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Abstract: Background: Urban green space (UGS) has been shown to play an important role in
mitigating urban heat island (UHI) effects. In the context of accelerating urbanization, a better
understanding of the landscape pattern mechanisms affecting the thermal environment is important
for the improvement of the urban ecological environment. Methods: In this study, the relationship
between land surface temperature (LST) and the spatial patterns of green space was analyzed
using a bivariate spatial autocorrelation and spatial autoregression model in three seasons (summer,
transition season (spring), and winter) with different grid scales in Fuzhou city. Results: Our results
indicated that the LST in Fuzhou City has a significant spatial autocorrelation. The percentage of
landscape and patch density area were negatively correlated with surface temperature. The results of
our indicators differed according to the season, with population density and distance to the water
indicators not being significant in the winter. The coefficient of determination was higher at the 510 m
grid scale on this study’s scale. Conclusion: This study extends our understanding on the influence
of UHI effects after accounting for different seasonal and spatial scale factors. It also provides a
reference for urban planners to mitigate heat islands in the future.

Keywords: land surface temperature; greenspace spatial patterns; landscape metrics; spatial autore-
gressive model; seasonal variation

1. Introduction

China is currently experiencing rapid urbanization, with the urbanization rate ex-
pected to reach 70% by 2030. As urbanization accelerates, the subsequent expansion of
roads and buildings has led to the reduction of green space, resulting in a significant
increase in the temperature of the city relative to the peripheral suburbs, a phenomenon
also known as the urban heat island (UHI) effect [1]. Not only does the UHI effect affect the
local and regional climate [2], it also affects water resources, air quality [3,4], the growth
of plants [5], biodiversity, and the ecosystem in general [6]. It also has an adverse impact
on the health of urban residents [7,8]. Developing effective adaptation measures and
mitigation strategies for UHI effect is thus a common challenge that urban planners and
climatologists are currently facing.

Rapid urbanization has significantly affected land cover characteristics. This change
affects the characteristics of surface radiation, heat, and water in urban areas, and increases
the urban surface temperature. On the one hand, remote sensing collected by satellites
or airborne platforms has been proven effective in evaluating large-scale and local-scale
land surface temperature (LST) [9]. By monitoring the relationship between the spatial
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change of LST and UHI combined with satellite images, it is found that impervious surfaces
and urban green space (UGS) are highly related to LST. The average LST of impervious
surfaces is 4–6 ◦C higher than that of green space, which indicates that urban expansion
is the fundamental reason behind the UHI effect [10–15]. At the same time, urbanization
has led to land use/land cover (LULC) change on the surface, while the transformation
of forest land for commercial land use intensified the change in surface temperature and
humidity [16,17].

UGS has been proven to be an important measure for alleviating the UHI effect [12],
given that increasing vegetation coverage in urban areas has been proven to effectively
reduce LST [18–20]. As such, many scholars have carried out research on the shape [21],
area, structure, composition, and configuration of green space [22]. It has been found
that the connectivity [23], complexity [24], and fragmentation of greenfield patches are all
strongly correlated with LST [25–27]. It is confirmed that the structure and configuration
of green space can effectively reduce urban temperature by rational optimization [28].

As a fast-growing city in China, Fuzhou’s rapid urban expansion has led to a large
reduction in wetlands and woodlands, which has earned Fuzhou the title of a “burning
stove” in recent years [18]. Therefore, studying the spatial distribution and composition
of UGS in Fuzhou City and analyzing the changes in its landscape patterns can guide
us toward alleviating the urban heat island effect. However, the cooling effect of the
UGS spatial pattern differs regionally [29]. Thus, further research is needed to optimize
the effect of UGS on UHI and clarify the effect of UGS on UHI mitigation in different
cities. Considering the changes in UGS, the relationship between UGS landscape patterns
and LST is mostly analyzed via correlation or linear regression [20,30], which ignores the
spatial heterogeneity of the two. Moreover, due to the difference in landscape patterns, the
relationship between landscape patterns of different geographical environments and LST
is not consistent [12,31]. Therefore, while considering the spatial patterns of green space by
combining spatial autocorrelation and spatial regression models, this paper analyzes the
spatial relationship between green space landscape patterns and LST in different seasons
and scales in Fuzhou, while adding further discussion on the impact mechanism of green
space on the thermal environment.

2. Methods
2.1. Study Area and Data Source

Fuzhou is the capital of Fujian Province in China, which is located at 25◦15′–26◦39′

N, 118◦08′–120◦31′ E, and has a subtropical monsoon climate. The urbanization process
of Fuzhou has been particularly obvious in recent years. According to data from the
Fuzhou Bureau of Statistics, by the end of 2017, the population of Fuzhou was 7.21 million,
with 5.105 million urban residents; the urbanization rate of Fuzhou had already exceeded
70 percent (70.8 percent). The conversion of water bodies and UGS into major built-up
areas amounted to 13.3 and 20.2 km2. From 1985 to 2015, the area of built-up areas
doubled. Large UGS losses during urbanization are the main impact of the urban thermal
environment [18,32]. The study area covers a total of 1448.479 km2 (Figure 1).

Fuzhou has a subtropical monsoon climate, which is marked by longer summers
and shorter winters. Spring starts in March and ends in June, while autumn starts in
October and ends in November. After analyzing the temperature changes in Fuzhou from
2000–2020 (Figure 2), we found that the temperature distributions in spring and autumn
were relatively similar, and that there was little difference in temperature between April
and May in spring, and October and November in autumn. Therefore, the study divided
the seasons in Fuzhou into three types: summer, transitional seasons, and winter [33–35].
Landsat8 image data (11 December 2019, 16 March 2020, and 22 July 2020) for three different
periods were selected from the USGS (https://espa.cr.usgs.gov/index/ accessed on 18
March 2021) and radiometric and geometric corrections were applied [36]. Based on the
atmospheric correction method, LST was retrieved from the thermal band of Landsat8
images to characterize the LST of different seasons.

https://espa.cr.usgs.gov/index/
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Land use data were obtained using the 2018 Gaofen-1 satellite (GF-1) image, which 
has a panchromatic resolution of 2 m and a multispectral resolution of 8 m [37]. Using 
eCognition software (Definiens Imaging, Inc., Munich, Germany), five main landscape 
types were extracted based on an object-oriented classification approach—green space, 
built-up area, water body, cropland, and unused land—and combined with high-resolu-
tion historical images from Google Earth™, they were used as a reference layer to assess 
classification accuracy for all land types. The classification accuracy assessment was cal-
culated based on a confusion matrix of 100 randomly selected points, with an overall clas-
sification accuracy of 88.19%. At the same time, the results of land use classification were 
further used to analyze the landscape metrics of UGS. 
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Figure 2. Violin plot of the monthly average air temperature in Fuzhou City during 2000–2020.

