), and
disturbance frequency is needed to be deduced.

We obtained DEM, temperature and precipitation data on the GEE platform through
two data sets named “PRISM Monthly Spatial Climate Dataset AN81m” and “NASA-
DEM”.To determine the relationship between DEM and disturbance frequency, we have
selected a representative “south-north” profile for quantitative analysis. To better represent
the statistical results, we set the statistical bin to 50 pixels. That is, the DEM is the average
value of all the 50 pixels. And, the number of disturbances was summarized from 50 pixels
for better understanding. Began with the south region, we can see that a sharp increase in
DEM as it is the mountain region. In the meantime, a sharp increase also can be observed in
the number of disturbances inside of this region. The highest disturbance number reaches
125 times for a statistical unit over the past 35 years. Then, the number of disturbances
almost reaches 0 as DEM drops to 0. It means that the valley area with sufficient water and
cooler temperature will prevent wildfire expansion. For DEM in the range of 0–500 m, the
disturbances occurred without significant patterns. Statistical units that far than 160 km
demonstrate a much more stable curve than the southern regions. While the disturbance
type of this region is mainly harvest/deforestation with human intervention. In general,
we can conclude that the number of disturbances roughly coincided with the distribution
of DEM. That is, the higher DEM may suffer frequent disturbances than the plain area.

As the study area is mainly with the Mediterranean climate, scarce rains in hot summer
usually coexistence with severe fire disturbances. We collected the annual precipitation
rates over the last 35 years, and plotted it with the occurrence of observed disturbances,
as shown in Figure 14. The highest precipitation rate reaches almost 300 mm in 1996 that
coupled with the lowest frequency of fire disturbance. On the contrary, the minimum
annual precipitation is about 50 mm which appeared in 2014 within this study area. The
medium precipitation is around 175 mm per year, and five large-scale fire disturbances
appeared in the year of 1988, 2002, 2003, 2018, and 2019, respectively. Comparatively,
the harvest/deforestation is relatively stable that varies from the range of 0–100 cases
that happened in the 300 km profile over the last 35 years. After 2015, the deforestation
caused by human activities has significantly dropped, while fire disturbance continuously
increases. From the perspective of temperature variation, we also plotted the mean annual
temperature over the selected profile. The overall trend of the plotted curve demonstrates
small variations between 10 ◦C to 12 ◦C. And 2015, 2014, and 1992 are the top three hottest
years, while 2011, 2008, and 1990 are the top three coolest years. The highest temperature
almost reaches 12.5 ◦C in 2015 and the coolest temperature near to 10 ◦C in 2011. Coupled
with the precipitation information, the frequency of fire disturbance significantly increases
when little rain with high temperature both appeared within a year. Although the scorching
heat did not immediately cause heat fire in 2015, the dryer soil and dead trees become
one of the most important factors for wildfire outbroke in 2018 and 2019. Therefore, both
DEM, precipitation, and temperature potentially impact the frequency of forest disturbance
in the west coast region of the USA. The reason behind this phenomenon is worth being
quantitatively evaluated in future studies.
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Figure 14. (a–c) Influences of terrain and weather factors on different types of forest disturbances.

6. Conclusions

Forest is one of the fundamental elements for human survival on Earth. With ever-
increasing global warming and land detrition, timely and accurate identification of forest
disturbances in terms of their location, type, and frequency are urgently needed. Aiming to
detect forest disturbances from long time-series satellite data, we developed a multitempo-
ral convolutional neural network (MT-CNN) to automatically identify forest disturbances
with the feature of the beginning point, type, and frequency. The main contribution of
this method is threshold-free multiscale identification of forest disturbances, regardless of
duration periods variations of different events. To validate the performance of the proposed
method, we selected a large-scale study area of the west coast area of the USA. For the
35-year time-series data, we identified forest disturbances with respect to their occurrence
time, type, and frequency for each pixel. The overall accuracy reaches 90% compared
to the manually labeled data. From the forest disturbance map, we also concluded that
forest disturbances coupled with several indicators including DEM, precipitation, and
temperature.
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