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Abstract: Tephra plumes can cause a significant hazard for surrounding towns, infrastructure, and
air traffic. The current work presents the use of a small and compact X-band multi-parameter (X-MP)
radar for the remote tephra detection and tracking of two eruptive events at Merapi Volcano, Indone-
sia, in May and June 2018. Tephra detection was performed by analysing the multiple parameters
of radar: copolar correlation and reflectivity intensity factor. These parameters were used to cancel
unwanted clutter and retrieve tephra properties, which are grain size and concentration. Real-time
spatial and temporal forecasting of tephra dispersal was performed by applying an advection scheme
(nowcasting) in the manner of an ensemble prediction system (EPS). Cross-validation was performed
using field-survey data, radar observations, and Himawari-8 imageries. The nowcasting model
computed both the displacement and growth and decaying rate of the plume based on the temporal
changes in two-dimensional movement and tephra concentration, respectively. Our results are in
agreement with ground-based data, where the radar-based estimated grain size distribution falls
within the range of in situ grain size. The uncertainty of real-time forecasted tephra plume depends
on the initial condition, which affects the growth and decaying rate estimation. The EPS improves
the predictability rate by reducing the number of missed and false forecasted events. Our findings
and the method presented here are suitable for early warning of tephra fall hazard at the local scale.

Keywords: tephra; ground-based weather radar; Bayesian approach; nowcasting; ensemble predic-
tion system

1. Introduction

Tephra is the fragmented material produced during an explosive volcanic eruption.
Once in the atmosphere, the mix of tephra, volcanic gases, and ambient air forms a volcanic
plume. Tephra is classified according to its size as volcanic bombs or blocks (D ≥ 64 mm or
φ ≤ −6), lapilli (2 mm ≤ D < 64 mm or −1 ≥ φ > −6), coarse ash (64 µm ≤ D < 2 mm or
4 ≥ φ > −1), and fine ash (D < 64 µm or φ > 4), where D is the diameter of the particle and
φ ≡ −log2 D (mm). Tephra falls can damage buildings and cause disruption to human
livelihoods, agricultural production, and other economic activities [1–3]. Because of the
significance of the hazards posed by a tephra fall, its timely detection and tracking in the
atmosphere is very important.
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Tephra can be detected and tracked in the atmosphere with ground-based weather
radars operating at various wavelengths [4–7]. Tephra properties (concentration, fall rate,
and diameter) have been retrieved by radar using a microphysical model of atmospheric
scattering theorem, which assumed that tephra particles have similar characteristics to
raindrops [8–11]. One of the radar applications that has not been explored thoroughly
is its use as an extension to an early-warning system of spatial and temporal tephra
dispersal. Up to now, only one study has documented the use of a weather radar for
early-onset detection and tracking of tephra [6]. In this previous study, the detection of
plume onset was achieved by coupling radar and an infrasound instrument. However,
tracking of the plume excluded the sources and sink of radar observable [6]. As a result, the
tephra plume’s spatial movement (displacement) was monitored, but the observable radar
values were constant through time, indicating a persistent presence of volcanic clouds in
the atmosphere. A solution for this problem is applying a dynamic advection scheme,
widely used for atmospheric precipitation forecasting [6], known as nowcasting [12–15].
Nowcasting is a spatial prediction method covering minutes to a few hours of rainfall
forecasting based on radar advection vectors. This approach can forecast the rotation and
deformation of the observed field and has been an essential prerequisite for real-time flash
flood forecasting in operational hydrology [13].

Recently, the ensemble prediction system (EPS) has attracted the interest of modellers,
as it can increase the robustness of forecasting results [14–16]. When applying the EPS,
the nowcasting model is run multiple times from very slightly different initial conditions.
Zidikheri et al. have applied this approach to the volcanic ash retrieval model to increase
the predictability score of volcanic cloud dispersal forecasting for the 2014 Kelud and 2015
Rinjani eruptions [17]. Their study found that poorer prediction skills could result from
using shorter time steps and an incorrect threshold of volcanic ash mass load. The later
mentioned reason is related to the limitation of satellite monitoring, particularly at lower
altitudes and in surrounding and overlying cloud features not involving ash, which could
also account for the discrepancies in the low mass load regions [17]. Moreover, the satellite
based-volcanic ash retrieval model requires some input parameters, e.g., the atmospheric
profiles (pressure, temperature, and humidity), the surface temperature and emissivity, the
volcanic cloud geometry (altitude and thickness), and the ash optical properties [18], which
can complicate the calculation process. Contrarily, a weather radar scans the atmospheric
information near surface level (<3000 m height) and relies on particle scattering theorem.
Using solely radar data, some studies have managed to derive the real-time GSD and
tephra concentration [8–11,19]. The radar estimates are valuable parameters in tephra
dispersal modelling by the radar nowcasting approach.

This study presents the potency and uncertainty of real-time tephra plume detection
and tracking applied to two eruption events of Merapi in 2018. First, we overcome previous
limitations of unwanted clutter contaminating radar scanning data [20] by applying an
automatic noise cancellation. Then, we coupled the modified tephra-radar retrieved
model [8,9,19,20] with the EPS of radar nowcasting. The evaluation was done by comparing
the radar-based tephra properties (i.e., concentration and grain size) with ground-based
data and satellite imagery. Through this study, the integration of EPS forecast products can
contribute to the potential use of weather radar monitoring in the tephra fall early warning
system, which is beneficial for local people living nearby Merapi.

2. Methods
2.1. Radar Setting and Study Case

A small-compact X-band dual-polarization Doppler weather multi-parameter (X-MP)
of WR2100 type radar, manufactured by Furuno Electric Co., Nishinomiya City, Hyogo
Prefecture of Japan, and was installed and operated at Merapi Museum (7.5 km SW from
Merapi’s vent) in 2014–2019 (Figure 1). The main objective of the installation was for
research in volcano hazards such as rain-triggered lahar [16,21] and real-time tephra fallout
rate [20]. Figure 1 presents the area covered by the 360◦ radar scan of plan position indicator
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(PPI) strategy. In PPI scanning mode, the radar scans the volume of the atmosphere
by changing the elevation angle in sequence every time it finishes one rotational scan.
There were nine different elevation angles: 3, 5, 7, 9, 11, 13, 15, 18, and 21◦. An entire
volumetric scan sampled the atmosphere into 700 sweeps (beam motion), and each sweep
had 300 range gates with a 150 m bin width. It requires 2-min time intervals for a full
volumetric PPI scan (all elevation angles). Radar data were heavily affected by ground
clutter up to 13◦ elevation angle scan (Figure 1). While the default clutter cancellation
routine by radar can recognize the beam blockage [20], ground clutter may still occur as
the result of direct contact between surface and sidelobes owing to the presence of Merapi
and Turgo Hill in the SW sector (Figure 1, [20]). Sidelobes are unwanted returns from a
direction outside the main lobe, which can bias the reflectivity intensity factor, Doppler
velocity, and spectrum width estimates.