Land use data were obtained using the 2018 Gaofen-1 satellite (GF-1) image, which
has a panchromatic resolution of 2 m and a multispectral resolution of 8 m [37]. Using
eCognition software (Definiens Imaging, Inc., Munich, Germany), five main landscape
types were extracted based on an object-oriented classification approach—green space,
built-up area, water body, cropland, and unused land—and combined with high-resolution
historical images from Google Earth™, they were used as a reference layer to assess
classification accuracy for all land types. The classification accuracy assessment was
calculated based on a confusion matrix of 100 randomly selected points, with an overall
classification accuracy of 88.19%. At the same time, the results of land use classification
were further used to analyze the landscape metrics of UGS.
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2.2. Retrieving Land-Surface Temperature (LST)

This research is based on the atmospheric correction method, and the Landsat8 TIRS
was used to retrieve the surface temperature with a data accuracy of 30 m × 30 m.

Lλ = [εB(Ts) + (1− ε)Ld]τ + Lµ (1)

In Equation (1), Lµ is the upwelling radiance, Ld is the downwelling radiance, ε Lλ is
the top-of-atmosphere (TOA) radiance, where ε is the surface emissivity, B(Ts) is the black
body heat radiation brightness, and τ is the transmittance of the atmosphere in the thermal
infrared band. Thus, the radiance of a black body with a temperature of T in the thermal
infrared band B(Ts) is:

B(Ts) =
Lλ − Lµ − τ(1− ε)Ld

τε
(2)

Ts is the true surface temperature (LST) (◦C), which can be obtained by the function of
Planck’s formula:

Ts =
K2

ln(K1/B(Ts) + 1)
(3)

For Landstat8, K1 = 774.89 W/(m2·µm·sr), K2 = 1321.08 K.

2.3. Influencing Factors Selection

The landscape metrics can effectively quantify the structural composition and spatial
configuration characteristics of the patch [38], given that studies have proven landscape
composition and configuration to have a significant impact on LST [39]. Based on the
results of previous studies, six commonly used landscape indicators were selected as
explanatory variables for LST changes [30]. To account for the correlation between the
various landscape metrics, to fully reflect the landscape pattern of green space, and to avoid
potential correlations caused by redundant metrics, we selected percentage of landscape
(PLAND), patch density (PD), edge density (ED), aggregation index (AI), mean patch size
(AREA_MN), and mean shape index (SHAPE_MN) as our key indicators [40] to analyze the
relationship between green space landscape pattern and LST. These indicators reflect the
main characteristics of green space patterns. Generally, PLAND and AREA_MN represent
the patch area, PD and ED are indicator density and patch boundary, while SHAPE_MN is
the patch shape index and AI represents the spread of landscape patches.

We used the grid analysis method to analyze the green landscape pattern metrics using
the FRAGSTATS 4.2 software [31]. However, the appropriate grid scale is still argued in
the literature, and previous studies have proved that the green space cooling effect is scale-
dependent [41], while the optimal scale varies depending on study area [12]. To explore the
suitable grid scale in Fuzhou, we applied four grid scales: 360 m × 360 m, 510 m × 510 m,
720 m × 720 m, and a 960 m × 960 m grid scale (all grid scales are integer multiples of 30 m
accuracy of landsat8 images) [25,42–44]. By extracting the green landscape metrics of each
grid, a grid image of each green landscape metric were obtained. We then used ArcGIS 10.2
(ESRI, Redlands, CA, USA) software to calculate the average LST and landscape metrics
for each grid. We normalize the indicator results before analysis. Considering the impact
of the water bodies and population density on LST [11,45–47], we also added closest
distance to a water (water_distance) [17] and population density as research variables
(https://www.worldpop.org/ accessed on 30 June 2021). The accuracy of the population
density map was 100 m × 100 m (Table 1). We applied the Pearson correlation to check the
strength of the association between LST and each variable indicator.

https://www.worldpop.org/
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Table 1. Descriptions of the variables used in this study [48].

Variables Description Formula Unit

Percentage of
landscape (PLAND)

The proportional abundance of
each patch type in the

landscape within an analysis
unit.

PLAND = pi =
∑n

j=1 aij

A ∗ 100
Percent

Patch density (PD)

Density of landscape patches
within an analysis unit, reflects

the degree of fragmentation
and spatial heterogeneity of

landscape patches.

PD =
Ni
A (10000) ∗ (100) n/km2

Edge density (ED)

The total perimeter of
landscape patches per ha

within an analysis unit, reflects
the degree of fragmentation of

the patch.

ED =
m
∑

k=1
eik × 10000

A
m/ha

Aggregation Index
(AI)

Aggregating degree of the
corresponding patches within

an analysis unit.
AI =

∣∣∣ gii
max−gii

∣∣∣ ∗ 100 Percent

Mean patch area
(AREA_MN)

The average area of landscape
patches within an analysis unit.

AREA_MN =
1

10000×n ×
n
∑

i=1
aij

Hectares

Mean patch shape
index (SHAPE_MN)

The average shape index of
landscape patches within an

analysis unit, for reflecting the
complexity of individual patch

shapes.

SHAPE_MN =
1
n ×

0.25pij√aij

unitless

Water_distance
Analyze the Euclidean distance

of each unit to the water
bodies.

Km

Population density The population density within
an analysis unit. People/km2

A, total landscape area (m2); aij, area (m2) of patch ij; Ni , number of patches in the landscape of patch type (class);
n, number of patches pi , proportion of the landscape occupied by patch type (class) i; eik, total length (m) of
edge in landscape involving patch type (class) i; pij, perimeter (m) of patch ij; gii , number of like adjacencies
(joins) between pixels of patch type (class) i based on the single-count method; max-gii , maximum number of like
adjacencies (joins) between pixels of patch type (class) i based on the single-count method.

2.4. Spatial Autocorrelation and Spatial Autoregressive Model

Spatial autocorrelation analysis reveals whether the variables are spatially correlated,
and the degree of autocorrelation [49]. Spatial autocorrelation includes global spatial
autocorrelation and local spatial autocorrelation, and here we use global Moran’s I (the
spatial correlation of the whole study area) and local indicators of spatial association
(LISA) (the spatial correlation of each spatial unit and its neighboring units for a certain
attribute) to describe the above results [50,51]. Moran’s I values range from −1 to 1, with
negative values indicating negative spatial autocorrelation, and positive values indicating
positive spatial autocorrelation. LISA plots depict the results of five scenarios: clusters
of high values (high-high), clusters of low values (low-low), outliers where high values
are surrounded by low values (high-low), and outliers where low values are surrounded
by high values (low-high) and have no significant local autocorrelation (not-significant).
It determines the degree of spatial clustering present in the data (p-value). Additionally,
the bivariate spatial autocorrelation analysis was used to analyze the spatial correlation of
different variables with LST [52]. The GeoDa (v.1.14.0; Luc Anselin, AZ, USA) software
was used for the above-mentioned spatial correlation analysis.
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The formula for global spatial autocorrelation can be expressed as:

I =
n
S0

∑n
i=1 ∑n

j=1 wi,jzizj

∑n
i=1 z2

i
(4)

where n is the total number of spatial units, zi is the attribute of element i with its mean
(xi-x), wi,j is the spatial weight value between i,j, and S0 is the aggregation of all spatial
weights.

