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Abstract: Light detection and ranging (LiDAR) has become a commonly-used tool for generating
remotely-sensed forest inventories. However, LiDAR-derived forest inventories have remained
uncommon at a regional scale due to varying parameters among LiDAR data acquisitions and the
availability of sufficient calibration data. Here, we present a model using a 3-D convolutional neural
network (CNN), a form of deep learning capable of scanning a LiDAR point cloud, combined with
coincident satellite data (spectral, phenology, and disturbance history). We compared this approach
to traditional modeling used for making forest predictions from LiDAR data (height metrics and
random forest) and found that the CNN had consistently lower uncertainty. We then applied the
CNN to public data over six New England states in the USA, generating maps of 14 forest attributes
at a 10 m resolution over 85% of the region. Aboveground biomass estimates produced a root mean
square error of 36 Mg ha−1 (44%) and were within the 97.5% confidence of independent county-level
estimates for 33 of 38 or 86.8% of the counties examined. CNN predictions for stem density and
percentage of conifer attributes were moderately successful, while predictions for detailed species
groupings were less successful. The approach shows promise for improving the prediction of forest
attributes from regional LiDAR data and for combining disparate LiDAR datasets into a common
framework for large-scale estimation.

Keywords: LiDAR; airborne laser scanning; enhanced forest inventory; aboveground biomass; forest
carbon; deep learning; Maine; New Hampshire; Vermont; Massachusetts; Connecticut; Rhode Island

1. Introduction
1.1. Overview

Over the past two decades, light detection and ranging (LiDAR) has become a common
tool for developing spatially-explicit forest inventories [1]. Measurements of point cloud
datasets derived from LiDAR can be used to predict useful forest inventory attributes such
as biomass, stem volume, tree count, and species [2–4]. These inventories are useful for
a wide range of applications, including assessing carbon stocks [5], assisting in precision
forestry [6], and predicting wildlife habitat [7,8].
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Forest inventories are typically developed using the area-based approach [9], where
the forest is segmented into a series of grid cells ranging from 10 m to 1 ha in size (e.g., [10]).
First, the LiDAR point cloud and the desired forest attribute (e.g., stem density) are each
measured in a sample of grid cells. Next, predictive models, either parametric or non-
parametric, are developed relating the field measurements to the LiDAR measurements.
Finally, these models can be applied to every grid cell across a landscape to produce wall-
to-wall estimates for attributes of interest. The resulting maps are referred to as enhanced
forest inventories (EFIs). A major challenge with the area-based approach is that the final
EFI is often limited to local predictions due to variation in the underlying ground and
LiDAR data specifications (e.g., [11]).

While LiDAR data are becoming increasingly available to the public, few studies
have emphasized mapping whole regions (e.g., [12]) while focusing instead on specific
municipalities or individual parcels. One example of regional LiDAR modeling occurred
in Sweden, which recently developed nation-wide forest inventory maps at a 12.5 m reso-
lution [13], while similar maps have also been generated in Finland [14]. In Canada, large
portions of Alberta’s forests have had their vegetative functional groups mapped [15], and
in New Brunswick, a provincial effort has resulted in near wall-to-wall LiDAR invento-
ries [16]. We note that each of these examples make use of largely homogeneous LiDAR
datasets, which minimizes the potential challenges identified below.

1.2. The Current Approach

One common difficulty in generating regional LiDAR inventories is that many regions
are comprised of a patchwork of LiDAR datasets acquired with various specifications,
and with forest analytics often as a secondary objective. This is particularly problematic
because the traditional approach for measuring a LiDAR point cloud for the development
of an EFI model involves taking a series of summary statistics describing point heights
and their vertical distributions. These include measures of the mean, variance, and vertical
quantiles, as well as proportions of points that fall above certain height thresholds [17,18].
Unfortunately, these traditional metrics suffer from several drawbacks, such as (1) a high
degree of collinearity, (2) a propensity to change among acquisitions based on LiDAR
sampling design (e.g., pulse density), (3) a propensity to change based on forest phenology,
and (4) limited ecological inference [19].

Several software suites exist for extracting height features from LiDAR, each producing
upwards of 50 metrics, including the heights of every 10th percentile [20]. While powerful
predictors, many of these metrics are also highly correlated, creating a risk of model
overfitting and overspecification without careful model selection [21,22]. Many studies
make use of all available predictors and report on those that are most important; however,
some modeling techniques are unreliable for ranking highly collinear features. In some
cases, this may impact perceived feature importance and not be optimal depending on the
use-case.

A standard measure for assessing LiDAR quality is pulse density, which refers to the
number of laser pulses landing within a given area (pls m−2). Pulse density can vary both
between and within LiDAR acquisitions, and frequently, regional LiDAR collections consist
of many acquisitions in which the pulse density varies by up to an order of magnitude.
Many studies have found that varying pulse density can adversely affect EFI predictions
across different LiDAR data sets. In particular, when the pulse density drops below an
ecosystem-specific optimal threshold for deriving height metrics, model performance may
be degraded. For example, Gobakken and Næsset [23] noted that area-based predictions are
strongly affected by pulse density. Hansen et al. [24] determined that EFI estimates could
be subject to bias if predictions were made on point clouds with densities different than
those used to train the model, particularly those with lower densities. Other differences
in acquisition parameters related to LiDAR sampling design—such as sensor type, pulse
frequency, and flight altitude—can also result in different height features being generated
over the same area of forest [25,26].
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Seasonality also has a major impact on LiDAR height features [22,27,28], particularly in
deciduous forests where the presence of leaves can result in LiDAR beams being intercepted
higher in the canopy [29]. In the United States, there is no commonly accepted federal
standard for acquiring data during leaf-off or leaf-on conditions. Scientific groups such
as the National Ecological Observatory Network (NEON) and NASA’s Goddard LiDAR,
Hyperspectral and Thermal Imager (G-LiGHT) acquire leaf-on LiDAR, while the United
States Geological Survey’s National Elevation Dataset (NED) acquires data with leaf-off
specifications. For these reasons, models developed using one LiDAR acquisition are
often not applicable to another, prohibiting regional LiDAR modeling without unusually
consistent LiDAR datasets [9].

1.3. Deep Learning

LiDAR EFI have generally been developed using parametric approaches such as
regression or non-parametric approaches such as random forest. Here, we use deep
learning to overcome the aforementioned obstacles of feature variation by developing
a single model for predicting forest attributes that is applicable across many disparate
LiDAR and satellite datasets. Deep learning is a form of machine learning and primarily
refers to artificial neural networks of a sufficient complexity so as to interpret raw data
without a need for human-derived explanatory variables. These differ from simpler
neural networks (such as perceptrons), which make estimates using a set of features
derived directly from the data (e.g., height percentiles). Recently, deep learning has proven
successful at classifying imagery despite varying contextual information, such as light
levels and background subject matter [30–32]. We posit that deep learning will improve
EFI modeling by identifying useful spatial features in the LiDAR point cloud without the
need for human-derived explanatory variables such as height metrics. These features can
be complex shapes and gradients in 3-D space that may be less subject to change relative to
one another with different acquisition parameters, such as the edges of tree crowns [1].

Here, we implement a spatial deep learning model called a convolutional neural
network (CNN). A CNN works by passing a series of moving kernels over spatial data.
As the model trains, the weights of those kernels are tuned to identify features that are
useful for predicting the dependent variables (such as the edges of objects). Deep CNNs
stack many of these moving windows on top of one another, allowing the algorithm to
quantify complex features. Our 3-D CNN uses a volumetric window to quantify a LiDAR
point cloud that has been binned into voxel-space. The 3-D CNN is thus able to quantify
vertical as well as horizontal features and shapes such as tree crowns, providing a level of
complexity not captured by height metrics alone.

Early CNNs were developed in the late 1990s and were used to classify hand-written
digits [32]. The technique was largely underrepresented in data science until advances
in computing power, techniques, and open-source tools popularized them, beginning in
2012 [30]. Since then, CNNs of increasing complexity have consistently outperformed
models based on feature extraction for computer vision tasks [33–35]. More recently, CNNs
are increasingly being applied to remote sensing problems. For example, 2-D CNNs have
proven successful for classifying aerial imagery, hyperspectral, and LiDAR data [36–38].
Although they offer considerable performance improvements in many classification and
regression tasks, CNNs do come with some drawbacks: namely, they require far more data
to train, access to GPU resources, and often days of training time. However, on inference,
they can be applied at speeds that are on-par with other model types [1].