Figure 1. Left panel (a) is a fixed observation area of the PPI scan mode. Centre panel (b) is the 3D view of surface
topography of the red square area in (a). Right panel (c) is the vertical profile of radar scan and topography, extracted along
the blue arrow in (a). Identified in (a) are locations of Yogyakarta city, Merapi, and Merbabu. The locations of Turgo hill and
Merapi summit are pointed by red arrows in (b) and the X-MP radar site is indicated by a red dot in (a,b).

Table 1 presents the specification of this small, compact, and light-weighted system.
This ground-based weather radar is a dual-polarized system that transmits two different
wavelength propagations: horizontal and vertical, giving multiple output parameters,
listed in Table 1. Only two parameters were used in this study: the reflectivity intensity
factor ZH and copolar correlation ρ. Reflectivity intensity in horizontal copolar propagation
ZH measures the efficiency of a target to reflect (absorb and re-radiate) radar energy.
The copolar correlation ρ is the zero-lag correlation coefficient between horizontally (H)
and vertically (V) transmitted and received copolar signals. This parameter shows the
uniformity of the features being observed by the radar. Detailed explanations for each
of the dual-polarized system’s radar parameters have been discussed in [22]. The ZH
parameter is widely used for tephra classification [8,9,19,20], and ρ produces the least
false alarm in unwanted clutter identification [23]. Both ZH and ρ were used to remove
unwanted clutter, and only the filtered ZH was used for tephra detection and tracking, as
explained in Sections 2.2 and 2.3 and Appendix A.

The selected study cases are two explosive events with the availability of X-MP radar
data and in situ tephra grain size information [24], occurring on 11 May 2018 (M05) and
1 June 2018 (M06). Following Merapi’s last centennial explosive eruption in 2010, the
volcano experienced six phreatic eruptions between 2012 and 2014. The M05 event was
the first minor explosion after four years of quiescence, starting in 2014. It occurred at
00:40 and lasted for 5 min. Time is expressed in hhmm Coordinated Universal Time (UTC).
The Centre for Research and Technology of Geological Disasters (Balai Penyelidikan dan
Pengembangan Teknologi Kebencanaan Geologi—BPPTKG) officially reported it as a phreatic
eruption. Prior to the eruption, there were no unequivocal precursory signals, which is
common for this type of eruption. The event produced a 5.5 km high (above its summit)
eruption column with explosion energy of 17 MJ [25].



Remote Sens. 2021, 13, 5174 4 of 24

Merapi continued its eruptive activity between 21 and 24 May 2018, by producing
multiple explosions. This series of short-lived eruptions ended on 1 June 2018, marked
by three explosions that occurred on the same day. The M06 event was the first eruption
on that day and had the greatest intensity of the three, occurring at 01:20 UTC for a 2 min
duration [26]. The eruption produced a 6 km high eruption column with explosion energy
of 46 MJ [25]. Subsequently, Merapi’s activities shifted to be more magmatic, marked by
the appearance of a new lava dome in August 2018.

Table 1. Radar specification used in the study [27].

Parameter Description

Transmitter Solid-state 200 W per channel (H, V)
Polarity Dual polarimetric horizontal (H) and vertical (V)
Pulses PRF 600–2500 Hz, Width 0.1–5.0 µs

Antenna 0.75 m ∅, 2.7◦ beam width
Antenna gain 33.0 dBi

Operating frequency 9.47 GHz
Wavelength 3.3 cm
Peak power 100 W
Scan mode PPI, CAPPI, RHI

Maximum distance display 50 km
Maximum range fixed observation level 30 km

Data output

(1) Reflectivity intensity factor — ZH[dBZ],
(2) Doppler velocity—VD [m s−1],
(3) Doppler velocity spectrum width—WD [m s−1]
(4) Differential reflectivity –ZDR [dB],
(5) Specific differential phase shift—KDP [◦km−1]
(6) Copolar correlation coefficient—ρ

(7) Rainfall intensity—R [mm h−1],
(8) Cross polarization difference phase—ΦDP

Another reason for selecting these explosive events was the different spatial distribu-
tions of the pyroclastic deposit. The deposit of tephra fall from M05 was found in the S
sector, while M06 deposits were deposited in the NW sector from Merapi [24]. While being
small in magnitude (volcanic eruptive index, VEI-1), satellite images captured both cases
(Appendix C: Figure A2), meaning that the reliability of the EPS results could be evaluated.

We used a set of radar data of 56 min, ranging from 4 min before to 52 min after the
onset. Hence, it gave a range of time scans at 00:36–01:30 (M05) and 01:16–01:20 (M06). This
time range selection was based on visual verification of tephra visibility on radar images.
We also found that the plume was only detected at 13–21◦ elevation angles.

2.2. Tephra Detection

The detection of the volcanic cloud was performed by identifying radar echoes of
the tephra from non-tephra echoes. Although both cases occurred during clear days, non-
tephra noises still occurred because of sidelobe contamination, anomalous propagation,
and the presence of ground clutter. Anomalous propagation results from false radar echoes
during calm, stable atmospheric conditions, often associated with super refraction in a
temperature inversion, which directs the radar beam toward the ground. We applied a
clutter cancellation procedure based on naïve Bayesian classifier to solve the previously
mentioned problems [28].

The naïve Bayesian classifier (NBC) is a supervised technique, which implements
the classification based on the posterior probability that certain observed measurements
correspond to a specific class. In the clutter cancellation process, the unwanted clutters
were divided into three classes: the non-clutter data (c = 0), clutter (c = 1), and invalid
data (c = −99). The third class was introduced based on the radar signal/beam blocking
identified by the Furuno default rain-map program [21]. For our study, only data corre-
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sponding to the non-clutter class were recognized as valid and used for tephra detection
and tracking.