S0=
n

∑
i=1

n

∑
j=1

wij, (5)

The zx score for the statistic is given by:

zx =
I − E[I]√

V[I]
(6)

where
E[I] =

−1
(n− 1)

(7)

V[I] = E
[

I2
]
− E[I]2 (8)

A traditional ordinary least squares (OLS) model was employed to examine the effect
of each variable on the change in LST.

y = Xβ + u (9)

where X is the matrix of explanatory variables, β denotes a vector of slopes, and u represents
a vector of random error terms.

Spatial lag model (SLM):
y = ρWy + Xβ + u (10)

where ρ is a spatial autocorrelation parameter, W is the spatial weight matrix, Wy is the
spatial lag operator, and β is the unknown coefficient vector.

Spatial error model (SEM):

y = Xβ + γWε + δ (11)

where γ is the spatial autocorrelation parameter, Wε denotes the spatial weight matrix, and
δ represents a vector of the error terms.

The spatial error model and the spatial lag model were determined using Lagrangian
multiplier diagnostics (LM) [36,44]. The LM and robust LM values of the SEM model are
larger than that of SLM, indicating that SEM performed better than SLM. Results show that
the spatial error model was suitable for the data in this study (Table A1).

3. Results
3.1. Spatial Characteristics of LST

In general, the spatial distribution characteristics of LST in Fuzhou during different
seasons tend to be consistent. High-temperature areas were mainly concentrated in the
city center (Figure 3). As Fuzhou is surrounded by mountains on three sides (Gushan
Mountain to the east, Wuhu Mountain to the south, and Qishan Mountain to the west), the
vegetation coverage is high and the forests are relatively abundant. Thus, low-temperature
areas mainly surround the urban areas. In summer, the temperature in Fuzhou can reach
above 50 ◦C (with an average of 43 ◦C) (Table 2), which is quite different from the other
two seasons and can seriously affect daily travel [53].
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Figure 3. The three images represent the spatial distribution of land surface temperature (LST, ◦C) in (a) summer, (b) transi-
tional season, and (c) winter, respectively.

Table 2. Temperature in different seasons.

Season Data Date Local Time Minimum Maximum Average Std. Dev.

Summer 22 July 2020 02:32:25 20.473 62.633 43.417 5.556
Transition season 16 March 2020 02:32:22 11.674 46.229 22.305 3.168

Winter 11 December 2019 02:32:49 2.843 36.573 18.225 1.901

Through the analysis of the study area, the LST distribution of global Moran’s I
is positively autocorrelated (Table 3). The overall distribution of LST and the spatial
autocorrelation of LST were also significant at the 0.01 level, indicating that the spatial
distribution of LST exhibited aggregation. With an increase in the grid scale, the larger the
scale, the lower the correlation to a certain extent. At the same time, the global Moran’s I of
LST in summer and the transition season was greater than that in winter. It can be seen
from (Figure A1) that the spatial aggregation distribution trends of all scales in the study
area are basically the same. The low-low cluster (L-L) is distributed in the forest areas to
the west, east, and north, while the proportion of high-high clusters (H-H) is relatively
large and distributed mostly in the urban center and a little to the south. With a decrease in
temperature, the L-L distribution in the urban area decreased. The distribution proportions
of the high-low cluster (H-L) and low-high cluster (L-H) were small and sporadic. In winter,
H-H accumulation in the urban center decreased significantly, but increased in the east.
The distribution of L-L increased with a decrease in temperature, especially in the south.
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Table 3. Global Moran’s I (Equation (4)) of land surface temperature (LST).

Scale (m)
Global Moran’s I

Summer Transition Season Winter p-Value

360 m 0.766 0.773 0.653 <0.01
510 m 0764 0772 0668 <0.01
720 m 0.664 0.673 0.546 <0.01
960 m 0.620 0.644 0.548 <0.01

3.2. LST and UGS Spatial Pattern Analysis
3.2.1. Analysis of the Spatial Pattern of Green Space

By comparing the cities around Fuzhou [54], the patch density (PD) and edge den-
sity (ED) in Fuzhou were higher than the surrounding cities, and the mean patch area
(AREA_MN) value was lower. The higher the patch density, the higher the fragmentation
of the landscape; the higher the edge density, the lower the aggregation of patches at the
edge of the landscape, while the small average patch area indicates that there are many
small green areas with a certain degree of fragmentation in the Fuzhou UGS. Meanwhile,
the global Moran’s I is also greater than 0.7 (Table 4), thus indicating that the green space
has obvious spatial aggregation.

Table 4. Green space landscape metrics and global spatial autocorrelation analysis.

Landscape Metrics
Moran’s I

PLAND (%) PD (n/km2) ED (m/ha) AI (%) AREA_MN (ha) SHAPE_MN

58.379 33.869 65.510 82.582 10.222 1.197 0.869

3.2.2. Bivariate Analysis of Green Space Landscape Pattern Index and LST

Pearson’s correlation coefficient and bivariate spatial autocorrelation analysis showed
that the relationship between each indicator and LST was more significant in summer and
transition seasons than in winter (Figure 4). The correlations of PLAND, AI, AREA_MN,
and water_distance were all negative. Among the negative indicators, PLAND and
AREA_MN were more strongly correlated with LST, indicating that the increase in the
proportion of green patches can have a cooling effect. ED, SHAP_MN, and population
density were positive numbers. This indicates that the increase of patch edge density leads
to the fragmentation of green areas. Under different grid scales, the correlation between
the positive indexes SHAPE_MN and ED increases with an increase in the grid scale, while
the negative index AI is the opposite. The larger the grid, the lower the correlation. There
was no strong correlation between PD and spatial autocorrelation (see Figure 4b).

3.2.3. Spatial Autoregressive Analysis

Spatial autoregressive analysis was carried out using LST as the dependent variable.
At the same time, before performing spatial regression analysis, all indicators passed the
collinearity test with variance inflation factor (VIF) values less than 10, indicating that there
was no problem with collinearity among the indicators.

From the results of the OLS analysis (Table 5), the correlation of the overall indicators
is the highest in the transition season and lowest in winter. The contribution of PLAND and
PD to LST cooling is larger (especially PLAND), while ED, AI, and population density are
obviously positive. At the same time, the correlation of PLAND decreased from summer
to winter, while PD remained relatively stable. In terms of positive correlation indicators,
the LST interpretation rates of ED, AI, and population density increased with an increase
in temperature. Water distance is positively correlated in summer and transition seasons,
while negatively correlated in winter. AREA_MN loses explanatory significance as the
temperature decreases. On the grid scale, as the grid scale increases, the fit of each index
(R2) in different seasons grows higher under the OLS model.
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Figure 4. Pearson correlation analysis at different scales and bivariate spatial autocorrelation. Values without significant
correlation were excluded from the graph. (a) Pearson correlation analysis; (b) bivariate spatial autocorrelation.

However, it was found through the results that the residuals of the OLS model Moran’s
I had significant spatial clustering (Table A1), and the traditional OLS regression model
may have ignored the spatial correlation of the indicators, so the SEM model was used for
further analysis (Table 6).

