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Abstract: Coastal zones are very dynamic natural systems that experience short-term and long-term
morphological changes. Their highly dynamic behavior requires frequent monitoring. Tidal flat
topography for a large spatial coverage has been generated mainly by the waterline extraction
method from multitemporal remote sensing observations. Despite the efficiency and robustness of
the waterline extraction method, the waterline-based digital elevation model (DEM) is limited to
representing small scale topographic features, such as localized tidal tributaries. Tidal flats show
a rapid increase in SAR backscattering coefficients when the tide height is lower than the tidal flat
topography compared to when the tidal flat is covered by water. This leads to a tidal flat with a
distinct statistical behavior on the temporal variability of our multitemporal SAR backscattering
coefficients. Therefore, this study aims to suggest a new method that can overcome the constraints of
the waterline-based method by using a pixel-based DEM generation algorithm. Jenks Natural Break
(JNB) optimization was applied to distinguish the tidal flat from land and ocean using multitemporal
Senitnel-1 SAR data for the years 2014–2020. We also implemented a logistic model to characterize the
temporal evolution of the SAR backscattering coefficients along with the tide heights and estimated
intertidal topography. The Sentinel-1 DEM from the JNB classification and logistic function was
evaluated by an airborne Lidar DEM. Our pixel-based DEM outperformed the waterline-based
Landsat DEM. This study demonstrates that our statistical approach to intertidal classification and
topography serves to monitor the near real-time spatiotemporal distribution changes of tidal flats
through continuous and stable SAR data collection on local and regional scales.

Keywords: Jenks Natural Break classification; logistic regression; tidal flat; topography; Sentinel-1;
synthetic aperture radar (SAR)

1. Introduction

Tidal flats are extensive coastal ecosystems that form intertidal areas and are periodi-
cally inundated due to the ebb and flow of tides, which cover an area of 128 K km2 of the
Earth’s surface [1,2]. They play a vital role in removing inorganic and organic matter from
the land, stabilizing the coastline, and providing protection against coastal flooding caused
by hurricanes and storm surges [3–5]. Despite the geographical and ecological importance
of tidal flats, the global area of tidal flats has decreased by 16% over the past 30 years [1,6,7].
In particular, the Korean coastal environment has been undergoing rapid changes due
to coastal reclamation and development, thus the total area of tidal flats in Korea has
decreased by 30–40% compared to the 1980s [8]. Tidal flats are constantly changed by
waves, wind, and biological and anthropological effects. Therefore, when considering the
physical, biological, geological, and morphological aspects of tidal flats, it is very important
to accurately investigate extent and exposure of the tidal flats along with the tide level and
the spatiotemporal change of the tidal flat topography [1,9].

Ground-based point measurements provide information to improve our understand-
ing of complex tidal flat environments on a local scale, despite involving expensive, labor
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intensive, and time consuming processes. Recently, the enhanced operational stability of
unmanned aerial vehicle (UAV) platforms has increased the use of rapid and automated
intertidal mapping. The high spatial resolution of UAV images can be very useful in detect-
ing small changes in tidal flats. Long et al. [10] attempted topographic monitoring over
tidal flats using a fixed-wing mapping drone combined with a digital camera and showed
high accuracy in the result data. Brunetta et al. [11] presented a method to detect detailed
topographic changes in tidal flats with various ground control point configurations. How-
ever, this method requires on-site visits to obtain the data and the operating environment
is readily affected by weather conditions, such as extreme wind, rain, and storms. Similar
to in situ measurement, UAV platforms are challenging to use for the characterization of
large scale tidal flat environments due to their limited flight time and coverage.