The 2D spatial data of ZH were used as the input parameter in the volcanic ash
retrieval radar model (VARR, [8,9]). This method is a two-step stepwise approach radar
microphysical model, using the scaled gamma distribution. The main assumptions of
this method are that tephra particles have a spherical shape and that the scattering of
electromagnetic waves follows the Rayleigh theorem [8,9]. Only coarse ash to lapilli regimes
were identified by this type of radar [19,20], resulting in two different tephra class regimes:
fine (F) and coarse (C) particles. These two terms should be distinguished from finer ash
and coarser ash regimes, mentioned in Section 1, as our classification identified class F as
a class for particle diameter ranging from 0.015 mm to 0.35 mm and class C for particle
diameter ranging from 0.35 mm to 6 mm. This range was generated based on the previous
study [8,9,19,20]. Table A1 presents detailed information about tephra classification. The
clutter cancellation and radar-tephra retrieved model are discussed intensively in [28]
and [8,9,19], respectively; hence, only a brief description is presented in Appendix B for
convenience. The reproducible code is available in Supplementary Materials.

2.3. Nowcasting and Ensemble Prediction System

Tracking of tephra was performed by adopting the radar’s observable extrapolation
model, originally known as the translation model [12]. We assumed radar scan representing
the surface level. In meteorology, the radar’s constant altitude PPI (CAPPI) data are widely
used to estimate the surface level of rainfall intensity. However, there is no agreement
regarding which radar product should be used to estimate tephra properties. Essentially,
CAPPI is the 3-dimensional (3D) interpolated data of PPI, and some studies have used this
type of data to estimate the tephra fallout rate [20,29]. Meanwhile, other studies have used
the lowest PPI elevation angle data to estimate the accumulated tephra deposit [30,31].
In this study, we used the maximum aggregates of radar observable as suggested in [32].
The maximum ZH is usually related to the densest concentration of tephra [31]. For each
2 min time acquisition of the PPI scan, we calculated the maximum aggregate of tephra
concentration across elevation angles of 13–21◦. This aggregate value was compiled as
gridded 2D (150 m mesh) spatial data. The use of a maximum aggregate was also used
to tackle the problem of wavelength sensitivity, which caused the underestimation of
retrieved tephra properties [20,33]. Using the tephra concentration, estimated from ZH ,
we could simplify the forecast of tephra dispersion. This approach did not require the
atmospheric condition and ESP information. We used the estimated tephra concentration
from the tephra detection framework to estimate the dynamic of its distribution along the
x and y directions and time t as follows:

∂Ca

∂t
+ m

∂Ca

∂x
+ m

∂Ca

∂y
= w (1)

where m = dx/dt and n = dy/dt are radar advection vectors and w = dCa/dt is the
radar echo growth and decaying rate (source/sink term). The spatial coordinate (x,y)
represents easting and northing UTM, respectively. Variables m, n, and w are defined in
Equations (2)–(4).

m(x, y) = c1x + c2y + c3 (2)

n(x, y) = c4x + c5y + c6 (3)

w(x, y) = c7x + c8y + c9 (4)

Ensemble forecasting or EPS could help to get a feeling for the possibilities of pattern
evolution. In Equations (2)–(4), c1–c9 parameters were optimized by linear least square
using past estimated tephra concentration, whereas in this case, the first 4–8 min detected
plume captured in radar images. Nowcasting could be run according to different phe-
nomena, which led to different ensemble member scenarios (Table 2). Considering the
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importance of the growth and decay rate to accommodate the sources and sinks of plume
presence in the atmosphere, we selected phenomena 4 and 5 in Table 2. For each advection
phenomenon, the ensemble member was modelled by various sets of time-lagged forecasts
starting at different initial times [34]. As the first visible plume on radar imageries occurred
simultaneously at the eruption onset and considering the importance of past observed
radar data in generating the advection scheme, the selected initial condition was then
decided at 4, 6, and 8 min after the reported onset. Thus, each case had six members, and its
subsequent times were separated by 2 min intervals. The nowcasting model was run up to
44 min after the eruption onset, as it followed the presence of detected plume in observed
radar data. The mean ensemble was obtained by calculating the mean of all members,
using the time average of spatial data at each point (x,y). All results were projected and
visualized in WGS 84 coordinate system by rgdal and ggmap libraries of RStudio [35,36].

Table 2. Combinations of advection vectors parameter, adopted from different rainfall phenomena [15].

No Phenomena c1 c2 c3 c4 c5 c6 c7 c8 c9

1 Parallel translation X X
2 Parallel translation and rotation X X X X X X
3 Rotation X X X X
4 Parallel translation, growth-decay X X X X X

5 Parallel translation, rotation,
growth-decay X X X X X X X X X

2.4. Evaluation

The reliability of a predictive approach that considers uncertainty was examined,
visually and quantitatively, through the verification of those members and observation
from radar and Himawari-8. The observed concentration was derived from the valid
ZH data, i.e., the filtered data after removing unwanted clutter. Himawari-8 is a satellite
operated by Japan Meteorological Agency (JMA) since 2014, which observes the earth from
80◦ E to 160◦ W and between 60◦ N and 60◦ S. The Advanced Himawari Imager (AHI) is
an optical radiometer onboard the Himawari-8. Its full-disk observation covers 16 spectral
bands from visible to infrared (IR) wavelengths. The spatial and temporal resolutions
are 2 km and 10 min, respectively [37]. We assumed this setting caused the Himawari-8
data to be at least 10 min behind radar data or real-time. The standard Himawari-8 data
were retrieved from the P-Tree system, managed by the Japan Aerospace Exploration
Agency (JAXA) Earth Observation Research Centre (EORC) and JMA. This study used the
temperature band difference of band 13 (BTDB13) as the red beam of BTDB13–B15 was found
to be effective for detecting dust and volcanic ash [38]. The identified tephra plume was
defined by lower than 285 K cloud temperature above the coordinates of Merapi, which
is the temperature at 3–5 km asl height. The 2D gridded data of Himawari-8 were then
transformed into a polygon to delineate the fraction of cloud identified as tephra plume.

Two widely used dichotomous indices were applied: the critical success index (CSI)
and the probability of detection (POD). They were given by the following formulas
(Equations (5) and (6)), along with a confusion matrix presented in Table 3. Here, Nhit
is the number of hit events from the contingency table, Nmiss is the number of miss events,
and N f alse is the number of false events as defined in Table 2. The values of these indices
have the range 0–1, where “1” represents a perfect forecast.

CSI =
Nhit

Nhit + Nmiss + N f alse
(5)

POD =
Nhit

Nhit + Nmiss
(6)
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Table 3. The 2 × 2 confusion matrix [39].