Specifically, the coefficients of ED, AI were significantly positive. The coefficients for
PLAND and PD were significantly negative. SHAPE_MN was not statistically significant.
The correlation of overall indicators was better in the summer and transition season than
in the winter. Under the standardized coefficient, the indexes of PLAND and PD make a
great contribution to the reduction of LST; with the increase in grid scale, the effect of index
on LST is enhanced. At the same time, with the increase in scale, the correlation between
AREA_MN, water_distance, population density, and LST disappeared. From the fitting
results, the fitting effect (R2) of the 510 m scale is higher than that of the other scales in
this study. Compared with the OLS model, the interpretation degree of the SEM index for
seasonal changes is lower, but the overall fitting effect of the index is better than that of
OLS.
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Table 5. Results from the ordinary least squares (OLS) multiple linear regressions.

Season Scale (m) PLAND PD ED AI AREA_MN SHAPE_MN Water_Distance Population Density AIC R2

Summer

360 m
−0.081 *** −0.002 *** 0.014 *** 0.025 *** 0.075 *** −0.179 0.000 *** 0.022 *** 67,392.8 0.424
(−0.610) (−0.181) (0.250) (0.155) (0.077) (−0.019) (0.058) (0.215)

510 m
−0.076 ** −0.003 *** 0.017 *** 0.024 *** 0.028 ** −0.220 0.000 *** 0.022 *** 34,568.3 0.459
(−0.585) (−0.221) (0.289) (0.143) (0.057) (−0.022) (0.077) (0.217)

720 m
−0.077 ** −0.001 *** 0.017 *** 0.039 *** 0.016 * −0.022 0.000 ** 0.024 *** 17,156.5 0.474
(−0.562) (−0.226) (0.256) (0.193) (0.061) 0.000 ** (0.051) (0.219)

960 m
−0.073 ** −0.001 *** 0.019 *** 0.056 *** 0.008 * −0.177 0.000 0.024 *** 9729.38 0.551
(−0.533) (−0.241) (0.264) (0.238) (0.056) (−0.015) (0.013) (0.223)

Transition
Season

360 m
−0.040 *** −0.001 *** 0.007 *** 0.012 *** −0.008 0.102 0.000 * 0.007 *** 53,706 0.432
(−0.540) (−0.169) (0.235) (0.131) (−0.014) (0.019) (−0.018) (0.117)

510 m
−0.038 *** −0.002 *** 0.009 *** 0.012 *** −0.011 * 0.040 0.000 0.006 *** 27,337.2 0.472
(−0.526) (−0.207) (0.277) (0.123) (0.040) (0.007) (0.008) (0.112)

720 m
−0.036 *** −0.001 *** 0.009 *** 0.019 *** −0.006 0.197 0.000 *** 0.007 *** 13,485 0.495
(−0.474) (−0.212) (0.236) (0.167) (0.041) (0.032) (0.070) (0.114)

960 m
−0.040 *** −0.001 *** 0.010 *** 0.030 *** −0.006 * −0.007 0.000 0.007 *** 7571.76 0.538
(−0.533) (−0.226) (0.258) (0.231) (−0.068) (−0.001) (0.019) (0.113)

Winter

360 m
−0.019 *** −0.001 *** 0.004 *** 0.004 *** 0.022 ** 0.034 0.000 *** 0.002 *** 45,041.6 0.290
(−0.425) (−0.231) (0.218) (0.081) (0.065) (0.010) (−0.076) (0.049)

510 m
−0.018 *** −0.002 *** 0.005 *** 0.004 ** 0.004 0.070 0.000 *** 0.001 *** 22,555 0.334
(−0.407) (−0.274) (0.248) (0.071) (0.023) (0.021) (−0.064) (0.044)

720 m
−0.016 *** −0.001 *** 0.005 *** 0.006 ** 0.003 0.193 0.000 *** 0.002 ** 11,323.9 0.362
(−0.333) (−0.299) (0.202) (0.089) (0.039) (0.050) (−0.151) (0.048)

960 m
−0.018 *** −0.001 *** 0.005 *** 0.012 ** −0.001 0.084 0.000 * 0.002 * 6371.76 0.399
(−0.392) (−0.325) (0.225) (0.150) (0.012) (0.020) (−0.064) (0.044)

Note: ***, **, and * represent significance at the 0.001, 0.01, and 0.05 levels respectively. We included both unstandardized regression coefficients and standardized coefficients (included in parentheses). The
standardized coefficient estimates help determine the relative importance of the explanatory variables in different grids. The larger the absolute value of the standardized coefficient estimate, the more important
the variable. AIC is Akaike information criterion.
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Table 6. The results of spatial error models (SEM).

Season Scale(m) PLAND PD ED AI AREA_MN SHAPE_MN Water_Distance Population Density AIC R2

Summer

360 m −0.035 ***
(−0.269)

−0.001 ***
(−0.174)

0.005 ***
(0.089)

0.008 ***
(0.049)

0.0422 ***
(0.043)

−0.009
(0.000)

0.000 ***
(0.154)

0.007 ***
(0.064) 55,629.1 0.827

510 m −0.049 ***
(−0.380)

−0.003 ***
(−0.205)

0.008 ***
(0.146)

0.006 **
(0.033)

0.022 **
(0.044)

−0.083
(−0.009)

0.000 ***
(0.183)

0.003 *
(0.034) 28,148.5 0.845

720 m −0.054 ***
(−0.394)

−0.001 ***
(−0.236)

0.008 ***
(0.134)

0.016 **
(0.081)

0.009
(0.035)

−0.022
(0.002)

0.000 ***
(0.177)

0.006 *
(0.059) 15,234.9 0.763

960 m −0.059 ***
(−0.437)

−0.002 ***
(−0.281)

0.012 ***
(0.175)

0.018 **
(0.077)

0.003
(0.024)

0.155
(0.013)

0.000 *
(0.162)

0.006 *
(0.063) 8734 0.763

Transition
Season

360 m −0.016 ***
(−0.218)

−0.000 ***
(−0.162)

0.003 ***
(0.093)

0.005 ***
(0.054)

0.018 **
(0.033)

0.024
(0.005)

0.000 **
(0.099)

0.003 ***
(0.059) 41,941.6 0.830

510 m −0.023 ***
(−0.318)

−0.002 ***
(−0.186)

0.005 ***
(0.154)

0.0038 **
(0.040)

0.011 **
(0.040)

−0.032
(−0.006)

0.000 ***
(0.119)

0.0012 *
(0.033) 21,081.8 0.844

720 m 0.026 ***
(−0.338)

−0.000 ***
(−0.214)

0.005 ***
(0.144)

0.008 ***
(0.076)

0.003
(0.024)

0.077
(0.012)

0.000
(0.039)

0.003 *
(0.050) 11,714.4 0.759

960 m −0.029 ***
(−0.397)

−0.000 ***
(−0.239)

0.007 ***
(0.188)

0.014 ***
(0.106)

−0.000
(−0.005)

0.057
(0.009)

0.000
(0.096)

0.003
(0.048) 6637 0.767

Winter

360 m −0.009 ***
(−0.207)

−0.000 ***
(−0.217)

0.002 ***
(0.093)

0.003 ***
(0.057)

0.014 **
(0.043)

−0.012
(−0.004)

−0.000 ***
(−0.139)

0.002 **
(0.046) 36,329 0.711

510 m −0.014 ***
(−0.326)

−0.001 ***
(−0.257)

0.003 ***
(0.163)