Several studies have demonstrated that satellite-based remote sensing represents an
effective tool for monitoring morphologic change and sedimentary facies distribution over
wide tidal flats, on regional and continental scales [9,12]. Specifically, the Normalized
Difference Water Index (NDWI) from Landsat TM/ETM+ data was applied for the large
scale intertidal classification and coastline extraction of East Asia [8] and Australia [13].
However, optical remote sensing imageries are always limited by weather conditions such
as sunlight and cloud coverage. Synthetic aperture radar (SAR) images have also been
applied to tidal flats with less cloud contamination [14], but SARs are readily affected by
high speckle noise. The contrast between ocean and land is not always clear on a pixel-by-
pixel basis in high resolution SAR images, which makes the waterline extraction of SAR
images a challenging problem [15]. Thus, the integration of multitemporal and multiband
SAR data can be very useful for the study of tidal flats. For example, Zhang et al. [16] used
multiband SAR images, including C-band ENVISAT ASAR and L-band ALOS PALSAR, to
analyze the characteristics of seasonal changes in reed marches and rice fields. Salameh
et al. [17] showed that the frequent sampling of the Sentinel constellation helps to overcome
the limitations induced by a shortage of images. The combined use of Sentinel-1 and -2
can provide an adequate number of images that covers the whole tidal cycle in a relatively
short period.

Intertidal topography has been generated through waterline extraction using multi-
temporal remote sensing data. Optical satellite images have been largely used to generate
topographic maps [7,18], and SAR images have also been moderately applied in the wa-
terline extraction method [19]. This uses a time series of satellite images taken during
different tidal periods to map intertidal topography. The heights of the waterlines can be
measured from in situ data or marine hydraulic models, and a gridded DEM is created
using spatial interpolation techniques [20]. Although waterline extraction is simple and
fast, it is sensitive to noise and the edge location is not accurate with only a limited number
of remote sensing images [15,21]. Although this method is still commonly used, DEM
generation is constrained between the highest and lowest level of acquired images and
provides contour lines without the representation of small scale topographic features,
such as localized tidal tributaries [7,22]. Using remote sensing data to generate tidal flat
topography only provides information about the selected regions and times when the
satellite images were acquired [23]. Thus, the use of an insufficient number of images in
the waterline extraction method may lead to inaccuracies [2].

In this paper, we propose the pixel-based statistical analysis of intertidal classification
and topography using multitemporal Sentinel-1 backscattering coefficients. Specifically,
this study (1) distinguishes the tidal flats from land and ocean via the Jenks Natural
Breaks (JNB) classification using Sentinle-1 SAR data; (2) estimates intertidal topography
from a multitemporal SAR backscattering logistic model on a pixel-by-pixel basis; and (3)
evaluates our Sentinel-1 intertidal topography against airborne Lidar and waterline-based
Landsat TM/ETM+ Digital Elevation Models (DEMs). This study attempts to determine the
feasibility of our innovative statistical analysis for intertidal classification and topography
to monitor the near real-time spatiotemporal distribution changes of tidal flats through
continuous and stable SAR data collection on local and regional scales.
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2. Materials and Methods
2.1. Study Area

Our study area, Hwangdo (35◦35′05.48”N, 126◦22′39.92”E), is located in the innermost
part of Cheonsu Bay on the central western coast of Korea and has a width of 1.65 km and
length of 5.15 km (Figure 1). The Cheonsu Bay is characterized as a semi-closed bay with a
shallow depth of less than 25 m. The sediment facies of this study area comprise mud flats,
mixed flats, and sand flats, from the high tide waterline to the low tide waterline [9,24].
The total area of Cheonsu Bay has decreased from 380 to 180 km2, which was caused by
the embankment construction for land reclamation in the late 1980s and early 1990s [25,26].
The water depth around the Cheonsu Bay has been maintained at over 10 m since the dike
was constructed. The extensive loss of tidal flats requires the continuous monitoring and
assessing of the spatiotemporal change of the tide flat topography.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 12 
 

 

the feasibility of our innovative statistical analysis for intertidal classification and topog-
raphy to monitor the near real-time spatiotemporal distribution changes of tidal flats 
through continuous and stable SAR data collection on local and regional scales.  