In relation to forestry, some have used segmentation algorithms to isolate individual
trees from LiDAR and then used 2-D CNNs to classify tree species [39,40]. Work has
also been done using 2-D CNNs to identify individual tree crowns from high-resolution
imagery [41,42]. Progress has also been made in adapting CNNs to scan LiDAR point
clouds in 3-D space. Similar CNNs that make use of voxels to quantify point clouds have
been used to identify household objects and geospatial classification [43,44]. Recently,
Qi et al. [45] introduced PointNet, which was designed to interpret LiDAR data without
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voxels, although this technique does not make full use of the spatial relationship between
neighboring points. In a remote sensing context, Maturana and Scherer [44] used a 3-D
CNN to identify helicopter landing zones from LiDAR data. Apart from deep learning,
some studies have accounted for disparate LiDAR data by developing different features
than height metrics for quantifying forests and by accounting for point cloud variability
through principal components analysis of voxels [19,46]. Most similar to this study, Ayrey
and Hayes [1] tested a variety of CNN architectures to interpret LiDAR data for the
estimation of forest attributes.

1.4. Objectives

The first objective of this study is to assess the value of deep learning in developing
an EFI, and compare it to traditional approaches for LiDAR modeling. A second objective
is to develop a regional EFI over the Acadian/New England Forest region, with a total
of 85% coverage of the New England states using publicly-available LiDAR. We assess
deep learning’s ability to overcome challenges resulting from disparate LiDAR datasets,
and we incorporate other remote sensing products such as spectral data, phenology, and
disturbance history to improve model accuracy. A final objective is to compare our deep
learning-derived mapped estimates of various other stand attributes including biomass,
percentage of conifer, and tree stem density to estimates derived via the design-based US
national forest inventory program managed by the US Forest Service Forest Inventory and
Analysis (FIA). The end result is a series of near wall-to-wall mapped forest inventory
estimates of the region, with an accurate assessment of error across space and forest
type. This provides forest managers, ecologists, and other scientists in the region with an
unprecedented amount of detailed information about the forest.

2. Materials and Methods
2.1. Forest Attributes

Our goal was to estimate several common forest attributes that may be useful to
ecologists, forest managers, and modelers. The complete list is found in Table 1. For
brevity, at points throughout this manuscript, we highlight only the results of the above-
ground biomass (AGB), percent conifer (PC), and tree count (TC) estimations. All other
attributes can also be considered measurements of tree size, density, or species and are
often represented by these three attributes.

Table 1. A complete list of forest attributes estimated in this study. Note that all estimates were made exclusively on trees
greater than 10 cm in diameter (DBH). Estimates were made as quantities per cell.

Forest Attribute Units Description

Aboveground Biomass (AGB) kg Aboveground biomass as calculated by the USFS’s FIA component ratio method.
Total Biomass kg Total woody biomass as calculated by the USFS’s FIA component ratio method.
Basal Area m2 Basal area at breast height.
Mean Tree Height m Mean height of the trees’ apices. Not a measure of mean overall canopy height.
Quadratic Mean Diameter cm Quadratic mean of diameter at breast height.
Volume, Total m3 Total inner bark volume of each tree’s bole.

Volume, Merchantable m3 Total merchantable inner bark volume of each tree’s bole; starting at 10 cm above ground
and ending at a height of 10 cm in diameter.

Tree Count (TC) # Total number of trees.
Percent conifer stems (PC) % Percentage of conifer stems.
Percent spruce-fir (Abies-Picea) % Percentage of spruce or fir species stems.
Percent Pinus strobus % Percentage of spruce or fir species stems.
Volume of deciduous m3 Total inner bark volume of deciduous tree boles.
Volume of spruce/fir (Abies-Picea) m3 Total inner bark volume of spruce or fir tree boles.
Volume of Pinus strobus m3 Total inner bark volume of white pine (Pinus strobus) tree boles.

2.2. Training Data

For most applications, deep learning requires very large datasets, with classic open
source datasets such as ImageNet numbering in the millions [47]. To meet this requirement,
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we combined 13 distinct forest inventories collected at 32 sites (Appendix A Table A1).
Within each inventory, all trees greater than 10 cm in diameter (DBH) were stem-mapped
with species and DBH recorded. In several inventories, tree heights were measured on only
a subset of trees, and so site and species-specific, non-linear height-diameter models were
generated using a Chapman–Richards model form to impute tree height using site-specific
data [48]. Some inventories were also measured up to 10 years prior to LiDAR acquisition.
In instances in which the temporal discrepancy between LiDAR and field data exceeded
two years, tree measurements were projected forward in time accordingly using the Forest
Vegetation Simulator’s Acadian Variant [49].

Total and merchantable volume was estimated using species-specific regional taper
equations [50], with a 10 cm upper stem diameter threshold for the latter. Biomass was
estimated using the component ratio method developed for the US Forest Service, the
Forest Inventory and Analysis (FIA) program [51]. Each of the stem-mapped inventories
was aligned visually with the LiDAR to correct for GPS error in plot location and segmented
into 10 × 10 m grid cell plots. We selected this cell size to maximize the number of unique
plots available, while retaining plots large enough to contain several entire tree crowns.
Although highly spatially explicit data are thus provided, this plot size is relatively small
compared to those used in other studies and thus may be prone to edge effects.

We accounted for edge effects by using regional diameter-to-crown width equations to
project each tree’s crown in space [52]. Tree level basal area, biomass, and volume allometry
were then multiplied by the proportion of which each tree’s crown overlapped the plot.
Trees were therefore treated as areas containing biomass, rather than points that could lie
on one or another side of a plot boundary [1]. This mimics the method by which the remote
sensing instrument measures the trees, as LiDAR imagery has no means of measuring
the precise location of a tree’s stem. Figure 1 demonstrates this correction. Preliminary
testing using a subset of the data indicated that this correction greatly improved model
performance, increasing the explained variance by up to 25%.

Figure 1. Percentage of crown overlap of each tree in and around the 10 × 10 m plot, used as a
modifier for that tree’s basal area, biomass, and volume. This allowed for the development of models
that more closely reflect what is visible to the remote sensing systems, while remaining unbiased
across multiple cells.

We also augmented the sample size of our training data by allowing plots to overlap
one another by a maximum of 25% and by including multiple LiDAR acquisitions of
the same plot, given that the configuration of LiDAR returns always varies between
acquisitions. Similar augmentation techniques, such as transforming or rotating input
images multiple times and using adjacent still frames of videos, have been successfully
used in deep learning for many years [53]. Lastly, we included 500 plots with no trees to
allow for better predictions in low-vegetation environments; these were sampled randomly
across Northern New England using the 2011 National Land Cover Database [54]. The
associated LiDAR point clouds from these plots were then manually checked for trees and
discarded if trees were found.
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Ultimately, we assembled 24,606 plots for model training and preliminary evaluation.
Of these, we randomly withheld 4000 plots, including 1000 for model validation (to
determine the optimal stopping point during deep learning training) and 3000 for model
testing (used for model comparison and selection). Augmented plots related to withheld
plots were removed from the training dataset; thus, the final training set was comprised of
17,432 plots.

2.3. Remote Sensing Data
2.3.1. LiDAR

We aggregated 49 public LiDAR datasets from across the region, combining acquisi-
tions of varying pulse density and seasonality. Although much of the pubic LiDAR in the
US Northeast is flown leaf-off, we chose to develop models capable of functioning in either
state (leaf-off or leaf-on) to allow for potential future integration with leaf-on Canadian
Maritime data. The training data ultimately consisted of a 53% to 47% split between leaf-off
and leaf-on, respectively. Both leaf-on and leaf-off data were used together to develop each
model, and the seasonality of the dataset was included as a binary predictor in the random
forest models.

The majority of the LiDAR used for this study was funded and hosted by the US
Geological Survey’s national 3D Elevation Program (3DEP). These data were captured in
leaf-off conditions between 2006 and 2018 at resolutions ranging from 0.5 to 10 pls m−2.
We also incorporated LiDAR data acquired by NASA Goddard’s LiDAR Hyperspectral
and Thermal Imager (G-LiHT) as well as the National Ecological Observatory Network
(NEON). These data were acquired in leaf-on conditions over several of our training sites
with pulse densities ranging from 5 to 16 pls m−2. Finally, we incorporated several private
LiDAR datasets for training, including one each over the Penobscot Experimental Forest in
Maine, Baxter State Park in Maine, and Noonan Research Forest in New Brunswick. Each of
these had an average pulse density of 5 to 6 pls m−2, where the first two were leaf-off and
the third leaf-on. Both pulse density and seasonality were included as model predictors.