0.003 **
(0.054)

0.010 ***
(0.062)

−0.077
(−0.023)

0.000
(−0.016)

0.000
(0.028) 17,549.6 0.749

720 m −0.013 ***
(−0.284)

−0.000 ***
(−0.289)

0.002 ***
(0.128)

0.006 **
(0.079)

0.005 *
(0.053)

−0.028
(−0.007)

−0.000 ***
(−0.153)

0.001
(0.042) 9942.35 0.639

960 m −0.016 ***
(−0.336)

−0.000 ***
(−0.319)

0.004 ***
(0.166)

0.007 ***
(0.091)

0.001
(0.031)

−0.029
(−0.007)

−0.000
(−0.025)

0.001
(0.047) 5439.88 0.693

Note: ***, **, and * represent significance at the 0.001, 0.01, and 0.05 levels, respectively. We included both unstandardized regression coefficients and standardized coefficients (included in parentheses). AIC is
Akaike information criterion.
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4. Discussion
4.1. Spatial Variation of LST

Urban LST decreases with the change from summer to winter. Owing to the character-
istics of urban development in Fuzhou, the suburbs are basically surrounded by mountains
and less developed, which is why the distribution characteristics of the high-temperature
areas across the whole study area are obvious and H-H accumulation is mainly distributed
in the urban center where the population is concentrated. Urban expansion leads to the
continuous reduction of green space and the continuous expansion of construction land,
man-made emissions, etc., resulting in high LST. L-L aggregation is mainly distributed
around the suburbs. With the decrease in LST, the aggregation degree of H-H decreased,
while the L-L aggregation in the suburbs increased significantly.

4.2. Differences in the Impact of UGS on UHI Mitigation

Our OLS analysis showed that the indexes which contributed greatly to the cooling of
LST under the standardized coefficient are PLAND and PD. This supports the claim that
PLAND has great explanatory significance for cooling [55]. ED, AI, and population density
also had significant effects on LST. At the same time, the effect of model fitting increased
with an increase in the grid scale.

The results of the index analysis by the SEM model were slightly different from those
of the OLS model. The coefficient of determination (R2) for each variable at the 510 m grid
scale is higher than the other three scales of this study. With an increase in scale, the value
of each index coefficient increases. The landscape metrics PLAND and PD of green space
showed an obvious negative correlation with LST, which is consistent with the research
results of [40,55]. This shows that an increase in green space area, a larger patch area, and
more patch quantity can reduce LST, given that green space can produce cold island effects
through evapotranspiration, as well as shade to prevent the surface from being directly
heated by the sun [56]. At the same time, the more aggregated the patch area, the better the
connectivity and interaction between vegetation, and the better the cooling effect on the
area [57]. However, the results of ED contradicted some previous studies. LST was found
to decrease with an increase in the complexity of plant shape and edge density, probably
because the shape complexity of edge density can increase the area of shadow provided
by plants and reduce LST [40]. Although the patch edge density in Fuzhou was high,
there were many small patches in Fuzhou and the green space distribution was relatively
scattered, which weakened the cooling capacity of the green space and reduced the cooling
effect [58–60]. Several studies have pointed out that population density is an important
reason for the rise in LST. The more densely populated an area is, the more anthropogenic
heat emissions there are, and the higher the UHI [34,61]. The heat island effect is more
pronounced closer to the urban center. In the summer and transition seasons, the effect of
population density on LST was positively correlated, but the correlation was not obvious
in winter.

At the same time, different seasons have a significant impact on indicators. The nearest
distance to the water was positively correlated with LST in the summer and transition
seasons, but not in winter. It may be that rivers are scattered, mainly distributed around
roads and urban areas, and are seriously disturbed by human factors. This shows that
the distance and area of the water from the urban area are different, the degree of impact
of human activities is different, and the impact on LST is different in different seasons.
Because of the low temperature in winter, the temperature difference between the water
body and the surface decreases, so the factors affecting LST will also decrease and the
cooling effect will not be so obvious [33,62]. Overall, the research shows that the impact of
the index in summer and transition season is higher than that in winter; in summer, the
heat brought by the reduction of thermal radiation and evaporation is greater than that in
winter, the temperature in winter is low, the impact of vegetation on LST is reduced [62],
and the amount of solar thermal radiation is small [36,62,63].
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4.3. UHI Mitigation Implications by Urban Greening

Our findings help planners to implement differentiated UGS management strategies
for LST alleviation in specific regions. From the analysis, it is clear that increasing the
UGS coverage is the most effective way to promote cooling effects. However, with the
acceleration of urbanization in Fuzhou, green space resources are gradually being reduced,
while the spread of impervious surfaces has also reduced the aggregation of green space
patches and dispersed them. Under limited circumstances, it is difficult to conduct greening
in large areas, thus optimizing space allocation and improving space utilization, such as
increasing roof greening and pocket parks [20] in undeveloped urban suburbs, is necessary.
During the construction process, the patch areas of green space can be increased, and a
certain scale of parks and green spaces can be built to improve the evapotranspiration of
plants and reduce the development intensity of the city and the aggregation of buildings.
With the urbanization of Fuzhou in recent years, a large number of UGS have been reduced,
which have resulted in many scattered patches [18]. The edge density of these patches is
large, which results in a low cooling effect. Therefore, improving the connectivity between
patches and reducing the fragmentation of patches can improve the mitigation effect of
green spaces on UHIs. At the same time, Fuzhou has a rich network of urban waterways
since it has a significant effect on reducing LST. With the optimization and rational use of
the water system and the protection of existing wetlands from damage, we can alleviate
the negative impact of the thermal environment [32,64].

4.4. Limitations and Future Research

The changes in urban ecosystems and land use/land cover caused by accelerated
urbanization have largely exacerbated the UHI effect [20]. Combining land use data from
multiple years can better identify the changing patterns of LST; this study only used one
year’s worth of data to analyze the spatial characteristics of green space and LST in Fuzhou.
Meanwhile, there are many factors affecting LST, and the study failed to comprehensively
analyze the interactions between multiple LST influencing elements. By analyzing the
LST temperature changes across different years using the long-time series and multi-cycle
data analysis in combination with different indicators in the future, the UHI effect can be
analyzed more comprehensively. Incorporating it with the above analysis in future studies
can also help us study and alleviate the heat island effects in Fuzhou more comprehensively.

5. Conclusions

Taking Fuzhou as the study area, this paper used a bivariate spatial autocorrelation
and spatial autoregression model to analyze the spatial relationship between different green
landscape elements and LST in different seasons from multiple grid scales. The results
showed that the percentage of landscape and patch density were negatively correlated with
LST, while edge density and aggregation index were positively correlated with LST. Mean
patch shape index had no correlation. At the same time, the dominant factors affecting LST
differed according to the season. Distance to the water body and population density had
positive impact on LST during the summer, but the correlation weakened in the transition
season and winter. With the decrease of seasonal temperature, the explanatory effect of
each index on LST decreased accordingly. Because the factors affecting LST in the winter
differed from the other seasons, this indicates that more factors need to be considered in
the analysis of LST, and mitigation measures need to be taken for different seasons. At
the same time, it was found that the coefficient of the spatial error model was lower than
that of the OLS regression model, indicating that SEM considers the spatial autocorrelation
of each index. The fitting effect of SEM is better than that of OLS, which proves it can
better explain the spatial relationship between the greenspace landscape pattern and LST.
This study also analyzed the impact of landscape indicators on LST in different seasons at
different grid scales to identify seasonal changes that can promote development and guide
urban planning, and ultimately reduce the UHI effect.
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high-low cluster means high values surrounded by low values. (5) no significant value. 