2. Materials and Methods 
2.1. Study Area 

Our study area, Hwangdo (35°35′05.48″N, 126°22′39.92″E), is located in the innermost 
part of Cheonsu Bay on the central western coast of Korea and has a width of 1.65 km and 
length of 5.15 km (Figure 1). The Cheonsu Bay is characterized as a semi-closed bay with 
a shallow depth of less than 25 m. The sediment facies of this study area comprise mud 
flats, mixed flats, and sand flats, from the high tide waterline to the low tide waterline 
[9,24]. The total area of Cheonsu Bay has decreased from 380 to 180 km2, which was caused 
by the embankment construction for land reclamation in the late 1980s and early 1990s 
[25,26]. The water depth around the Cheonsu Bay has been maintained at over 10 m since 
the dike was constructed. The extensive loss of tidal flats requires the continuous moni-
toring and assessing of the spatiotemporal change of the tide flat topography.  

 
Figure 1. (a) Study area of the Hwangdo tidal flat in Cheonsu Bay overlaid with the SRTM elevation maps. The gray box 
shows the Sentinel-1 SAR coverage in path 127. The red circle shows a tide gauge. (b) Google Earth image of the Hwangdo 
tidal flat. 

2.2. Tide 
This study area predominantly has semi-diurnal tides. Tide data from Boryeong sta-

tion were collected from the Korea Hydrographic and Oceanographic Agency 
(http://www.khoa.go.kr; access on 1 September 2021) for the years 2014–2020. Figure 2 
shows the time series of the tide height and the acquisition times of the Sentinel-1 SAR 
images used in this study. The tide heights ranged from 6.68 m in mean higher high water 
(MHHW) to 1.22 m in mean lower low water (MLLW) for our study period. The highest 
astronomical tide (HAT) was 8.16 m and the lowest astronomical tide (LAT) was −0.19 m. 
The tide heights associated with the Sentinel-1 images were mainly located between 2 and 
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Figure 1. (a) Study area of the Hwangdo tidal flat in Cheonsu Bay overlaid with the SRTM elevation maps. The gray box
shows the Sentinel-1 SAR coverage in path 127. The red circle shows a tide gauge. (b) Google Earth image of the Hwangdo
tidal flat.

2.2. Tide

This study area predominantly has semi-diurnal tides. Tide data from Boryeong sta-
tion were collected from the Korea Hydrographic and Oceanographic Agency
(http://www.khoa.go.kr; accessed on 1 September 2021) for the years 2014–2020. Fig-
ure 2 shows the time series of the tide height and the acquisition times of the Sentinel-1
SAR images used in this study. The tide heights ranged from 6.68 m in mean higher high
water (MHHW) to 1.22 m in mean lower low water (MLLW) for our study period. The
highest astronomical tide (HAT) was 8.16 m and the lowest astronomical tide (LAT) was
−0.19 m. The tide heights associated with the Sentinel-1 images were mainly located
between 2 and 6 m in tidal range, which accounts for the lower and upper limits used
when estimating our tidal flat topography.

http://www.khoa.go.kr
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Figure 2. Temporal distribution of tide heights from October 2014 to July 2020. The gray line shows
tide heights. The blue dots denote the acquisition times of the Sentinel-1 SAR images used in our
tidal flat topography (MHHW: mean higher high water, MLLW: mean lower low water, HAT: highest
astronomical tides, and LAT: lowest astronomical tides).

2.3. SAR Image Processing

The Sentinel-1 mission is a two satellite constellation (i.e., Sentinel-1A and Sentinel-1B)
with the same reference orbit [27]. Sentinel-1A and -1B were launched on 3 April 2014 and
on 25 April 2016, respectively. In this study, 120 images were acquired from an ascending
orbit on path 127 for the years 2014–2020. The data were Ground Range Multi-Look
Detected (GRD) level-1 products acquired in Interferometric Wide Swath (IW) mode with
High Resolution (HR) and VV polarization. The image processing was automated through
multiple batch programs with a Graph Processing Tool (GPT). In general, the SAR data are
provided as a digital number (DN), which are relative to the incidence angle and the highest
intensity value. Radiometric correction was required to facilitate the comparative analysis
with other studies. In this study, we converted the DN values to gamma naught (γ0) as dB
values. Multi-look processing was not applied any further so as to preserve the intrinsic
spatial resolution of the Sentinel-1 GRD HR products, which were generated by averaging
five looks in range and one look in azimuth in the Singe Look Complex (SLC) product. A
Lee Sigma filter with a 3 × 3 window size was adopted to reduce the speckle noise without
losing spatial resolution. Terrain correction was applied to the Sentinel-1 images using the
Shuttle Radar Topography Mission (SRTM) DEM data. The radar backscattering coefficient
(γ0) images were converted into geographic coordinates with respect to the World Geodetic
System (WGS84) reference system.