2 × 2 Confusion Matrix
Event Observed

YES NO

Event Forecast
YES Hit Miss
NO False Hit

Regarding probabilistic prediction, to date, the most common metric for assessing
accuracy is the Brier score [40]:

BS =
1
n

n

∑
k=1

(yk − ok)
2 (7)

where y is the fraction of members that forecast the event, o is the actual outcome of the
event (“1” if it occurs and “0” if it does not occur), and n is the number of forecasting pairs
that are spatial. The score of a perfect forecast was “0”. This index was applied to assess
probabilistic tephra concentration nowcasting that was equal to or greater than 0.01 g/m3.
This threshold equalled the lower limit of generated synthetic data (Table A2).

3. Results
3.1. Volcanic Ash Detection

Figure 2 shows the results of the Bayesian classifier for tephra detection on M05
and M06 at 2 min after the onset. All used ZH were cleaned from unwanted clutter by
NBC, given by some examples presented in Figure A1. All particle size classes (ash and
lapilli) were identified at the onset of the eruption. The highest ZH regimes (>50 dbZ)
were associated with the coarse class with the most intense concentration of Ca > 7.5 g/m3.
Relatively equal Ca was also obtained by finer class of intense concentration, although it
was given by ~35 dBZ ZH .

Figure 2. Tephra detection using modified VARR model (Appendix A and Appendix B) for M05 (first
row) and M06 (bottom row) at 2 min after the reported eruption onset. From the left, the first column
(a,d) is the reflectivity intensity factor, the second column (b,e) is the tephra classes, and the third
column (c,f) is the tephra concentration. Tephra classes (b,e) of 1–3 represent the coarse class (C) of
light, moderate, and intense concentration, respectively. Tephra classes of 4–6 represent the same
tephra concentration, but for the finer class (F).
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The spatial and temporal evolutions of radar-retrieved tephra grain size at selected
time stamps are given in Figures 3 and 4. For both cases, plumes were identified from
0 min after reported onset up to more than 40 min and 20 min after onset, respectively. The
radar-retrieved tephra had particle diameters ranging from 0.02 to 2.3 mm or φ = 1.7 to
−0.83 (Figures 3 and 4), indicating the limitation of the used X-MP radar in detecting finer
particle regimes. Particles larger than 2 mm (lapilli regime) were retrieved from ZH until
up to 4 min after the onset (Figures 3 and 4).

Figure 3. The first row is the spatial distribution of the estimated radar-retrieved mean diameter of M05 at different time
stamps. The second row is the corresponding cumulative grain size (in φ) for each time stamp. In each image on the second
row, the x-axis is the lower limit of φ = −log2D.

Figure 4. The first row is the spatial distribution of the estimated radar-retrieved mean diameter of M06 at several time
stamps. The second row is the corresponding cumulative grain size for each time stamp. In each image on the second row,
the x-axis is the lower limit of φ = −log2D.
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Grain size distributions (in φ) of the tephra deposits at sample sites near the vol-
cano [24] and the extracted from the radar retrieved model are presented in Figure 5. We
extracted the radar-retrieved GSD at Q-01 and Q-09 and found the spatial distribution of
estimated GSDs were relatively in agreement with in situ sample-based data. We extracted
more coarser particles’ regimes (φ = 0.85–1.0) of the radar-based model at Q-01 (closer
to the source) than at Q-09 (distant to the source). About 80% of radar-retrieved GSD at
Q-09 was finer particle regimes, ]φ ranging from 1.00 to 1.25 (Figure 5c). For M05, the
in situ data points in [24] were available at P-01 and P-09. Unfortunately, the retrieved
GSD from ZH did not produce any data from these two points. The ZH parameter at those
points was probably eliminated following the unwanted clutter removal (Figure 2c,d and
Figure A1). However, we could retrieve GSD from P-02 to P-05 and merge their values to
represent the GSD for M05. P-02 to P-04 are close to P-01, indicating the extracted GSD
at P-02 to P-04 may fall within the GSD range to P-01. P-05 is a few km away from P-01
and the source, so it might produce a finer GSD regime than P-01. Combining all available
extracted values at P-02 to P-05 may help characterize the GSD of M05. In Figure 5d, the
merged radar-retrieved GSD of M05 is coarser than M06, where 100% of them fall within
the range of 0.85–1.0 φ.

Figure 5. Left image (a) is the location of in situ sampling points of grain size (φ) for both event cases, digitized from [24].
Available data in [24] are Q-01, Q-09, P-01, and P-09, as presented in the cumulative frequency of GSD in (b–e) as indicated
in the top right panel. M05 is given by P-01 and P-09 and M06 is given by Q-01 and Q-09 (M06). The cumulative frequency
GSDs in (f,g) are extracted from radar-retrieved GSD for Q-01 and Q-09 (M06), respectively. Panels (h,i) give the cumulative
frequency of GSD M05 (data are merged from P-01, P-02, P-03, P-04, and P-05) and M06 (data are merged from Q-01, Q-02,
Q-07, Q-08, and Q-09). The x-axis on the GSD histogram is the lower limit of φ = −log2D.

3.2. Forecasting of Plume Dispersion

Figures 6 and 7 present the 2D nowcasting tephra concentration results of plume
dispersion. Figures A3 and A4 (Appendix C) present some of the ensemble members of
nowcasting scenarios of M05 and M06, respectively. The presence of higher than 0.01 g/m3

Ca plume by mean EPS agrees with the retrieved Ca observable from the radar, where their
visuals disappear at almost the same time. More than 90% of tephra in M05 disappear
30 min after the eruption onset. Mean EPS and estimated Ca of M06 are unseen at 24 min
after the onset. The forecasted Ca of M05 becomes deviated at 01:06, presented by some
part of the plume going SE, while the other part is elongated to the S sector. Part of the
plume moving to SE sector in M05 is given by the Onset+8_Sc5 (Figure A3). On the other
hand, the forecasted EPS plume of M06 consistently dispersed in a circular shape and
followed the displacement of radar retrieved Ca. Both EPS and radar-retrieved Ca agreed
that greater than 5 g/m3 Ca existed for less than 10 min in the atmosphere.
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Figure 6. The retrieved tephra concentration on M05 based on valid ZH (a–d) compared with the mean EPS (e–h) at different
time steps, as indicated in the top left corner. The mean EPS uses a threshold of tephra concentration ≥ 0.01 g/m3. In each
image, the x-axis is longitude and y-axis is latitude.
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Figure 7. The retrieved tephra concentration on M06 based on valid ZH (a–d) compared with the mean EPS (e–h) at different
time steps, as indicated in the top left corner. The mean EPS uses a threshold of tephra concentration ≥ 0.01 g/m3. In each
image, the x-axis is longitude and y-axis is latitude.