Figure A1. (a) 360 m× 360 m; (b) 510 m× 510 m; (c) 720 m× 720 m; (d) 960 m× 960 m. (1) High- high
means spatial clustering of similarly high values, (2) low-low means spatial clustering of similarly
low values, (3) low-high cluster means low values surrounded by high neighboring values, and
(4) high-low cluster means high values surrounded by low values. (5) no significant value.
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Appendix A

Table A1. Lagrange multiplier (LM) diagnostics for spatial dependence.

Value p-Value

Scale (m) Summer Transition
Season Winter Summer Transition

Season Winter

360 m LM (SLM) 17,669.722 17,554.956 14,749.657 0.000 0.000 0.000
Robust LM (SLM) 751.682 817.425 335.424 0.000 0.000 0.000

LM (SEM) 18,289.119 17,995.990 15,079.633 0.000 0.000 0.000
Robust LM (SEM) 1371.078 1258.459 665.401 0.000 0.000 0.000
Moran’s I (error) 0.638 0.633 0.576 0.000 0.000 0.000

510 m LM (SLM) 8980.604 8785.118 8081.876 0.000 0.000 0.000
Robust LM (SLM) 315.210 375.142 134.112 0.000 0.000 0.000

LM (SEM) 9733.919 9383.335 8577.889 0.000 0.000 0.000
Robust LM (SEM) 1068.525 973.335 630125 0.000 0.000 0.000
Moran’s I (error) 0.646 0.634 0.606 0.000 0.000 0.000

720 m LM (SLM) 2777.740 2600.889 2244.589 0.000 0.000 0.000
Robust LM (SLM) 164.529 165.802 62.053 0.000 0.000 0.000

LM (SEM) 2892.608 2658.432 2314.228 0.000 0.000 0.000
Robust LM (SEM) 279.137 223.345 131.692 0.000 0.000 0.000
Moran’s I (error) 0.506 0.485 0.453 0.000 0.000 0.000

960 m LM (SLM) 1229.250 1196.510 1335.168 0.000 0.000 0.000
Robust LM (SLM) 52.147 77.669 38.198 0.000 0.000 0.000

LM (SEM) 1393.353 1308.945 1443.972 0.000 0.000 0.000
Robust LM (SEM) 216.250 190.104 147.002 0.000 0.000 0.000
Moran’s I (error) 0.466 0.451 0.474 0.000 0.000 0.000

Note: p-value is the probability of observing an event at least as extreme as the test statistic.

References
1. Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [CrossRef]
2. Morris, K.I.; Chan, A.; Morris, K.J.K.; Ooi, M.C.G.; Oozeer, M.Y.; Abakr, Y.A.; Nadzir, M.S.M.; Mohammed, I.Y.; Al-Qrimli, H.F.

Impact of urbanization level on the interactions of urban area, the urban climate, and human thermal comfort. Appl. Geogr. 2017,
79, 50–72. [CrossRef]

3. Li, H.; Meier, F.; Lee, X.; Chakraborty, T.; Liu, J.; Schaap, M.; Sodoudi, S. Interaction between urban heat island and urban
pollution island during summer in Berlin. Sci. Total Environ. 2018, 636, 818–828. [PubMed]

4. Jochner, S.; Menzel, A. Urban phenological studies—Past, present, future. Environ. Pollut. 2015, 203, 250–261. [CrossRef]
5. Zhou, D.; Zhao, S.; Zhang, L.; Liu, S. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32

major cities. Remote. Sens. Environ. 2016, 176, 272–281. [CrossRef]
6. Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities.

Science 2008, 319, 756–760. [CrossRef]
7. Ingole, V.; Marí-Dell’Olmo, M.; Deluca, A.; Borrell, C.; Basagaa, X. Spatial Variability of Heat-Related Mortality in Barcelona from

1992-2015: A Case Crossover Study Design. Int. J. Environ. Res. Public Health 2020, 17, 2553. [CrossRef] [PubMed]
8. Kim, S.W.; Brown, R.D. Urban heat island (UHI) variations within a city boundary: A systematic literature review. Renew. Sustain.

Energy Rev. 2021, 148, 111256. [CrossRef]
9. Xu, H.Q. Quantitative analysis on the relationship of urban impervious surface with other components of the urban ecosystem.

Acta Ecol. Sin. 2009, 29, 2456–2462.
10. Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Spatiotemporal patterns and characteristics of remotely sensed region heat islands

during the rapid urbanization (1995–2015) of Southern China. Sci. Total Environ. 2019, 674, 242–254. [CrossRef]
11. Shukla, A.; Jain, K. Analyzing the impact of changing landscape pattern and dynamics on land surface temperature in Lucknow

city, India. Urban For. Urban Green. 2021, 58, 126877. [CrossRef]
12. Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban

heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [CrossRef]
13. Chrysoulakis, N.; Feigenwinter, C.; Triantakonstantis, D.; Penyevskiy, I.; Tal, A.; Parlow, E.; Fleishman, G.; Düzgün, S.; Esch, T.;

Marconcini, M. A Conceptual List of Indicators for Urban Planning and Management Based on Earth Observation. ISPRS Int. J.
Geo-Inf. 2014, 3, 980–1002. [CrossRef]

http://doi.org/10.1002/qj.49710845502
http://doi.org/10.1016/j.apgeog.2016.12.007
http://www.ncbi.nlm.nih.gov/pubmed/29727848
http://doi.org/10.1016/j.envpol.2015.01.003
http://doi.org/10.1016/j.rse.2016.02.010
http://doi.org/10.1126/science.1150195
http://doi.org/10.3390/ijerph17072553
http://www.ncbi.nlm.nih.gov/pubmed/32276439
http://doi.org/10.1016/j.rser.2021.111256
http://doi.org/10.1016/j.scitotenv.2019.04.088
http://doi.org/10.1016/j.ufug.2020.126877
http://doi.org/10.1016/j.scitotenv.2016.10.195
http://doi.org/10.3390/ijgi3030980


Remote Sens. 2021, 13, 5114 16 of 17

14. Mitraka, Z.; Chrysoulakis, N.; Doxani, G.; Del Frate, F.; Berger, M. Urban Surface Temperature Time Series Estimation at the Local
Scale by Spatial-Spectral Unmixing of Satellite Observations. Remote Sens. 2015, 7, 4139–4156. [CrossRef]

15. Fidani, S.; Daliakopoulos, I.; Manios, T.; Grillakis, M.; Charalampopoulou, V.; Nektarios, P. Evaluating the Effect of Green
Infrastructure in Mitigating the Urban Heat Island Effect Using Remote Sensing. In Proceedings of the EGU General Assembly
2021, online, 19–30 April 2021. [CrossRef]

16. Jiang, Y.; Fu, P.; Weng, Q. Assessing the Impacts of Urbanization-Associated Land Use/Cover Change on Land Surface
Temperature and Surface Moisture: A Case Study in the Midwestern United States. Remote Sens. 2015, 7, 4880–4898. [CrossRef]

17. Xie, Q.; Sun, Q. Monitoring thermal environment deterioration and its dynamic response to urban expansion in Wuhan, China.
Urban Clim. 2021, 39, 100932. [CrossRef]

18. Cai, Y.; Chen, Y.; Tong, C. Spatiotemporal evolution of urban green space and its impact on the urban thermal environment based
on remote sensing data: A case study of Fuzhou City, China. Urban For. Urban Green. 2019, 41, 333–343. [CrossRef]

19. Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study
in Lisbon. Build. Environ. 2011, 46, 2186–2194. [CrossRef]

20. Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on
land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63.