2.4. Statistical Analysis
2.4.1. JNB Optimization

The JNB method was adopted to separate the tidal flats from the ocean and land in
our study area. The JNB method is a statistical analysis which can sectionalize data by
minimizing each class’s average deviation from the class mean while maximizing each
class’s deviation from the means of the other classes [28]. In this study, the algorithm began
the process of dividing the ordered γ0 values in terms of the corresponding tide heights.
Secondly, the algorithm calculated the sum of squared deviations from the class means
(SDCM) and the sum of squared deviations from the mean of the complete array data
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set (SDAM). The calculations had to be repeated using different breaks in the dataset to
determine which set of breaks had the smallest in-class variance. The goodness of variance
fit (GVF) index was indicative of the class’s fitness obtained from the JNB classification.

GVF = 1 − SDCM/SDAM (1)

The GVF ranges from 0 to 1, where 0 indicates the worst and 1 is the best case.
Therefore, tidal flats tend to be close to 1 whereas land and ocean are close to 0. This is
supported by the fact that the radar backscattering coefficients in tidal flats are readily
divided into two classes. Generally, the γ0 shows high values when tidal flat topography is
higher than tide height and low values when tidal flat is covered by water.

2.4.2. Logistic Function

After distinguishing the tidal flats from ocean and land in the SAR data with a certain
threshold of GVF, the logistic model was applied to characterize the temporal evolution of
the SAR backscattering coefficients and estimate the intertidal topography in this study.
The temporal variation of the radar backscattering coefficients can be formulated by the
logistic function [29] as below.

γ0(x, y) =
k1

1 + e−a(hi−ht)
+ k2, i = 1, . . . , M (2)

where γ0(x, y) is the corresponding gamma naught at the tidal flat pixel (x, y), ht is the
tidal flat topography, hi is the tide height and M is the number of SAR images used in
the time series. The parameter a is related to the steepness of the logistic function, which
ranged from −7 to −10 in the unit of m−1 for our study area. The two parameters k1 and
k2 are related to the average radar backscattering coefficients for the tidal flat exposure
period at low tide and inundation period at high tide, respectively. In this study, our JNB
optimization algorithm estimated both parameters k1 and k2 on a pixel-by-pixel basis. The
JNB algorithm divides the data into two groups: high γ0 values for the tidal flat exposure
period and low γ0 values for the inundation period with respect to the tide heights. The
parameter k1 was calculated as the difference between the average γ0 values of the tidal flat
exposure and inundation periods. The parameter k2 was the average γ0 for the inundation
period. After the tidal flat topography ht was initialized from our JNB algorithm, ht was
optimized in an iterative manner for the best fitting logistic model to derive our final
Senintel-1 DEM.

2.5. DEM Evaluation

The Sentinel-1 DEM from the JNB optimization and logistic model was evaluated
by the 2015 airborne Lidar campaign from the Korea Hydrographic and Oceanographic
Agency (http://www.khoa.go.kr; accessed on 1 September 2021). The Sentinel-1 DEM was
also compared to the Landsat DEM image generated by the waterline extraction method [9].
For comparison analysis, the 1 m airborne Lidar and 30 m Landsat DEMs on the Universal
Transverse Mercator (UTM) projected coordinates were resampled to the 10 m spatial
resolution of our Sentinel-1 DEM using bilinear interpolation. They were then converted
into the WGS84 geographic coordinate system. The DEM evaluation was performed using
common statistical indices, mean absolute error (MAE), and root mean square error (RMSE).
The MAE is the average absolute values of the differences between the reference and the
corresponding observation. The Root Mean Square Error (RMSE) is a quadratic scoring
rule which measures the average magnitude of the error and gives a relatively high weight
to large errors.