2.3.2. Satellite Variables

We also chose to include satellite-derived spectral indices, disturbance metrics, and
phenology data in our models for predicting forest attributes. Each of these were spa-
tially contiguous across our study area and have proven useful for predicting forest
attributes [55–57]. All satellite data processing was conducted in Google Earth Engine [58].

Using Sentinel-2b data, we generated maps of six spectral vegetation indices: Normal-
ized Burn Ratio (NBR, [59]), Normalized Difference Vegetation Index (NDVI, [60]), Nor-
malized Difference Moisture Index (NDMI, [61]), Red-Edge Chlorophyll Index (RECI, [62]),
Greenness Index (GI, [63]) and Triangular Chlorophyll Index (TCI, [63]). Landsat-8 imagery
was used to generate three tassel-cap indices (brightness, greenness, and wetness [64]).
This imagery was acquired between 2015 and 2017, and imagery from between the 150th
and 244th Julian days was used. All images were cloud-masked, and a single median
composite was then developed for the study area. Resolutions greater than 10 m were
resampled to match our plot size.

We incorporated disturbance history in our models by using Landsat 5–8 and the
LandTrendr disturbance detection algorithm [65]. LandTrendr fits a maximum of seven
linear segments to the yearly medians of a spectral band within each Landsat pixel. Vertices
identify dramatic changes in the spectral characteristics of that pixel in time and often
correspond to disturbances. We ran LandTrendr over the greenness and wetness tassel
cap indices, as well as NBR. Instances in which LandTrendr identified a vertex in at least
two of the three bands within two years of one another were retained as disturbances.
We then condensed these data into the year of last disturbance and the magnitude of that
disturbance (as a percentage of the vegetation index change).

Finally, we estimated growing season length across our study area using Moderate
Resolution Imaging Spectroradiometer (MODIS) data with a resolution of 500 m. This was
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derived by subtracting the mean Julian dates of greenness onset from dates of senescence,
which has been demonstrated to correlate well with site quality, thereby aiding models
that primarily use tree height to infer tree size. Greenness onset and senescence dates were
obtained from the MODIS Landcover Dynamics Program [66].

2.4. Deep Learning Modeling
2.4.1. Data Preparation

We first prepared the LiDAR data to be scanned by the 3D-CNN by converting it
from a point cloud, with each data point representing an X, Y, and Z value, to volumet-
ric pixels (voxels). A height-normalized point cloud was voxelized by segmenting each
10 × 10 × 35 m space (representing a grid cell) into 40 × 40 × 105 bins and then tallying
the number of LiDAR points within each bin. Thus, each voxel represented a space of
25 × 25 × 35 cm on our plot. We used vertically rectangular voxels to reduce dimensional-
ity and retain horizontal features. Voxel size was determined through the qualitative testing
of several size configurations using a reduced model form. Ultimately, the voxel data took
the form of a 3D tensor, over which the kernels of a CNN could be passed. Although
CNNs often perform better and train faster when applied to standardized data [30], we
attempted several standardization techniques (e.g., z-score, prescience/absence) and found
no such improvement.

2.4.2. Deep Learning Model Architecture

Our deep learning model architecture was based loosely on Google’s Inception-V3
(Szegedy et al., 2016), which was determined by Ayrey and Hayes (2018) to be better suited
for forest estimation than several other commonly-used CNN architectures [1,67]. The
underlying model-form was converted to interpret 3D data, and care was taken to maintain
a similar proportional dimensionality to the original model (designed to interpret images
with a resolution of 224 × 224 pixels). The full model architecture is presented in Figure 2.

Inception-V3 consists of a series of preliminary convolution and pooling layers, fol-
lowed by inception layers, which consist of a number of convolutions of varying sizes that
are passed over the incoming data, each designed to detect different features, and are then
concatenated. Inception-V3 consists of nine inception layers back to back, with intermittent
pooling to reduce dimensionality. The final inception layer is fed into a fully connected
layer for a classification or regression prediction. Each convolution was followed by a
rectified linear unit (ReLU) threshold function and batch normalization.

The deep learning model was first trained to estimate only AGB using LiDAR. We
used transfer learning to initialize the weights of a more complex model using the weights
from the simpler one, which was designed to simultaneously predict all 14 of our forest
attributes (Table 1). Each forest attribute was standardized using z-scores, thus placing
their values on the same scale. A single loss function was then used to optimize the model
to predict all forest variables (Equation (1)), whereby the mean of the squared error of the k
standardized forest attributes is summarized to a batch level mean of n training samples.

loss =
1
n

n

∑
i=1

1
k

k

∑
j=1

(yi − ŷ)2 (1)

We included the satellite data as side-channel information by first developing a multi-
layer perceptron to estimate AGB directly from the satellite variables. We used the weights
from this model to initialize a subcomponent of the larger model, which produced a 40 × 40
tensor that was then concatenated onto the LiDAR voxels [68].
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Figure 2. The full architecture of the Inception-VS convolutional neural network used to predict forest attributes from
LiDAR and satellite data.

2.4.3. Deep Learning Model Training

Deep learning models were developed in Python using Google’s Tensorflow version
1.15 [69]. The model training process took place in three stages using transfer learning
to build upon each stage (1) a AGB model using only LiDAR, (2) a model predicting all
14 attributes using only LiDAR, and (3) a model predicting all 14 forest attributes using
LiDAR and satellite metrics. The training time for the first stage was approximately five
days using an NVIDIA Tesla k80; the following stages were trained more rapidly. This
lengthy multi-step training process made cross-fold validation highly impractical.

2.5. Traditional Modeling

We developed traditional models using the standard suite of LiDAR height metrics,
derived using the Rlidar package [18]. This package produces a series of summary statistics
of LiDAR return heights and proportions above certain height thresholds. We discarded
metrics that made use of LiDAR intensity and return counts, as these could not be normal-
ized between the different LiDAR acquisitions. We filtered out points lower than 0.5 m
above ground and used a 2 m threshold for many of the proportional metrics. Previous
studies in the region have used similar cutoffs [70]. We also included the aforementioned
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satellite-derived metrics, as well as pulse density and seasonality. In total, 41 covariates
were derived from the LiDAR and satellite data.

Random forest imputation in regression mode was used to model each of the forest
attributes [71]. Other studies conducted on subsets of our dataset have demonstrated
that this modeling technique outperforms linear mixed-effects modeling [1,11]. We used a
Variable Selection Using Random Forest to eliminate unimportant predictors [72]. Each of
the models corresponding to the 14 forest attributes had different metrics. The number of
metrics used ranged between 5 (deciduous volume) and 27 (tree count). We noticed minor
improvements in model performance for each of the 14 models following variable selection.
New models were then developed using 2000 decision trees and one-third variable selection
at each node-split. These hyper-parameters were fine-tuned using a subset of the data. The
random forest models were trained and validated using the withheld test plots. Although
accuracy can be assessed using out-of-bag sampling, we used the same validation scheme
as the deep learning models due to data augmentation and consistency.

2.6. Validation

The training, validation, and testing data derived from the 13 individual forest inven-
tories are likely not fully representative of the landscape, leading to problems with spatial
autocorrelation at the regional scale. We therefore performed two phases of validation. The
first phase of validation made use of the 4000 withheld plots. This was used for model
comparisons between deep learning and traditional modeling and to settle on the final
model form.

The second phase of validation made use of an independent dataset and was used
to assess the performance of the best model from the first phase once it had been applied
across the New England landscape. For this phase, we used the United States Forest
Service’s FIA national inventory plot data as a ground-truth for verification [73]. We made
use of unfuzzed plot locations to validate the maps once they were created, sending them
to an authorized party to extract uncertainty estimates. These consisted of approximately
7500 stratified-random plots with a nested sampling design within the states of Connecticut,
Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. We used these to
determine map error and bias, assess spatial autocorrelation across the landscape, and
compare our inventory estimates to FIA county-level estimates. We assessed errors in
Connecticut and Rhode Island separately as their forests increasingly represent a Mid-
Atlantic forest type that is not fully represented by the training data. We removed buildings
from our maps using a building mask of the United States developed by Microsoft’s Bing
Maps Team using high resolution imagery [74].