21. Liu, G.; Zhang, Q.; Li, G.; Doronzo, D.M. Response of land cover types to land surface temperature derived from Landsat-5 TM
in Nanjing Metropolitan Region, China. Environ. Earth Sci. 2016, 75, 1381–1386. [CrossRef]

22. Asgarian, A.; Amiri, B.J.; Sakieh, Y. Assessing the effect of green cover spatial patterns on urban land surface temperature using
landscape metrics approach. Urban Ecosyst. 2015, 18, 209–222. [CrossRef]

23. Peng, J.; Hu, Y.; Dong, J.; Liu, Q.; Liu, Y. Quantifying spatial morphology and connectivity of urban heat islands in a megacity: A
radius approach. Sci. Total Environ. 2020, 714, 136792. [CrossRef]

24. Lv, H.; Yang, Y.; Zhang, D.; Du, H.; Zhang, J.; Wang, W.; He, X. Perimeter-area ratio effects of urbanization intensity on forest
characteristics, landscape patterns and their associations in Harbin City, Northeast China. Urban Ecosyst. 2019, 22, 631–642.
[CrossRef]

25. Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of green space
spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J.
Photogramm. 2014, 89, 59–66. [CrossRef]

26. Richards, D.R.; Fung, T.K.; Belcher, R.N.; Edwards, P.J. Differential air temperature cooling performance of urban vegetation
types in the tropics. Urban For. Urban Green. 2020, 50, 126651. [CrossRef]

27. Rakoto, P.Y.; Deilami, K.; Hurley, J.; Amati, M.; Sun, Q.C. Revisiting the cooling effects of urban greening: Planning implications
of vegetation types and spatial configuration. Urban For. Urban Green. 2021, 64, 127266. [CrossRef]

28. Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of
Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [CrossRef]

29. Ke, X.; Men, H.; Zhou, T.; Li, Z.; Zhu, F. Variance of the impact of urban green space on the urban heat island effect among
different urban functional zones: A case study in Wuhan. Urban For. Urban Green. 2021, 62, 127159. [CrossRef]

30. Li, X.; Zhou, W.; Ouyang, Z. Relationship between land surface temperature and spatial pattern of greenspace: What are the
effects of spatial resolution? Landsc. Urban Plan. 2013, 114, 1–8. [CrossRef]

31. Hou, H.; Estoque, R.C. Detecting Cooling Effect of Landscape from Composition and Configuration: An Urban Heat Island Study
on Hangzhou. Urban For. Urban Green. 2020, 53, 126719. [CrossRef]

32. Du, J.; Xiang, X.; Zhao, B.; Zhou, H. Impact of urban expansion on land surface temperature in Fuzhou, China using Landsat
imagery. Sustain. Cities Soc. 2020, 61, 102346. [CrossRef]

33. Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature
in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [CrossRef]

34. Geng, S.; Yang, L.; Sun, Z.; Wang, Z.; Qian, J.; Jiang, C.; Wen, M. Spatiotemporal patterns and driving forces of remotely sensed
urban agglomeration heat islands in South China. Sci. Total Environ. 2021, 800, 149499. [CrossRef] [PubMed]

35. Feng, L.; Zhao, M.; Zhou, Y.; Zhu, L.; Tian, H. The seasonal and annual impacts of landscape patterns on the urban thermal
comfort using Landsat. Ecol. Indic. 2020, 110, 105798. [CrossRef]

36. Lu, Y.; Yue, W.; Liu, Y.; Huang, Y. Investigating the spatiotemporal non-stationary relationships between urban spatial form and
land surface temperature: A case study of Wuhan, China. Sustain. Cities Soc. 2021, 72, 103070. [CrossRef]

37. Fu, B.; Wang, Y.; Campbell, A.; Li, Y.; Zhang, B.; Yin, S.; Xing, Z.; Jin, X. Comparison of object-based and pixel-based Random
Forest algorithm for wetland vegetation mapping using high spatial resolution GF-1 and SAR data. Ecol. Indic. 2017, 73, 105–117.
[CrossRef]

38. Peng, J.; Wang, Y.; Zhang, Y.; Wu, J.; Li, W.; Li, Y. Evaluating the effectiveness of landscape metrics in quantifying spatial patterns.
Ecol. Indic. 2010, 10, 217–223. [CrossRef]

39. Zhang, Y.; Balzter, H.; Zou, C.; Xu, H.; Tang, F. Characterizing bi-temporal patterns of land surface temperature using landscape
metrics based on sub-pixel classifications from Landsat TM/ETM+. Int. J. Appl. Earth Obs. 2015, 42, 87–96. [CrossRef]

40. Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: Evidence from the
heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898. [CrossRef]

http://doi.org/10.3390/rs70404139
http://doi.org/10.5194/egusphere-egu21-15362
http://doi.org/10.3390/rs70404880
http://doi.org/10.1016/j.uclim.2021.100932
http://doi.org/10.1016/j.ufug.2019.04.012
http://doi.org/10.1016/j.buildenv.2011.04.034
http://doi.org/10.1007/s12665-016-6202-4
http://doi.org/10.1007/s11252-014-0387-7
http://doi.org/10.1016/j.scitotenv.2020.136792
http://doi.org/10.1007/s11252-019-00850-0
http://doi.org/10.1016/j.isprsjprs.2013.12.010
http://doi.org/10.1016/j.ufug.2020.126651
http://doi.org/10.1016/j.ufug.2021.127266
http://doi.org/10.1016/j.rse.2011.07.008
http://doi.org/10.1016/j.ufug.2021.127159
http://doi.org/10.1016/j.landurbplan.2013.02.005
http://doi.org/10.1016/j.ufug.2020.126719
http://doi.org/10.1016/j.scs.2020.102346
http://doi.org/10.1016/j.rse.2018.06.010
http://doi.org/10.1016/j.scitotenv.2021.149499
http://www.ncbi.nlm.nih.gov/pubmed/34426306
http://doi.org/10.1016/j.ecolind.2019.105798
http://doi.org/10.1016/j.scs.2021.103070
http://doi.org/10.1016/j.ecolind.2016.09.029
http://doi.org/10.1016/j.ecolind.2009.04.017
http://doi.org/10.1016/j.jag.2015.06.007
http://doi.org/10.1007/s10980-012-9731-6