MAE =
|(yr − yo)|

n
(3)

RMSE =

√
∑(yr − yo)

2

n
(4)

http://www.khoa.go.kr
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where n is the number of observations and yr and yo are the reference and observation
values, respectively. The RMSE tends to be larger or equal to the MAE. Our evaluation
might have been influenced by different DEM resolutions and resampling methods, but
their sensitivity to the DEM error was beyond the scope of this study.

3. Results and Discussion
3.1. Statistical Analysis

The multitemporal radar backscattering coefficients were processed to estimate the
intertidal topography through JNB optimization and logistic function. In Figure 3, the
mean and standard deviation of the multitemporal radar backscattering coefficients are
illustrated. The order of the mean radar backscattering coefficients from highest to lowest
was land, tidal flat, and ocean. Ocean exhibited low γ0 values due to the specular scattering
of the water surface. Interestingly, the order of the standard deviation of γ0 from highest
to lowest was tidal flat, ocean, and land. Tidal flats were characterized by high standard
deviation, which represents high temporal variation over different tide heights. In contrast,
the ocean and land areas had lower standard deviations due to the smaller temporal
variability of the corresponding backscattering coefficients. This is related to the fact that
tidal flat topography is generally located between land and ocean bottom topography, and
tidal flats are exposed as land at low tide and covered by water at high tide.
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For the intertidal classification, JNB optimization was applied to ocean, land, and
tidal flats, considering that tidal flats tend to show a rapid change of Senitnel-1 SAR
backscattering coefficients along with a steady change in tide height. Figure 3c shows the
GVF map from the JNB optimization of the backscattering temporal variability. The tidal
flat showed higher GVF values compared to the lower GVF values for ocean and land. This
supports the fact that tidal flats show high variability in the backscattering coefficient due
to the periodic in and out flux of the tide water, thus they can be separated from land and
ocean using our JNB optimization. For the intertidal topography, the logistic function was
implemented to characterize the temporal evolution of the SAR backscattering coefficients
on a pixel-by-pixel basis with the model parameters of local terrain height, steepness, and
tide height. Figure 3d shows the result of our intertidal topography, estimated from the
best fitting logistic model for areas with high GVF values.

Figure 4 illustrates the temporal variability of the radar backscattering coefficients of
ocean, land, salt pond, and tidal flats for more detailed results of our regression models.
Tidal flats were divided into high, intermediate, and low tidal flats, in terms of elevation, to
illustrate each of the temporal variabilities in Figure 4. Regardless of the tide height, ocean
was characterized by low backscatter coefficients of around −15 to −20 dB, and the mean
and standard deviation values were −17 ± 1.8 dB. Land showed relatively high gamma
naught values from −10 to −5 dB, and the mean and standard deviation values were
−7.9 ± 0.9 dB. Interestingly, salt ponds were clearly divided into two groups of high and
low backscatter coefficients, with high standard deviation of±4.4 dB. However, unlike tidal
flats, this was not related to the tide heights and could not be formulated by our logistic
function. This implies that the backscatter characteristics of salt ponds is closer to ocean
when seawater is trapped and closer to land when seawater is left to evaporate in the sun.
Figure 4d–f shows that each pixel of tidal flats is characterized by its own distinct temporal
variability of the radar backscattering coefficients with different model parameters. Tidal
flats show the mean and standard deviation values of −9.5 ± 3.0 dB, −14.3 ± 3.9 dB,
and −15.6 ± 4.0 dB for high, intermediate, and low elevation terrains, respectively. This
supports the notion that intertidal classification can be improved in an adaptive manner
when considering that tidal flats comprise a wide variety of tidal flat sedimentary facies,
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textures, and exposure times. The error term from the best fitting logistic function may
be explained by environmental factors, such as drainage rate, exposure time, and soil
porosity [30]. Additionally, our method reduces the problem of choosing an appropriate
fixed threshold to distinguish tidal flats from ocean and land in the Sentinel-1 SAR images.