3.3. Evaluation

The predictability scores are presented by CSI, POD, and BS. Both CSI and POD are
given in Figure 8, while BS is shown in Figure 9. In the case of BS, we also calculated the
score by comparing the ensemble members with Himawari-8 data. The area of volcanic
ash identified by Himawari-8 overlying the mean EPS results is presented in Figure 8.
Predictability indices generally agree that the highest uncertainty was given by the pair of
onset+8 min and Sc5 members.
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Figure 8. Spaghetti plots of CSI (left) and POD (right) for both study cases. (a,b) M05 and (c,d) M06. The ensemble
member was named based on IC: onset+i_Scj, where i and j represent the time in minutes and advection phenomena
(Table 2), respectively.

Figure 9. Brier score of tephra plume tracking by mean EPS of M05 and M06 based on the pair analysis with (a) radar and
(b) Himawari-8. Each EPS was generated using six members.

In general, the EPS of M05 has a better predictability rate than M06, according to CSI
and POD. On the contrary, the BS of M06 mean EPS is better than M05. However, we
consider that BS provides more reliable results for the predictability rate as it only counts
pairs of occurrence and non-occurrence events (Equation (5)). The CSI and POD scores
decreased over time, but then increased, indicating the failure estimation of correct growth
and decaying rate of some members. The cross-validation of the observed radar involving
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all ensemble members increases the predictability rate until 40 min after the onset, with BS
ranging at 0.4 to 0.2. After 40 min, the model performance becomes significantly poorer
because of the accumulated error of incorrect growth decaying rate given by some ensemble
members. Although all the predictability rate parameters indicate the tendency of skill to
decrease with time, we still highlight the importance of EPS in improving the accuracy of
the tephra forecast, as it can maintain the CSI and POD to be greater than 0.99 for entire
prediction time-steps.

Comparing the temporal and spatial of mean EPS to Himawari-8 data (Figure 10)
gives the impression that the use of weather radar is limited in detecting the finest regime
of the plume. The radar-based EPS did not give the same spatial tephra distribution as
Himawari-8 data, especially in the S sector. However, the EPS modelled the displacement
of the plume that matched with the in situ sampling points better than Himawari-8 data
(Figure 10). In Figure 9b, the cross-validation of the ensemble members with cloud temper-
ature (Himawari-8) gives BS ranging from 0.85 to 0.90 within the first 20 min after the onset.
Ten minutes later, the predictability skill becomes poorer, given by greater than 0.95 BS.

Figure 10. Mean ensemble of tephra concentration and area of detected tephra cloud by Himawari-8 (given by black
polygons). The study cases and time stamps are indicated in the top left corner. The detected area of Himawari-8′s tephra
cloud was transformed into a polygon using cloud temperature < 285 K. The ground-based data points are also presented in
each map, given by black dots. In each image, the x- and y-axis are longitude and latitude, respectively.

4. Discussion
4.1. Tephra Detection

Applying unwanted clutter cancellation is an important step in radar data process-
ing. Here, we presented a simple procedure that could be easily included in the radar
processing routine. In Table A3, an elevation angle 18◦ had the highest probability of
misclassification (p = 0.3), while other elevation angles performed relatively better (p ≤ 0.1).
The misclassification can reduce the numbers of ZH s associated with tephra. As presented
in Figure A1, a significant number of ZH pixels in the SW and NW sectors of M06 were
removed at elevation angles of 15◦and 18◦ after applying the NBC. Aggregating the ZH
(max) from elevation angles of 13–21◦ helped restore most of the data in the NW, but
was still unable to reserve the echoes in the SE sector (Figure 2). This limitation is the
consequence of a higher frequency of clutter in the SE sector. When the radar was pointing
to the Merapi vent, the sidelobes were in contact with the hill side of Merapi (Turgo Hill,
Figure 1b), producing unwanted radar noises in this sector.

Larger than 2 mm diameter particle (φ < −0.69) lasted only four minutes after the
eruption in the atmosphere. This tephra regime was part of the eruptive mixture in the
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early development stages [41]. It should be noticed that larger and finer particles than
the estimates may occur, unmonitored by the current method owing to the limitation of
radar-retrieved GSD. The limitation is mainly related to radar specification (e.g., antenna
gained, wavelength, radar sensitivity, and scanning speed). Larger tephra particles also fall
faster, and such speed might be unmonitored by the 2 min temporal resolution of scanning
radar. Moreover, some studies in tephra retrieval by the microphysical model of radar also
found that intense tephra concentrations can be associated with greater amounts of finer
and slower falling particles within a sampling volume [9,19,20].

As noted earlier, we failed to extract radar estimates of GSD for M05 at two radar
sampling points with available information of in situ data (P-01 and P-09, Figure 5). We
could only extract the radar-retrieved GSD at some points near P-01. Notice that the in situ
sampling points in Figure 5a were collected on surface level, while the radar-based model
estimated the GSD at elevation angles of 13–21◦ scans. Although this study assumed the
observed radar parameters could represent the surface level, there was still uncertainty
owing to atmospheric condition (i.e., wind profile) affecting the tephra distribution. Hence,
some of radar images could not align well with the in situ data points [24]. While this
study confirmed the incomparability between atmospheric and surface level data, we
could use the grain size collected on ground data to constrain and compare the range
of grain sizes inferred from radar. Point Q-01 and Q-09 are close and distal to the vent,
respectively, and thus reflect the end members of the GSD for the whole sample region.
However, based on the conclusion in [24], there was no significant difference between the
sortation in both points, where they categorized the GSD to be moderately well sorted.
The extracted radar-retrieved GSDs have limited distribution, where φ = 0.85–1.25. This
limitation is related to the Rayleigh scattering theorem used in this study, which limits
the 3.3 cm wavelength of radar to be associated with smaller than ~2 mm mean particle
diameter. Within the limited GSD range, our study could capture the spatial change in
GSD, where the number of coarser particles decreases at a distant point from the radar. As
presented on Figure 5e, Q-01 has a greater portion of coarse GSD than Q-09. Our estimates
match the broadly predictable feature of GSD, which is a decrease in mean particle size
with distance from the vent [42].