Remote Sens. 2021, 13, 5114 17 of 17

41. Liu, H.; Weng, Q. Scaling Effect on the Relationship between Landscape Pattern and Land Surface Temperature. Photogramm.
Eng. Remote. Sens. 2009, 75, 291–304. [CrossRef]

42. Guo, G.; Zhou, X.; Wu, Z.; Xiao, R.; Chen, Y. Characterizing the impact of urban morphology heterogeneity on land surface
temperature in Guangzhou, China. Environ. Model. Softw. 2016, 84, 427–439. [CrossRef]

43. Yang, C.; He, X.; Wang, R.; Yan, F.; Lingxue, Y.; Bu, K.; Yang, J.; Chang, L.; Zhang, S. The Effect of Urban Green Spaces on the
Urban Thermal Environment and Its Seasonal Variations. Forests 2017, 8, 153. [CrossRef]

44. Song, J.; Du, S.; Feng, X.; Guo, L. The relationships between landscape compositions and land surface temperature: Quantifying
their resolution sensitivity with spatial regression models. Landsc. Urban Plan. 2014, 123, 145–157. [CrossRef]

45. Tan, M.; Li, X. Quantifying the effects of settlement size on urban heat islands in fairly uniform geographic areas. Habitat Int.
2015, 49, 100–106. [CrossRef]

46. Yao, L.; Sun, S.; Song, C.; Li, J.; Xu, W.; Xu, Y. Understanding the spatiotemporal pattern of the urban heat island footprint in the
context of urbanization, a case study in Beijing, China. Appl. Geogr. 2021, 133, 102496. [CrossRef]

47. Liang, Z.; Huang, J.; Wang, Y.; Wei, F.; Wu, S.; Jiang, H.; Zhang, X.; Li, S. The mediating effect of air pollution in the impacts of
urban form on nighttime urban heat island intensity. Sustain. Cities Soc. 2021, 74, 102985. [CrossRef]

48. Mcgarigal, K.S.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. 2002.
Available online: www.umass.edu/landeco/research/fragstats/fragstats (accessed on 15 September 2020).

49. Getis, A. Spatial Autocorrelation: A Primer. Econ. Geogr. 1988, 64, 88. [CrossRef]
50. Chi, G.; Zhu, J. Spatial Regression Models for Demographic Analysis. Popul. Res. Policy Rev. 2008, 27, 17–42. [CrossRef]
51. Scott, L.M.; Janikas, M.V. Handbook of Applied Spatial Analysis; Springer: Berlin/Heidelberg, Germany, 2010.
52. Anselin, L. Local Indicators of Spatial Association—ISA. Geogr. Anal. 2010, 27, 93–115. [CrossRef]
53. Tian, X.; Deng, Y.; Wargocki, P.; Liu, W. Effects of increased activity level on physiological and subjective responses at different

high temperatures. Build. Environ. 2021, 201, 108011. [CrossRef]
54. Shen, Z.; Zeng, J.; Liang, C. Spatial relationship of greenspace landscape pattern with land surface temperature in three cities of

southern Fujian. Chin. J. Ecol. 2020, 39, 245–253.
55. Chen, A.; Yao, L.; Sun, R.; Chen, L. How many metrics are required to identify the effects of the landscape pattern on land surface

temperature? Ecol. Indic. 2014, 45, 424–433. [CrossRef]
56. Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study.

Remote Sens. Environ. 2017, 195, 1–12. [CrossRef]
57. Yang, J.; Sun, J.; Ge, Q.; Li, X. Assessing the impacts of urbanization-associated green space on urban land surface temperature: A

case study of Dalian, China. Urban For. Urban Green. 2017, 22, 1–10. [CrossRef]
58. Kong, F.; Yin, H.; James, P.; Hutyra, L.R.; He, H.S. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan

area of eastern China. Landsc. Urban Plan. 2014, 128, 35–47. [CrossRef]
59. Guo, G.; Wu, Z.; Chen, Y. Complex mechanisms linking land surface temperature to greenspace spatial patterns: Evidence from

four southeastern Chinese cities. Sci. Total Environ. 2019, 674, 77–87. [CrossRef] [PubMed]
60. Zhang, X.; Zhong, T.; Feng, X.; Wang, K. Estimation of the relationship between vegetation patches and urban land surface

temperature with remote sensing. Int. J. Remote Sens. 2009, 30, 2105–2118. [CrossRef]
61. Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers.

Remote Sens. Environ. 2014, 152, 51–61. [CrossRef]
62. Wu, W.; Li, L.; Li, C. Seasonal variation in the effects of urban environmental factors on land surface temperature in a winter city.

J. Clean. Prod. 2021, 299, 126897. [CrossRef]
63. Xiang, Y.; Huang, C.; Huang, X.; Zhou, Z.; Wang, X. Seasonal variations of the dominant factors for spatial heterogeneity and

time inconsistency of land surface temperature in an urban agglomeration of central China. Sustain. Cities Soc. 2021, 75, 103285.
[CrossRef]

64. Cai, Z.; Han, G.; Chen, M. Do water bodies play an important role in the relationship between urban form and land surface
temperature? Sustain. Cities Soc. 2018, 39, 487–498. [CrossRef]

http://doi.org/10.14358/PERS.75.3.291
http://doi.org/10.1016/j.envsoft.2016.06.021
http://doi.org/10.3390/f8050153
http://doi.org/10.1016/j.landurbplan.2013.11.014
http://doi.org/10.1016/j.habitatint.2015.05.013
http://doi.org/10.1016/j.apgeog.2021.102496
http://doi.org/10.1016/j.scs.2021.102985
www.umass.edu/landeco/research/fragstats/fragstats
http://doi.org/10.2307/143927
http://doi.org/10.1007/s11113-007-9051-8
http://doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://doi.org/10.1016/j.buildenv.2021.108011
http://doi.org/10.1016/j.ecolind.2014.05.002
http://doi.org/10.1016/j.rse.2017.03.043
http://doi.org/10.1016/j.ufug.2017.01.002
http://doi.org/10.1016/j.landurbplan.2014.04.018
http://doi.org/10.1016/j.scitotenv.2019.03.402
http://www.ncbi.nlm.nih.gov/pubmed/31004906
http://doi.org/10.1080/01431160802549252
http://doi.org/10.1016/j.rse.2014.05.017
http://doi.org/10.1016/j.jclepro.2021.126897
http://doi.org/10.1016/j.scs.2021.103285
http://doi.org/10.1016/j.scs.2018.02.033

	Introduction 
	Methods 
	Study Area and Data Source 
	Retrieving Land-Surface Temperature (LST) 
	Influencing Factors Selection 
	Spatial Autocorrelation and Spatial Autoregressive Model 

	Results 
	Spatial Characteristics of LST 
	LST and UGS Spatial Pattern Analysis 
	Analysis of the Spatial Pattern of Green Space 
	Bivariate Analysis of Green Space Landscape Pattern Index and LST 
	Spatial Autoregressive Analysis 


	Discussion 
	Spatial Variation of LST 
	Differences in the Impact of UGS on UHI Mitigation 
	UHI Mitigation Implications by Urban Greening 
	Limitations and Future Research 

	Conclusions 
	
	
	References