The FIA plots consist of a nested plot design that includes four 7.3 m radius subplots
placed 36.6 m away from one another. The subplots have an area of 168 m2, while the entire
FIA plot taken as an aggregate has an area of 672 m2. The individual subplot measurements
were more affected by errors in plot location, as these were more subject to intra-canopy
variability. A preliminary finding that the center plots (on which the GPS point is taken)
produced a lower error than the subplots reinforced this conclusion. The aggregate plot-
level measurements were less prone to location errors but did not necessarily represent
the entire range of variability that one would expect in a 10 m grid cell. Validation plots
require roughly the same area as the grid cells being validated so that each have a similar
range in values. We therefore assessed accuracy at a subplot and plot level but used the
plot-level errors to perform additional analyses. This is roughly equivalent to assessing
errors were the map re-sampled to a 20 m resolution.

We decided not to use FIA plots for model training for several reasons: (1) the FIA
nested plot design was not compatible with our edge correction technique; (2) FIA plot
locations are imprecise and recorded with a consumer-grade GPS and frequently have
an error greater than the size of our cells; and (3) FIA plots are relatively small in size
(<0.01 ha), which can make linking them to remote sensing difficult.
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3. Results
3.1. Phase One Validation and Model Comparison

The first validation phase made use of withheld plots to compare 14 random forest
models using height and satellite metrics to two Inception-V3 CNNs. The first CNN made
use of only the LiDAR point cloud, while the second made use of the LiDAR point cloud
and satellite metrics. Results in terms of RMSE and bias are displayed in Table 2. With
respect to RMSE, both CNNs outperformed random forest in predicting 12 out 14 (85.7%)
forest attributes (the two exceptions being predictions of percent conifer and percent spruce-
fir). In terms of absolute bias, random forest outperformed both CNNs in half or 7 out 14
or 50% of the metrics. We note that in many comparisons of bias, the absolute difference
between models was negligible.

The comparison between CNNs with and without satellite metrics illustrated that
the satellite metrics consistently improve the final model’s performance. For all forest
attributes, the CNN with satellite metrics outperformed those without. The CNN without
satellite metrics had less absolute bias in predicting 3 out of 14 (21.4%) attributes. Despite
this, the proportional improvement in terms of both RMSE and bias after the addition of
satellite metrics was relatively small and so may not justify the additional complexity.

Table 2. Results in terms of RMSE, RMSE as a percent of mean (%), and bias of three models. Traditional random forest
models trained using LiDAR height and satellite metrics, an Inception-V3 CNN model trained using only the LiDAR point
cloud, and an Inception-V3 CNN model trained using the LiDAR point cloud and satellite metrics. The best results achieved
are highlighted in green.

Traditional Modeling CNN without CNN with
with Satellite Metrics Satellite Metrics Satellite Metrics

RMSE (%) Bias (%) RMSE (%) Bias (%) RMSE (%) Bias (%)

AGB *
(Mg ha−1)

48.5
(29.4)

−1.2 34.5
(20.9)

1.3 33.2
(20.1)

−1.5

PC
(%)

13.3
–

−0.1 15.7
–

−2.3 14.2
–

−1.7

TC
(#)

2.51
(37.2)

−0.01 2.10
(31.1)

−0.6 1.75
(26.1)

−0.03

BIOTOT
(Mg ha−1)

58.2
(29.1)

1.4 41.5
(20.8)

1.2 40.0
(18.6)

−2.58

BA
(m−2)

0.083
(24.5)

−0.001 0.065
(19.3)

−0.004 0.063
(20.0)

−0.009

HT
(m)

2.6
(15.2)

0.2 2.1
(12.0)

0.6 1.5
(9.1)

−0.07

QMD
(cm)

5.9
(23.9)

0.14 4.3
(17.2)

0.2 3.8
(15.3)

0.1

PSF
%

8.3
–

0.1 10.8
–

−3.6 9.5
–

−0.2

PWP
%

8.6
–

−0.1 6.7
–

0.1 6.6
–

−0.3

VOL
(m−3)

0.81
(27.5)

−0.019 0.580
(19.7)

−0.013 0.558
(18.9)

−0.022

VOLM
(m−3)

0.751
(27.8)

−0.016 0.460
(20.1)

−0.012 0.524
(19.3)

−0.033

VOLD
(m−3)

0.756
(60.6)

0.002 0.460
(36.9)

−0.023 0.446
(35.8)

−0.017

VOLSF
(m−3)

0.31
(91.4)

0.007 0.227
(67.1)

0.016 0.238
(70.2)

−0.017

VOLWP
(m−3)

0.483
(94.2)

−0.016 0.388
(67.1)

−0.075 0.383
(74.6)

−0.039

* Forest attribute abbreviations are as follows: AGB = aboveground biomass, PC = percent conifer, TC = tree count, BIOTOT = total
biomass, BA = basal area, HT = mean tree height, QMD = quadratic mean diameter, PSF = percent Abies-Picea, PWP = percent Pinus strobus,
VOL = inner bark volume, VOLM = merchantable volume, VOLD = deciduous volume, VOLSF = Abies-Picea volume, VOLWP = Pinus
strobus volume.
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3.2. Phase Two Validation (CNN Model Only)

We performed the second phase of validation after using the best performing model
(CNN with satellite metrics) to map each of the forest attributes across New England. In
the second phase, each of the mapped attributes was validated using independent FIA
plots. Table 3 displays the results of this validation in terms of RMSE, RMSE as a percent of
mean (nRMSE), and bias at both the subplot and plot level. We assessed error in northern
and southern New England separately because our training data were located only in
northern New England. We did not assess the performance of random forest in this phase
because these models were not applied at a regional level; such an effort would have
been computationally costly and was not considered necessary given our model selection
process in the first phase. Model error at the subplot level was considerably higher than
error at the plot level for each forest attribute. This is to be expected given that smaller
areas are more likely to contain extreme values and the subplot values are more likely to be
affected by the small plot size and GPS inaccuracy.

Results of the second phase of validation indicated that two phases were in fact
necessary to obtain a more representative assessment of regional model performance.
Plot-level RMSE was poorer than the RMSE obtained from the first phase of validation
in all forest attributes, indicating that the withheld plots likely did not represent regional
landscape heterogeneity. For some forest attributes, this difference was relatively minor.
The performances of the stem density, mean height, and species estimates were notably
worse in the second phase of validation. The error of each of these values increased between
35–120% from that observed in the first phase of validation.

Overall, the error and bias of attributes representing tree size were lower than those
representing species or stem density. Aboveground biomass, total biomass, basal area,
mean tree height, QMD, inner bark, and merchantable volume all had a plot-level nRMSE
of less than 50% in northern New England. In contrast, tree count had an nRMSE of 57%.
Model performance was also poorest in volume estimates of species groups. Estimates of
spruce-fir and Pinus strobus volume both had nRMSEs above 150% and could generally
be considered not useful. We did not assess the nRMSE of the species attributes that were
quantified as percentages. The RMSE and bias of percent spruce-fir and percent Pinus
strobus were lower than that of percent conifer, likely because their average values were
smaller. Qualitatively, the maps of percent conifer appeared better, with the other species
estimates suffering from artifacts owing to LiDAR flight lines and local biases.

We also assessed the model performance of AGB, PC, and TC in northern New England
spatially and by plotting their predicted versus observed values. Figure 3 illustrates the plot
level bias of each of these forest attributes. We note that the AGB bias appears to be fairly
evenly distributed across the landscape, with consistent model biases not immediately
apparent. Negative PC bias appears to be clustered mostly in eastern Maine, where a greater
number of conifers are likely to be found, indicating that the model is underestimating in
areas of proportionally higher conifers. Likewise, negative bias in Vermont is an indication
that the model is underestimating in areas with proportionally fewer conifers. Tree count
followed a similar trend where greater negative bias was encountered in more northern
areas, which corresponds to the greater stem density found in more intensively-managed
industrial forests.
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Table 3. Results in terms of RMSE, RMSE as a percent of mean (%), and bias of the Inception-V3 model using FIA plot data for validation. Assessments were made using the FIA subplots
(roughly corresponding to 10 m cell validation) and the FIA plots taken as an aggregate (roughly corresponding to 20 m accuracy).