While the estimated GSD from the radar-retrieved model was slightly greater than the
in situ data (for M06), the majority of radar-retrieved GSD fell within the range observed
in [24] (Figure 3). More importantly, the radar-retrieved estimates of particle size also
agreed with the conclusion of [24], that the tephra from M05 had a coarser grain size
than M06 (Figure 5h,i). The difference between GSD for the two case study events can be
attributed to the level of the eruption’s explosivity and surface energy consumption. An
eruption with lower explosion energy (M05) produced coarser grain pyroclastic deposits
than the higher explosion energy (M06) [43,44]. However, it should be noted that the
prediction of GSD from explosion energy is still an active area of research, and the variety
of fragmentation processes and magma properties makes it difficult to construct a general
relation between GSD and energy balance [44].

4.2. Forecasting the Dispersal of Tephra

Spatially, the mean EPS could track elevated tephra concentrations estimated by ob-
served and valid ZH . The initial conditions used have a significant role in the estimated
tephra dispersal, where the longest and shortest time windows tend to have poorer predic-
tive skills. The shortest time window (onset+4) members show the tendency of the tephra
cloud to elongate in the y-direction (N–S), as it could not estimate the correct horizontal
u-wind component (parallel to the x-axis: E–W), as presented in Figures A3 and A4. This
signature is more visible in M05 than in M06, where the forecasted plume elongated in
the NS direction (Figures 6 and 10). The plume expansion in the NS direction could also
be attributed to the vertical growth or decaying rate, as it showed the change in altitude
along with the range distance. As the radar is located in the SW sector, the altitude of the
radar scan increases with radar’s range in the N sector. The aggregated maximum ZH from
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different elevation angles (13–21◦) may represent the actual growing or decaying rate at
a different height. The ejected material with a higher concentration would have reached
a higher altitude before expanding horizontally within a shorter period (onset+4). This
result explained the more intense concentration estimates in the NW sector for both cases.
Hence, the translation model might have calculated an increasing trend of ZH along the
y-direction (NS), resulting in the NS elongated orientation of plume expansion. On the
other hand, the most extended time window (onset+8) members showed an expansion
of the plume to the u-wind component, indicating underestimation of the growth and
decaying rate (Figures A3 and A4). At this time window, the identified plume had lost
most of the intense ZH regime (>45 dBZ), causing an exaggeration of horizontal expansion.

Additionally, unlike precipitation, the advection vectors that determine the rotation
and translation of tephra displacement were generated from fewer sample points, resulting
in a higher error rate. Despite these limitations, this method has confirmed the time-
dependent plume evolution exhibited in short-lived Vulcanian eruptions [45]. We confirm
a recommendation by a previous study [17] stating that, for EPS, the use of past data started
too soon from the onset results in inferior predictive skill. However, it may also depend on
the magnitude of eruption and the temporal scale of the instrument. As presented in this
study, both cases are small-scale explosive events producing short-lived volcanic plumes.
Generating the nowcasting using past data of the shortest (onset+4) and longest (onset+8)
time window produces poorer results than using onset+6 as the initial condition. A longer
time window, up to 6 h from the onset, was recommended in the satellite-based ensemble
prediction of volcanic ash dispersal from the VEI-4 Kelud eruption [17]. This longer time
window is not applicable for the short-lived plumes analysed by this study. For our study
cases, onset+6 can probably better cover both the plume expansion (related to the energy
release and ESP) and wind components (Figures 8, A3 and A4).

In the future, applying this method to larger magnitude eruptions will help answer
the uncertainty of the optimum lead time applied to the nowcasting of the volcanic ash
dispersal. A plume generated from a larger scale and more extended duration eruption
event may last longer in the atmosphere and cover a broader area in the radar’s azimuth
display, enabling the addition of ensemble members for a more robust forecast. However,
the forecast can be more challenging in the case of successive explosive pulses as they
may not be suitable for a linear approach used in this study. Optimizing the nowcasting
approach by the deep learning method has been considered effective in improving forecast
quality. This method can solve non-linear precipitation phenomena, such as convective
initiation [46].

The mean EPS can reduce the uncertainty of forecasted tephra track, spatially and
temporally (Figures 6–9). Mean EPS took consideration from the mean values of ensemble
members with Ca > 0.01 g/m3. Hence, it removed the lowest probability forecasts, resulting
in more reliable results that matched the estimated Ca from radar observable. As EPS
reduces the uncertainty of forecasts, it significantly improves prediction skills. In Figure 8,
even though both CSI and POD show a typical behaviour of nowcasting, where it decreases
following the time increase, the mean EPS maintained the prediction skill relatively better
than ensemble members.

Estimating the growth and decaying rate for M06 is probably more challenging than
M05, as given by CSI and POD scores. As the plume goes to the NW sector with a higher
altitude, the maximum aggregate may contain higher ZH values (corresponding to higher
Ca). Consequently, it produces more variability in the data distribution, which results in a
higher error rate when estimating the w parameter of some ensemble members. The poorest
ensemble members forecast is given by combining all phenomena: parallel translation,
rotation, and growth and decaying rate. The dispersion of the small size plume is mainly
related to wind vectors and not by a mesoscale rotational motion, such as the case of a
tropical cyclone. However, it should be noted that the higher predictability score given
by CSI and POD is based on large numbers of zero-valued pixels. The observed radar
range was fixed at 30 km (Table 1) with a 150 m mesh resolution, resulting in significant
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Nhit generated from pairs of zero-valued pixels but insignificant numbers of N f alse and
Nmiss (Figure A5). Visual verification is crucial to conclude if each ensemble member can
correctly imitate the tephra plume’s movement and expansion.

Plume in M06 can maintain its circular shape that followed the radar-retrieved Ca,
while plume in M05 has an elongated shape that does not match the radar-retrieved Ca.
A different result is obtained when comparing the mean EPS with satellite data, where
M05 is slightly better than M06. However, the scores are poorer than the comparison
made with radar data. Poorer BS given by comparing radar nowcasting and satellite is
reasonable owing to the different spatial patterns of the ash cloud seen by the two sensors
because of the attenuation of different particle size sensitivity [31]. Himawari-8 infrared
observation (λ = 10.4 µm for BTDB13) is more sensitive to capture finer particles than the
X-band radar observation (λ = 3.3 cm). The difference is more noticeable for M06, as the
undetected tephra plume of Himawari-8 by the EPS model occurred in the S sector, which
has the lowest elevation scanned by radar. M05 has coarse GSD and distributes in the
lower elevation within the radar’s scanning range. The radar can observe the displacement
in M05, enabling it to be modelled by nowcasting. Conversely, M06 has finer GSD and
greater magnitude than M05. This may imply that the ejecta of M06 has greater exit velocity,
which potentially helps raise the tephra mass to a higher altitude than M05, exceeding the
radar’s observable elevation angles. At higher altitudes, stronger wind shear can benefit
the dispersal of the finer GSD of M06 in the S sector, as seen in Himawari-8 images. This
regime of particles may also belong to the very-fine far travelling airborne ash mass, which
can only be captured by satellites [46].