3.2. DEM Evaluation

The accuracy of the Sentinel-1 DEM was evaluated against the airborne Lidar DEM
from the Korea Hydrographic and Oceanographic Agency. In Figure 5, the mean RMSE
and MAE were averaged into 0.1 bins of incremental GVF. The results show RMSE values,
ranging from 0.1 to 2.6 m, and MAE values from 0.1 to 1.7 m. A drastic decrease in the
RMSEs and MAEs is observed in GVF values higher than 0.2. Therefore, areas with GVF
values higher than 0.2 were defined as tidal flats in this study and entered into our logical
function to estimate intertidal topography.
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We also compared our Sentinel-1 DEM to the Landsat DEM from waterline extraction,
as well as the airborne Lidar DEM (Figure 6). The Senitnel-1 DEM outperformed the
Landsat DEM in terms of the evaluation indices of RMSE and MAE. The Sentinel-1 DEM
better captured high topographic reliefs (>5 m) compared to the Landsat DEM. Our pixel-
based method allowed more accurate measurement of small morphologic changes than the
waterline-based method. This can also be explained by the difference of intrinsic spatial
resolutions for the 10 m Sentinel-1 images and the 30 m Landsat images.
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Figure 7 illustrates the topographic profiles of the airborne Lidar, Sentinel-1, and
Landsat DEMs demonstrated by the solid white line in Figure 6a. Overall, the topography
profiles show a decreasing trend from north to south and the height difference amongst the
three DEMs on the y axis from 2 to 5 m. The Seninel-1 DEM better captured small scale
topographic reliefs in heights ranging from 3.5 to 4.5 m on the northern latitudinal profile
(>36.57 in degree) whereas the Landsat DEM seemed to be smoothly interpolated with
low reliefs. Also, our Sentinel-1 DEM well-represented the steep slopes on the southern
latitudinal profile which was close to the boundary between tidal flats and ocean. This can
be supported by the fact that the waterline-based method tends to produce low vertical
precision on steep slopes due to the edge detection error of the waterline.

4. Conclusions

Tidal flats are very dynamic natural systems that experience short-term and long-term
morphological and hydrological changes. Their highly dynamic behavior requires frequent
monitoring. Ground-based measurements and UAV-based methods provide very accurate
measurements, but they lack the ability to provide repeated observations. Satellite-based
methods have been useful for accomplishing repeated observations for a large spatial cover-
age. This study presents our innovative statistical approach for intertidal classification and
topography on a pixel-by-pixel basis using multitemporal SAR backscattering coefficients.

We demonstrated the use of JNB optimization to separate tidal flats from ocean and
land using multitemporal Sentinel-1 backscattering coefficients. This method uses an
iterative approach to find a distinct statistical behavior of the tidal flats along with tide
heights. Tidal flats show a high variability of the SAR backscattering coefficients due to
the periodic in and out flux of tidal water. In this study, areas with GVF values higher
than 0.2 were classified as tidal flats, which was supported by the DEM evaluation against
the airborne Lidar observations. We also successfully generated Sentinel-1 DEMs with
10 m spatial resolution and a height accuracy of 0.20 m in MAE and 0.28 in RMSE from
the logistic function. The Sentinel-1 DEM outperformed the waterline-based optical image
from the Landsat DEM. Our logistic function relies on a pixel-based algorithm to model
the temporal variation of the multitemporal SAR backscattering coefficients, where three
unknown parameters (i.e., k1, k2, ht) were initialized from the JNB optimization. The height
accuracy of our logistic model can be improved when considering the effect of tidal flat
exposure time, sedimentary facies, and textures into the temporal variability of the SAR
backscattering coefficients.
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This study can also be used to generate important data as a means of managing
the marine environment and maritime activities more coherently at the marine spatial
planning (MSP) [31]. These results are essential to continue making potential improvements
in quickly monitoring extensive tidal flats and coastal changes through continuous and
stable SAR data collection on a local and regional scale. Future development could focus
on more efficient models to estimate and forecast tidal flat topography and exposure with
environmental factors, which could also lead to a significant improvement in investigating
the spatiotemporal evolution of tidal flat productivity and habitat.
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