AGB * PC TC BIOTOT BA HT QMD PSF PWP VOL VOLM VOLD VOLSF VOLWP
(Mg ha−1) (%) (#) (Mg ha−1) (m−2) (m) (cm) (%) (%) (m−3) (m−3) (m−3) (m−3) (m−3)

Northern New England (MA, ME, NH, and VT)

FIA Plot- Level Assessment
RMSE 36.9 19.2 3.0 44.5 0.08 3.3 5.2 17.0 13.2 0.625 0.578 0.416 0.298 0.454

(%) 46 – 57 46 45 30 31 – – 46 48 58 123 235
Bias 1.18 1.89 −0.541 2.26 0.03 1.35 0.38 −1.96 −4.25 0.069 0.094 0.006 −0.035 0.034

FIA Subplot- Level Assessment RMSE 57.0 25.6 4.67 68.6 0.12 4.4 7.7 21.8 15.0 0.994 0.922 0.622 0.389 0.587
(%) 71 – 89 71 67 41 46 – – 76 79 87 161 365

Southern New England (CT and RI) FIA Plot- Level Assessment
RMSE 44.3 19.2 3.0 53.1 0.07 2.8 10.0 7.8 0.557 0.602 0.416 0.274 0.796

(%) 39 – 58 39 37 37 23 – – 49 52 58 5326 514
Bias −3.46 1.89 −0.54 −3.42 0.013 1.33 4.4 0.48 0.235 0.09 0.006 0.114 0.231

* Forest attribute abbreviations are as follows: AGB = aboveground biomass, PC = percent conifer, TC = tree count, BIOTOT = total biomass, BA = basal area, HT = mean tree height, QMD = quadratic mean diameter,
PSF = percent Abies-Picea, PWP = percent Pinus strobus, VOL = inner bark volume, VOLM = merchantable volume, VOLD = deciduous volume, VOLSF = Abies-Picea volume, VOLWP = Pinus strobus volume.

Figure 3. FIA plot-level bias is plotted for three of the forest attributes mapped using the CNN. Red areas denote model underestimation, blue areas denote model overestimation. In blank
areas, LiDAR has not yet been acquired. Fuzzed plot locations were used to develop these maps.



Remote Sens. 2021, 13, 5113 13 of 27

These trends can also be observed in the predicted-versus-observed plots (Figure 4).
Biomass residuals fall relatively tightly along the 1:1 line, with little to no attenuation
observed at higher biomass values. Percent conifer residuals seemed to indicate a tendency
to overestimate in low conifer environments and underestimate in high conifer environ-
ments. Finally, tree count residuals appeared to follow the 1:1 line in low-medium density
conditions but often severely underestimated tree count in high-density conditions.

Figure 4. Predicted versus observed plots using FIA plot-level validation. Warmer colors represent greater numbers
of observations.

We assessed model performance across different LiDAR datasets by plotting the
northern New England plot-level bias as a function of pulse density (Figure 5). We used
loess regression to fit a moving trendline to the data using 75% of observations to smooth
the line at each value. No biases stemming from pulse density were apparent in this
visualization, with the trend lines for biomass and tree count consistently near zero, and
the trend line for percent conifer showing a slight positive bias, but with no apparent trend
with pulse density. Nevertheless, banding was visible in the percent conifer and tree count
maps in regions of very low pulse density (not shown). Bands appeared to follow trends in
average scan angle along each flight line and may have been a function of pulse density
and scan angle combined. Unfortunately, we did not map the mean scan angle across the
landscape a-priori as we did for pulse density.

Figure 5. Bias by pulse density in northern New England using FIA plot-level validation. The dashed blue line is a loess
regression fit of the data.

3.3. County-Level Comparisons

With the region mapped using the best performing CNN, we compared county-level
estimates derived by summing the values of our map with FIA design-based estimates
(Table 4). We chose the 38 counties in northern New England with complete LiDAR
coverage. Initially, we used all FIA plots within a county measured within two years
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of the LiDAR acquisition. We discovered, however, that a large number of FIA plots
without measured trees were located in suburban environments with trees. This resulted
in underestimates by the FIA data of each forest attribute, so plots that were denoted as
having no trees that fell within semi-forested suburbs were removed after manual aerial
photo interpretation.

Table 4. County-level estimates of total aboveground biomass (AGB), percent conifer (PC), and tree count (TC) are compared
using the FIA’s design-based sampling and summations of our forest inventory maps. Blue denotes mapped estimates
that fell within the 95% confidence interval of the FIA’s estimate, yellow denotes estimates that fell within 97.5%, and red
denotes values that estimates that differed from the FIA.

State County FIA AGB CNN AGB FIA PC CNN PC FIA TC CNN TC
(Petagrams) (Petagrams) (%) (%) (Millions) (Millions)

Maine Cumberland 21.4 ± 3.5 18.8 34.4 ± 5.7 26.7 106.6 ± 17.4 89.8
Maine Hancock 29.3 ± 3.5 29.6 55.6 ± 5.1 43.3 277.6 ± 32.1 244.2
Maine Kennebec 17.3 ± 3.0 16.7 30.0 ± 5.4 28.9 112.4 ± 19.5 92.9
Maine Knox 7.5 ± 2.1 5.5 42.7 ± 9.2 30.7 52.5 ± 13.1 35.1
Maine Lincoln 9.1 ± 2.1 8.3 35.0 ± 8.3 32.4 55.0 ± 14.3 48.6
Maine Penobscot 56.9 ± 4.6 56.2 51.1 ± 3.6 43.3 585.1 ± 42.0 452.1
Maine Piscataquis 65.0 ± 5.2 61.1 50.9 ± 3.5 46.3 655.0 ± 50.0 528.0
Maine Sagadahoc 6.7 ± 1.5 5.18 39.5 ± 12.7 33.5 40.0 ± 10.0 29.7
Maine Waldo 16.0 ± 2.3 11.3 38.7 ± 5.4 33.9 124.1 ± 18.5 71.1
Maine Washington 42.8 ± 3.9 43.1 50.9 ± 3.7 46.5 422.4 ± 32.5 404.3
Maine York 25.9 ± 3.3 22.3 30.8 ± 5.3 27.5 140.0 ± 17.0 105.1
Massachusetts Barnstable 4.5 ± 1.5 4.4 36.5 ± 13.0 24.0 36.3 ± 12.8 41.3
Massachusetts Berkshire 34.4 ± 4.4 32.6 18.7 ± 5.1 28.7 114.5 ± 15.4 126.3
Massachusetts Bristol 11.9 ± 3.0 11.9 15.5 ± 5.3 23.9 53.0 ± 15.6 56.4
Massachusetts Dukes 0.9 ± 0.5 0.85 20.5 ± 20.2 18.9 6.3 ± 3.0 8.7
Massachusetts Essex 14.0 ± 2.1 11.2 23.6 ± 5.2 18.4 57.7 ± 12.1 39.3
Massachusetts Franklin 24.0 ± 3.8 27.3 31.4 ± 5.9 30.0 86.9 ± 14.2 93.1
Massachusetts Middlesex 20.8 ± 4.3 17.7 23.5 ± 8.1 21.6 61.0 ± 15.3 65.82
Massachusetts Nantucket 0.3 ± 1.2 0.1 0.0 7.0 2.5 ± 8.8 0.8
Massachusetts Norfolk 9.7 ± 3.1 7.9 14.9 ± 8.8 21.8 36.7 ± 11.7 33.7
Massachusetts Plymouth 13.7 ± 3.7 14.4 34.0 ± 8.6 27.2 58.8 ± 14.0 67.3
Massachusetts Suffolk NO PLOTS 0.3 NO PLOTS 10.7 NO PLOTS 2.1
Massachusetts Worcester 44.6 ± 5.8 41.2 22.9 ± 4.8 24.0 145.0 ± 18.9 154.4
New Hampshire Belknap 10.5 ± 2.4 11.1 29.2 ± 8.6 25.5 50.8 ± 11.6 45.4
New Hampshire Cheshire 26.5 ± 3.2 25.6 29.1 ± 5.6 31.8 105.1 ± 14.8 98.3
New Hampshire Hillsborough 25.8 ± 4.0 23.5 28.8 ± 5.5 27.3 102.8 ± 15.7 92.3
New Hampshire Merrimack 32.5 ± 4.4 24.6 31.8 ± 4.8 27.7 134.8 ± 17.1 99.8
New Hampshire Rockingham 19.1 ± 3.9 17.9 32.2 ± 6.3 22.3 72.7 ± 14.8 72.7
New Hampshire Strafford 9.4 ± 2.4 9.8 25.5 ± 8.1 27.5 38.4 ± 10.2 42.4
New Hampshire Sullivan 16.1 ± 2.6 17.0 30.9 ± 7.2 33.6 74.5 ± 12.5 72.3
Vermont Caledonia 15.2 ± 3.1 14.8 35.6 ± 8.2 33.1 85.4 ± 16.7 76.0
Vermont Essex 10.6 ± 1.6 14.0 23.6 ± 5.2 39.5 76.1 ± 9.2 93.0
Vermont Lamoille 13.7 ± 2.1 12.4 23.2 ± 8.2 35.6 60.1 ± 9.5 62.4
Vermont Orange 18.2 ± 3.2 19.2 32.1 ± 8.2 30.8 78.3 ± 14.2 79.2
Vermont Rutland 30.8 ± 3.0 25.7 19.0 ± 4.3 26.7 116.5 ± 11.8 110.8
Vermont Washington 18.1 ± 2.9 19.6 29.4 ± 6.6 33.6 85.9 ± 13.2 91.0
Vermont Windham 28.0 ± 3.4 27.6 26.1 ± 6.2 33.1 102.4 ± 12.2 103.7
Vermont Windsor 30.8 ± 4.3 30.9 19.2 ± 5.5 30.0 112.5 ± 16.8 117.0