The detected tephra observed by radar are coarser than the satellite-based model [47],
hence it is more likely to fall nearby the volcano because of its higher settling rate. This
conclusion is supported by the spatial distribution of mean EPS that matches the distribu-
tion of tephra on the ground [24]. The detected plume by Himawari-8, on the other hand,
had a much wider distribution within an area that did not belong to the in situ sampling
area, especially for M06 (Figure 10). Hence, this study reveals the benefit of the X-band
radar for a local early warning system in tephra hazard management, which is essential for
the nearby population.

Even though the cloud temperature of Himawari-8 and estimated radar tephra concen-
tration is not equally comparable owing to the difference in resolution, sensor’s wavelength,
and observed parameter, we assume that data from both instruments are complementary.
Comparing data from both instruments helps differentiate tephra regimes that will fall
earlier (ground-based radar) and parts of the finer ash regimes within a plume that may
be transported at a higher altitude and potentially cause disruption to aviation (satellite).
Moreover, the estimated tephra concentration from the radar is essential information for
the characteristic of the plume in the lower altitude, which cannot be retrieved from the
satellite data [17]. It also demonstrates the limitation of radar in observing the very fine
airborne ash regime, which is captured by satellite.

5. Conclusions

This study has demonstrated the potency of an X-MP radar to detect and forecast
tephra plume in Merapi. We estimated tephra concentration and GSD using solely ground-
based radar data. We retrieved both tephra properties from two cases of explosive eruption:
M05 and M06, based on radar’s ZH . Only valid ZH was used in the model as unwanted
clutters and sidelobes contamination were automatically cancelled by the Bayesian ap-
proach. Using the microphysical model of radar, we found that higher than 7.5 g/m3

tephra concentration lasted only 4 min after the onset. M05 has a coarser GSD than M06,
which agrees with the in situ data. Applying the radar nowcasting in the manner of
EPS reduced the uncertainty of forecasted tephra dispersal. However, the forecasts rely
on radar observation with limited wavelength sensitivity and scanning range. Hence, it
cannot forecast the very-fine ash regime transported to the higher than radar’s elevation
angles observation. Despite this limitation, the spatial distribution of the forecasted plume
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matches the distribution of tephra on the surface level, enforcing its potency in the early
warning system for local people living nearby Merapi.

While more work is needed to apply the remote sensing approach of tephra plume
tracking using ground-based weather radar, this study has presented the potential use of a
weather radar to forecast the dispersal of tephra. A crucial problem is an uncertainty in
estimating the growth and decaying rate. Capturing the dynamic of the tephra plume is
challenging. Different eruptive cases may require more ensemble members than the one
we presented here, or even different approaches, such as the deep learning method for a
more robust forecast.

In order to overcome the limitation of observing only part of the volcanic plume with
ground-based weather radar, future work should be more focused on integrating the radar
and satellite data through data assimilation. Such a study will solve the classical problem of
not detecting fine ash by radar observation while simultaneously improving the efficiency
of the volcanic plume estimation by satellite data. This multisensory approach can reduce
the complexity of tephra plume dispersion modelling and improve the reliability of its
real-time forecasting using remote sensing techniques.

Supplementary Materials: Tephra radar-retrieved algorithms and its 2D visualization are coded
in RStudio scripts and published on GitHub (https://github.com/irasyarif1906/TephraRadar.git
(accessed on 22 November 2021)).
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Appendix A. Naïve Bayesian Classifier

A general expression of the Bayes classifier is given in Equation (A1). The classification
is performed by applying the Bayes rule to calculate the probability of class c, given a
particular set of input measurements, and the prediction is

p
(
cα

∣∣x1, . . . , xβ

)
=

p
(
x1, . . . , xβ

∣∣cα

)
p(cα)

p
(
x1, . . . , xβ

) (A1)

In Equation (A1), p
(
cα

∣∣x1, . . . , xβ

)
is the joint probability model, which can be simpli-

fied by assuming that all the input measurements are conditionally independent given the

https://github.com/irasyarif1906/TephraRadar.git
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class label c. Subscript β denotes number of parameters, which are 5 and 1 for clutter and
tephra class classification, respectively. p(cα) is the probability of the class label and sub-
script α has three and six classes for clutter cancelation and tephra detection, respectively.

Five input measurements for clutter classification are presented in Table A1. They are
ZH and its standard deviation σ(ZH), altitude z, ρHV , and frequency clutter map Pc. Pc
was calculated by analysing a sufficient number of scans during a clear sunny day, which
in this study was 210 sets of data for every nine elevation angles. These data were obtained
from 1 July 2018 (07:00–12:00 UTC) to 31 May 2018 (22:00–24:00 UTC). Every pixel in each
scan had a probability of occurrence of being clutter in the range of 0–1. For instance, if
a particular pixel was detected as an echo in clear conditions without prior information
of rainfall or eruptive events 100 times out of 200, then the pixel has a Pc = 0.5. Pc was
calculated in a similar way for every elevation angle.

Table A1. Input measurements of clutter classification.

ZH σ(ZH) z

ρHV Pc

Training and test data for clutter classification were taken randomly from radar
scanning data on 26–30 January 2018. Here, we assumed valid rainfall echo is similar
to tephra. Figure A1 presents an example of the clutter cancellation results for elevation
angles 15◦ and 18◦.

The tephra classification relied on a single input measurement of ZH . The classifica-
tion of tephra used six sets of synthetic data to train and test the Bayesian classifier. The
synthetic data were generated using Gaussian distribution and the statistical parametriza-
tion is presented in Table A2. Two of the parameters were considered in generating the
synthetic data: particle size and concentration. The synthetic data were generated with
the assumption that the standard deviation was proportional to 20% and 50% from the
mean values of particle diameter and concentration, respectively. Table contingency errors
for clutter and tephra classification are given in Tables A3 and A4, respectively. The total
probability along a column is always equal to one, whereas the input classes are listed in
the columns.

Table A2. Statistical properties of synthetic tephra (modified from [9]).

Concentration
(g/m3)

Diameter of Particle Classes (mm)

Fine Class (F) Coarse Class (C)

Mean Range Mean Range

0.10 0.015–0.35 1.00 0.35–6

Light (L) Mean 0.10 0.10
Range 0.01–0.50 0.01–0.50

Moderate (M)
Mean 1.00 1.00
Range 0.50–2.00 0.50–2.00

Intense (I)
Mean 5.00 5.00
Range 2.00–10.00 2.00–10.00
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Table A3. Contingency table of clutter classification by NBC.

Class Clutter Non-Clutter Invalid

Elevation angle 3◦
Clutter 0.90 0.06 0.00

Non-Clutter 0.10 0.94 0.00
Invalid 0.00 0.00 1.00

Elevation angle 5◦
Clutter 0.96 0.04 0.00

Non-Clutter 0.04 0.96 0.00
Invalid 0.00 0.00 1.00

Elevation angle 7◦
Clutter 0.98 0.04 0.00

Non-Clutter 0.02 0.96 0.00
Invalid 0.00 0.00 1.00

Elevation angle 9◦
Clutter 0.98 0.03 0.00

Non-Clutter 0.02 0.97 0.00
Invalid 0.00 0.00 1.00

Elevation angle 11◦
Clutter 0.99 0.03 0.00

Non-Clutter 0.01 0.97 0.00
Invalid 0.00 0.00 1.00

Elevation angle 13◦
Clutter 1.00 0.03 0.00

Non-Clutter 0.00 0.97 0.00
Invalid 0.00 0.00 1.00

Elevation angle 15◦
Clutter 0.95 0.02 0.00

Non-Clutter 0.05 0.98 0.00
Invalid 0.00 0.00 1.00

Elevation angle 18◦
Clutter 0.99 0.30 0.00

Non-Clutter 0.01 0.70 0.00
Invalid 0.00 0.00 1.00

Elevation angle 21◦
Clutter 1.00 0.10 0.00

Non-Clutter 0.00 0.90 0.00
Invalid 0.00 0.00 1.00

Table A4. Contingency table of tephra classification by NBC.

Class
F C

L M I L M I

F
(Fine class)

L 0.94 0.19 0.04 0.02 0.00 0.00
M 0.06 0.78 0.18 0.05 0.01 0.00
I 0.00 0.04 0.76 0.14 0.02 0.01

C
(Coarse class)

L 0.00 0.00 0.02 0.71 0.22 0.07
M 0.00 0.00 0.00 0.08 0.72 0.21
I 0.00 0.00 0.00 0.00 0.04 0.72
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Figure A1. An example of the clutter cancellation results. Data are presented for elevation angles of 15 and 18◦. The cases
and time stamps are given in the top left corner. (a,d) The observed radar reflectivity intensity factor ZHH, (b,e) the filtered
ZH after applying the clutter cancellation procedure, and (c,f) the frequency clutter map Pc for the given elevation angles.
In each image, the x-axis is longitude and y-axis is latitude.

Appendix B. Microphysical Radar Model of Tephra Retrieval

The GSD of tephra is indicated by Na(D), where D [mm] is the particle diameter. The
gamma GSD as a general scaled form of Na(D)) [m−3/mm] is formally expressed as

Na(D) = Nn

(
D
Dn

)µ

e−Λn(
D

Dn )
υ

(A2)

where Dn [mm] is the number-weighted mean diameter; Nn [m−3/mm] is the intercept;
Λn is the slope; µ is the shape factor; and υ is the slope factor. The normalization is such
that Nn and Λn are related to the mean diameter Dn and tephra concentration Ca, and have
physical dimensions independent of µ and υ. The GSD form follows the scaled gamma
distribution, which is derived from the analogue form established for raindrops. The scaled
gamma GSD NsG assumes that υ = 1, and follows an equation similar to Equation (A2):

NSG(D; µ, Dn,Ca) = NnG

(
D
Dn

)µ

e−ΛnG(
D

Dn ) (A3)

where the intercept parameter NnG and the slope parameter ΛnG were scaled using
Equation (A4) and the tephra mass concentration was expressed in Equation (A5) NnG = Ca

6Dn
µ

πρa(3+µ)!

[
(µ+1)!
Dn(µ!)

]3+µ+1

ΛnG = µ + 1
(A4)

Ca =
π

6
ρam3 (A5)
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The n-th moment of gamma distribution is given by

mn =
∫ D2

D1

DnNa(D)dD (A6)

Assuming µ = 1, an explicit expression of the complete moment of gamma distribution
(i.e., when D1= 0 and D2 = ∞) can be written as follows:

mnG =
NnG

(ΛnG)
n+2 Dn+2−µ

n Γ(n + 2) (A7)

Here, Γ is the gamma function. NnG and ΛnG are derived from Equation (A4). In the
Rayleigh scattering assumption, ZH is given by the sixth moment of gamma distribution in
Equation (A8). ZH can be expressed in mm/m6 or dBZ, which is 10 log10 (ZH[mm/m6]).

ZH =
∫ Dmax

Dmin

D6Na(D)dD = m6 (A8)

The generated synthetic ZH was fitted against synthetic Ca to formulate a statistical
parametric model of Ca-ZH as follow:

Ĉ(c)
a = γ[ZH ]

δ (A9)

where γ and δ are the constants and the law-exponents. The apex (ˆ) indicates estimated
quantity, and superscript (c) indicates six classes of tephra (Table A2).

Appendix C. Spatiotemporal Forecasting of Tephra Evolution and Cross Validation

Figure A2. The bright temperature difference of band-13 (BTD13) of Himawari-8. Data are presented here for M05 (left) and
M06 (right), 30 min after reported eruption onset, as indicated in the top left corner.
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Figure A3. Some examples of the ensemble members (row) at different time step output (column). Presented is the
nowcasting of M05. Each ensemble member was named based on the initial condition: onset+i_Scj, where i and j represent
the time in minutes and advection scenario (Table 3), respectively. In each image, the x-axis is longitude and y-axis is latitude.

Figure A4. Some examples of the ensemble members (row) at different time step output (column). Presented is the
nowcasting of M06. Each ensemble member was named based on the initial condition: onset+i_Scj, where i and j represent
the time in minutes and advection scenario (Table 3), respectively. In each image, the x-axis is longitude and y-axis is latitude.



Remote Sens. 2021, 13, 5174 22 of 24

Figure A5. Number of missed and false events of ensemble members and the mean ensemble for M05 (a) and M06 (b).
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