Our aboveground biomass predictions fell within the 95% confidence interval of
the FIA’s estimate in 31 out 38 counties (81.5%) and within a 97.5% confidence interval
in 33 out 38 counties (86.8%). Across these counties, FIA estimated 4% more biomass
than our map, which is to be expected given that our maps frequently had gaps between
LiDAR acquisitions and occasionally had missing LiDAR tiles. The FIA’s lack of urban
tree sampling also likely played a large role in this discrepancy. Eight of the counties were
classified by the US Census Bureau as having an urban population greater than 50%. In
these urbanized counties, FIA estimates were an average of 13% lower than ours when
including empty plots in suburban forested areas and 11% greater than ours after these
plots were removed.

In estimating percent conifer, 25 out 38 (65.7%) of our estimates fell within the 95%
confidence interval of the FIA’s estimate. In agreement with the map of residuals, the
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percentage of conifers was significantly underestimated in 6 out 11 counties (54.5%) in
Maine and significantly overestimated in 4 out 8 counties (50.0%) in Vermont. In 16 out
19 counties (84.2%) in Massachusetts and New Hampshire, our estimate of percent conifer
was within the 95% confidence interval of the FIA’s estimate. Across the entire landscape,
the two estimates were within 0.2% of one another.

County-level stem density estimates fell within the FIA’s 95% confidence interval
30 out 38 times (78.9%). Once again, counties in Maine with greater numbers of small
trees were more likely to be underestimated. In 5 out 12 Maine counties (41.7%), mapped
estimates of stem density were significantly lower than the FIA’s estimates. Outside of
Maine, 24 out 27 counties (88.9%) had mapped estimates within the 95% confidence interval
of the FIA’s estimate. This is likely owing to an overall greater stem density in Maine
due to greater commercial forest management and a general tendency of boreal forests to
be denser.

4. Discussion

Our results indicate that 3-D convolutional neural networks (CNNs) can be used to
effectively estimate forest attributes from disparate LiDAR and satellite data. These models
outperformed random forest models, which are the traditional approach for generating
forest inventories from LiDAR. They could also be effectively scaled to make regional-scale,
high-resolution maps/estimates, which we demonstrate were often statistically equivalent
to traditional ground-based forest inventories.

4.1. Model Comparison

Our first objective was to compare LiDAR-derived inventory estimates made using
CNNs to estimates made using height metrics and random forest modeling. We assessed
this in our first phase of validation, in which several models were developed from training
data and assessed using withheld plots. Random forest models trained using traditional
height metrics and satellite data nearly always had a greater error than the two CNNs (with
and without satellite data) that we trained. This finding corroborates that of Ayrey and
Hayes [1], in which 3-D CNNs of varying architectures often outperformed generalized
linear models and random forest. These results also indicate that deep learning (CNNs) can
be a more effective way of modeling forest attributes from LiDAR data than the traditional
approach using LiDAR height metrics.

In the estimation of species (percent conifer and percent spruce-fir), random forest
outperformed CNNs. These species estimates likely relied more heavily on satellite spectral
data than on LiDAR structural data. We speculate that random forest made better use of
the satellite covariates than did our CNN. The CNN was initially trained to scan LiDAR
voxels, and the satellite covariates were added afterwards in such a way as to concatenate
satellite data onto voxel space. This process may have been less than ideal. Zhou and
Hauser [68] outlined several methods for including side-channel data into a CNN. When
applied to our data, their methods produced mixed results, and we ultimately settled on
our concatenation method.

The CNNs also did not outperform the random forest models in terms of bias. Half
of the random forest models had a lower absolute bias than did the CNNs, indicating
that both model types performed similarly. We did not observe any notable trends in
bias by forest attribute. Overall, we believe that the differences in absolute bias between
models were often low enough to be attributed to the random variations of the testing data.
Likewise, Legaard et al. [75] indicated that random forest and single-objective support
vector regression also produced the lowest total prediction error for estimating tree species
abundance in Maine yet produced the greatest systematic error, consistent with the strong
attenuation bias of these methods.

The comparison in our first phase of validation between the CNNs with and without
satellite metrics highlighted that the CNN benefitted from spectral and disturbance infor-
mation. The error decreased when estimating every forest attribute with satellite imagery,
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and bias generally decreased as well. This improvement was modest, suggesting that even
without the satellite metrics, a CNN could be trained to outperform traditional random
forest models using height and satellite metrics. We chose not to explore which satellite
metrics were most useful, as deep learning models of this size run no risk of overfitting
with extraneous predictors. However, such an analysis would be possible through a process
similar to random forest’s derived importance and might be useful in identifying necessary
remote sensing datasets.

Some LiDAR acquisitions have been designed to sample portions of forested regions
rather than acquire wall-to-wall coverage. In this context of model-based estimation (where
LiDAR data may be used to infer population-level estimates without complete coverage),
deep learning may prove impractical for computing uncertainty estimates due to the
computational demands of bootstrapping [76]. Studies using model-assisted (or design-
based) paradigms may still be able to take advantage of this approach to achieve better
accuracy than traditional modeling techniques.

We note several advantages to working with a single deep learning model aside
from better performance. Our Inception-V3 CNN took a considerable amount of data
and time to train; however, once trained, the model could quickly be applied to large
regional LiDAR datasets. A single model predicting all 14 forest attributes presented less
of a data-management challenge than 14 separate models. We also suspect that our CNN
would be less likely to produce conflicting estimates than would 14 separate unconstrained
models (e.g., more merchantable volume than total volume). Other studies have also noted
similar benefits of training models with multiple response variables [77,78].

Finally, the field of deep learning is now making use of pre-trained model weights
to solve novel problems [79,80]. The rapid retraining of our CNNs indicates that this
model can easily be fine-tuned with local data, re-tuned with non-local data, or applied to
different problems to save modelers the effort of training a large CNN to interpret voxel
space with randomized weights. The weights from our CNN could be used to initialize
CNNs with other LiDAR-related objectives, such as individual tree crown segmentation or
LiDAR classification.

4.2. Assessing Performance

With the final CNN model, we mapped all 14 forest attributes across the study area
(Figures 6–8). We assessed map performance with our second phase of validation, which
made use of independent FIA plots. We assessed accuracy at a subplot, plot, and county
level. Our subplot-level error estimates were consistently quite high. The FIA plot locations
in this region are subject to considerable error, and the FIA notes that plot location error
can be as high as 100 m (although in practice most plots are located within 12 m of
their measured location, [81]). Examining pixel-level accuracy using these subplots was
problematic given the high degree of intra-canopy variation present in 10 m pixels. We
observed that the center subplot (on which the GPS location was taken) resulted in lower
map error, which is a further indication that the locational accuracy of the surrounding
subplots is suspect.

Our assessment of plot-level error (the aggregate of the subplots) produced more
favorable error results. We achieved nRMSE values of between 30% to 48% for those
attributes quantifying tree size, which we consider to be a success given the small size of
the grid cells used. We consider estimates of tree count, percent conifer, and deciduous
volume to have been made with moderate success, with nRMSE values of 56% to 58%. We
consider estimates of Pinus strobus and spruce-fir species breakdowns to be a failure, with
nRMSEs exceeding 100%. Nevertheless, these maps may be of use to practitioners when
aggregated to a coarser resolution and binned into categories.

We assessed model performance at the county level and in space using aboveground
biomass, percent conifer, and tree count. Our map of biomass bias across northern New
England (Figure 6) appeared to be relatively uniform, indicating that the model represented
biomass across the landscape well. Notably, the model did not experience any saturation
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of high biomass areas, as is often the case with regional remote sensing studies [82]. Our
biomass estimates fell within the 97.5% confidence of FIA biomass estimates in all but four
counties. Those four counties appeared to have little in common in terms of forest charac-
teristics, proximity, or human population density. In urban and urbanized counties, FIA
estimates of biomass could underestimate or overestimate those from the CNN, depending
on sampling design. Retaining supposedly empty FIA plots placed in suburban areas
where trees were present in aerial imagery resulted in the FIA underestimating biomass
relative to the CNN. This suggests that our maps are better able to quantify urban and
suburban biomass. By our estimate, this adds up to an additional 13% biomass in urbanized
counties. However, we note that none of our training data made use of urban plots, and
few of our training plots had trees grown in the open. This improvement may be a case of
any estimate being better than none at all.

Figure 6. A 10 m resolution forest inventory map of aboveground biomass in New England. Included is a 12 km inset of a
representative portion of the region.
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The map of percent conifer bias (Figure 3) and the county-level comparison (Table 4)
showed a systematic underestimation of percent conifer in eastern Maine and an overesti-
mation in Vermont. These areas are inhabited by very high and low proportions of conifers,
respectively. The predicted versus observed plot confirms that the CNN underfit the ex-
tremes in percent conifer. The map of tree count bias and the count-level comparison was
similar to the percent conifer in that there was a consistent underestimation of tree numbers
in northern Maine, where stem densities are naturally higher due to the species assemblages
and greater harvest intensity resulting in younger forests. The predicted versus observed
plot highlights a model saturation in very high density forests. Unlike percent conifer, no
consistent underestimation of tree count was observed in lower density areas. Intuitively,
one might expect this result given that the structures of very dense forest stands resemble
one another despite different stem densities (e.g., a point cloud representing a stand with
2000 trees per ha looks very similar to one representing 2500 trees per ha). Satellite indices
are also sometimes prone to the same type of saturation at very high stem densities [83].

Figure 7. A 10 m resolution forest inventory map of percent conifer in New England. Included is a 12 km inset of a
representative portion of the region.
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Figure 8. A 10 m resolution forest inventory map of tree count in New England. Included is a 12 km inset of a representative
portion of the region.

The CNN model can be summarized as being an effective predictor of attributes closely
related to tree size (e.g., aboveground biomass), being moderately effective at predicting
attributes related to tree density and percent conifer, and being a poor predictor of attributes
related to species groupings. Previous studies modeling forest attributes using LiDAR
have likewise had more difficulty in estimating stem density and species [70,77,84,85]. We
present the following possible explanations for the model’s under-performance here:

1. Although we incorporated satellite spectral indices useful for species estimation, the
model architecture may not have made full use of them.

2. Stem density was often underestimated in high density stands, but qualitatively,
the maps seemed to suffer from banding in areas with low pulse density LiDAR
(<3 pls/m2). The model may have made use of horizontal structural features in
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the canopy that could not be resolved in low density LIDAR. Ayrey and Hayes [1]
determined that 3-D CNNs make use of the horizontal canopy structure, such as the
edges of tree crowns.

3. In re-examining our loss function, we find that half of our forest attributes were in
some way related to tree size, while only one attribute estimated stem density. Thus,
our unweighted loss function may have inadvertently favored attributes estimating
tree size, resulting in a model that identified features in the LiDAR data that were
more predictive of size, rather than density or species.

4.3. Mapping Errors

The regional maps of forest attributes suffered from several types of errors. One source
of these errors was from the LiDAR acquisitions themselves, which often did not entirely
overlap or were collected improperly. Missing areas can often be observed between the
gaps of the 49 LiDAR acquisitions over the region. In central Connecticut and eastern
Maine, portions of the LiDAR were acquired with improper settings, resulting in forest
vegetation being severely under-represented.

Banding errors occurred with forest attributes that had moderate to worse performance
(tree count, percent conifer, and species/volume estimates). These bands were more likely
to occur in areas where pulse density fell below 3 pls m−2 and followed scan angle trends.
In environments with a low pulse density and high scan angle, these attributes were often
underestimated, possibly owing to less horizontal structure being captured by the LiDAR.
Similar studies have normalized voxelized point clouds by applying a Beer–Lambert
transformation to columns of voxels, and such an approach may have helped to normalize
pulse density differences and possibly reduce banding [86]. Maps estimating tree size, such
as biomass, volume, and basal area, had few banding errors.

4.4. Our Results in Context

Several previous studies have mapped aboveground biomass in this region and can be
used to place the CNN model’s performance in context. In one example, Kellndorfer et al.
(2013) used Landsat and radar to map biomass across the continental United States
(CONUS) and achieved RMSE values ranging from 42 to 48 Mg ha−1 over New Eng-
land with 30 m pixels. Qualitatively, these maps appear overgeneralized in comparison to
our own. In 2008, Blackard et al. [87] used MODIS to predict biomass across the CONUS at a
250 m resolution and achieved an average absolute error in New England ranging from 49.7
to 60.4 Mg ha−1. In a more regional study, Cartus et al. [88] mapped aboveground biomass
in the Northeastern United States using radar and achieved RMSE estimates from 46 to
47.3 Mg ha−1 with 150 m pixels, but noted that increasing pixel size dramatically reduced
error. A more recent study mapped biomass in New England and Atlantic Canada using
Landsat time-series data and achieved an RMSE of 44.7 Mg ha−1 using 30 m pixels [57]. In
the context of these studies, our aboveground biomass error of 36.9 Mg ha−1 at a roughly
20 m resolution (FIA plot-level error) represents a considerable improvement over existing
remotely-sensed regional estimates.

Localized studies in experimental forests throughout the region can also be used for
comparison. Hayashi et al. [10] mapped stem volume using LiDAR and achieved RMSEs
of 46 m3 ha−1 and 82 m3 ha−1 in two experimental forests in Maine and New Brunswick
(the CNN achieved an error of 62.5 m3 ha−1). In a similar study, Hayashi et al. (2014)
obtained RMSEs of 4993 trees ha−1, 3.68 cm for QMD, and 13 m2 ha−1 for basal area, using
20 m cells at an experimental forest in Maine [70]. Our regional models achieved errors of
300 trees ha−1, 5.2 cm QMD, and 7.9 m2 ha−1 basal area, thereby outperforming the local
models in estimating tree count and basal area. Another study at an experimental forest
in Massachusetts used large footprint LiDAR and radar to estimate biomass, achieving a
RMSE of 66.6 Mg ha−1 with 25 m cells [89]. Taken collectively, these results suggest that
our regional model performs on par or better than local modeling efforts to predict the
same forest attributes.
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4.5. Conclusions

In this study, we mapped the forests of New England at a 10 m resolution, mak-
ing estimates of 14 forest inventory attributes using harmonized LiDAR, satellite, and
ground-based data. This was achieved through the use of disparate LiDAR datasets as
well as satellite spectral, phenological, and disturbance data. Our method of modeling
these attributes was somewhat novel and made use of deep learning by employing three-
dimensional convolutional neural networks to scan the LiDAR point clouds, which are a
form of deep learning. The CNN deep learning model outperformed traditional modeling
approaches in most situations and proved useful for large-scale mapping, making use of
disparate data and increasing data management and computational efficiency.

We validated the CNN-derived forest inventory maps using a region-wide external
dataset derived from the USFS’s FIA program. We concluded that the most successful
estimates were of attributes that quantified tree size, moderately successful estimates were
those that quantified tree density or percent coniferous, and less successful estimates were
those that quantified more specific species groupings. In particular, we found our biomass
estimates agree strongly with those of the FIA across the region.

We believe that both the deep learning models and the maps generated by this study
will prove useful in further studies. In particular, the weights from the CNN model trained
here could be used to initiate the training of models making estimates over different
forested regions or for other LiDAR-related remote sensing problems. Likewise, the maps
developed here can assist with wildlife habitat mapping, precision forestry, and carbon
stock estimation in the region, as well as forming a large-scale baseline for future land-use
change assessments and disturbance studies.
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Appendix A

Table A1. A list of field inventories used for model training and the first phase of validation. In addition, the area those inventories represented, the number of LiDAR field plots, the
number of LiDAR acquisitions, and acquisition characteristics are included. When inventories covered multiple sites, those sites are listed.

Inventory Sites Location (s) Area (km2)
Number of
Plots

LiDAR
Acquisitions Seasonality Mean Pulse

Densities (pls m−2)

Temporal
Field/LiDAR
Discrepancy
(Years)

Acadia National Park

Mount Desert
Isle au Haut
Schoodic Point

−68.294, 44.339
−68.627, 44.032
−68.065, 44.351

671 128 2 Leaf on/off 1.5, 12 0 to +2
−2 to +2

Baxter State Park Scientific Forest Management Area −69.000, 46.176 87 882 1 Leaf off 5 −3
Bartlett Experimental
Forest Echidna −71.286, 44.064 0.1 46 1 Leaf on 4 −7

Cooperative Forestry
Research Unit

Austin Pond
Alder Stream
Dow Road
Golden Road
Harlow Road
Katahdin Ironworks
Lazy Tom
Lake Macwahoc
Penobscot Experimental Forest
Ronco Cove
Rump Road
Sarah Road
Schoolbus Road
St. Aurelie
Summit
Week’s Brook
Weymouth Point

−69.705, 45.193
−69.798, 45.369
−69.609, 45.996
−68.675, 45.719
−67.842, 45.646
−69.367, 45.489
−69.456, 45.726
−68.286, 45.798
−68.608, 44.844
−69.634, 45.680
−71.018, 45.193
−70.911, 44.817
−70.778, 44.841
−70.161, 46.259
−68.480, 45.096
−68.522, 46.217
−69.308, 45.947

30,000 935 3 Leaf on/off 1.5,6, 12 +2, +1, 0

Carbon Monitoring
System −69.764, 45.589 4645 414 3 Leaf on/off 8, 5, 15 −2, −4, −5

University of Maine
Forests

Demeritt Forest
Penobscot Experimental Forest

−68.678, 44.933
−68.608, 44.844 55 912 3 Leaf on/off 1.5, 12, 6

−8 to +2
−9 to +2
−10 to +2
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Table A1. Cont.

Inventory Sites Location (s) Area (km2)
Number of
Plots

LiDAR
Acquisitions Seasonality Mean Pulse

Densities (pls m−2)

Temporal
Field/LiDAR
Discrepancy
(Years)

Fox Forest −71.911, 43.138 9 581 1 Leaf off 6 −5
Harvard Forest
Megaplot −72.176, 42.538 0.4 6646 2 Leaf on/off 5, 12 +1, +2

Harvard Forest
Echidna −72.182, 42.531 0.1 90 2 Leaf on/off 5, 12 +6, +7

Holt Experimental
Forest −69.772, 43.871 0.1 1001 3 Leaf on/off 2, 12, 15 −3, −5, −8

Howland
Experimental Forest −68.742, 45.206 2 556 2 Leaf on/off 5, 12 +1, +2

Howland Echidna −68.742, 45.206 0.1 80 2 Leaf on/off 5, 12 −9, −5
Noonan Research
Forest −66.439, 45.977 0.1 25 1 Leaf on 5 0

Penobscot
Experimental Forest −68.608, 44.844 4 409 3 Leaf on/off 1.15, 12, 6

−8 to +2
−10 to +2
−10 to +2

Null Plots Regional 500 1 Leaf on/off 1.5 to 15 0



Remote Sens. 2021, 13, 5113 24 of 27

References
1. Ayrey, E.; Hayes, D.J. The Use of Three-Dimensional Convolutional Neural Networks to Interpret LiDAR for Forest Inventory.

Remote Sens. 2018, 10, 649. [CrossRef]
2. Means, J.E.; Acker, S.A.; Fitt, B.J.; Renslow, M.; Emerson, L.; Hendrix, C.J. Predicting forest stand characteristics with airborne

scanning lidar. Photogramm. Eng. Remote Sens. 2000, 66, 1367–1372.
3. Jensen, J.L.R.; Humes, K.S.; Conner, T.; Williams, C.J.; DeGroot, J. Estimation of biophysical characteristics for highly variable

mixed-conifer stands using small-footprint lidar. Can. J. For. Res. 2006, 36, 1129–1138. [CrossRef]
4. Lim, K.S.; Treitz, P.M. Estimation of above ground forest biomass from airborne discrete return laser scanner data using

canopy-based quantile estimators. Scand. J. For. Res. 2004, 19, 558–570. [CrossRef]
5. Patenaude, G.; Hill, R.; Milne, R.; Gaveau, D.; Briggs, B.; Dawson, T. Quantifying forest above ground carbon content using

LiDAR remote sensing. Remote Sens. Environ. 2004, 93, 368–380. [CrossRef]
6. Woods, M.; Pitt, D.; Penner, M.; Lim, K.; Nesbitt, D.; Etheridge, D.; Treitz, P. Operational implementation of a LiDAR inventory in

Boreal Ontario. For. Chron. 2011, 87, 512–528. [CrossRef]
7. Wulder, M.A.; Bater, C.W.; Coops, N.C.; Hilker, T.; White, J.C. The role of LiDAR in sustainable forest management. For. Chron.

2008, 84, 807–826. [CrossRef]
8. García-Feced, C.; Tempel, D.J.; Kelly, M. LiDAR as a tool to characterize wildlife habitat: California spotted owl nesting habitat as

an example. J. For. 2011, 109, 436–443.
9. White, J.C.; Wulder, M.A.; Varhola, A.; Vastaranta, M.; Coops, N.C.; Cook, B.D.; Pitt, D.; Woods, M. A best practices guide

for generating forest inventory attributes from airborne laser scanning data using an area-based approach. For. Chron. 2013,
89, 722–723. [CrossRef]

10. Hayashi, R.; Weiskittel, A.; Kershaw J.A., Jr. Influence of prediction cell size on LiDAR-derived area-based estimates of total
volume in mixed-species and multicohort forests in northeastern North America. Can. J. Remote Sens. 2016, 42, 473–488. [CrossRef]

11. Hayashi, R.; Kershaw, J.A.; Weiskittel, A. Evaluation of alternative methods for using LiDAR to predict aboveground biomass in
mixed species and structurally complex forests in northeastern North America. Math. Comput. For. Nat. Resour. Sci. 2015, 7, 49–65.

12. Hauglin, M.; Rahlf, J.; Schumacher, J.; Astrup, R.; Breidenbach, J. Large scale mapping of forest attributes using heterogeneous
sets of airborne laser scanning and National Forest Inventory data. For. Ecosyst. 2021, 8, 1–5. [CrossRef]

13. Nilsson, M.; Nordkvist, K.; Jonzén, J.; Lindgren, N.; Axensten, P.; Wallerman, J.; Egberth, M.; Larsson, S.; Nilsson, L.; Eriksson,
J. A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National
Forest Inventory. Remote Sens. Environ. 2017, 194, 447–454. [CrossRef]

14. Kangas, A.; Astrup, R.; Breidenbach, J.; Fridman, J.; Gobakken, T.; Korhonen, K.T.; Maltamo, M.; Nilsson, M.; Nord-Larsen, T.;
Næsset, E. Remote sensing and forest inventories in Nordic countries–roadmap for the future. Scand. J. For. Res. 2018, 33, 397–412.
[CrossRef]

15. Guo, X.; Coops, N.C.; Tompalski, P.; Nielsen, S.E.; Bater, C.W.; Stadt, J.J. Regional mapping of vegetation structure for biodiversity
monitoring using airborne lidar data. Ecol. Inform. 2017, 38, 50–61. [CrossRef]

16. Dick, A. Enhanced Forest Inventory (EFI) Adoption in New Brunswick: Progress to Date and Future Directions; Report; Natural
Resources Canada: Mattawa, ON, Canada, 2019.

17. McGaughey, R.J. FUSION/LDV: Software for LIDAR Data Analysis and Visualization; US Department of Agriculture, Forest Service,
Pacific Northwest Research Station: Seattle, WA, USA, 2009; Volume 123.

18. Silva, C.A.; Crookston, N.L.; Hudak, A.T.; Vierling, L.A.; Klauberg, C.; Silva, M.C.A. Package ‘rLiDAR’. 2017. Available online:
https://cran.r-project.org/web/packages/rLiDAR/index.html (accessed on 1 June 2019).

19. Ayrey, E.; Hayes, D.J.; Fraver, S.; Kershaw, J.A., Jr.; Weiskittel, A.R. Ecologically-based metrics for assessing structure in developing
area-based, enhanced forest inventories from LiDAR. Can. J. Remote Sens. 2019, 45, 88–112. [CrossRef]

20. Roussel, J.R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.; Meador, A.S.; Bourdon, J.F.; de Boissieu, F.; Achim, A. lidR:
An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [CrossRef]

21. Junttila, V.; Kauranne, T.; Finley, A.O.; Bradford, J.B. Linear Models for Airborne-Laser-Scanning-Based Operational Forest
Inventory With Small Field Sample Size and Highly Correlated LiDAR Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5600–5612.
[CrossRef]

22. Næsset, E. Assessing sensor effects and effects of leaf-off and leaf-on canopy conditions on biophysical stand properties derived
from small-footprint airborne laser data. Remote Sens. Environ. 2005, 98, 356–370. [CrossRef]

23. Gobakken, T.; Næsset, E. Assessing effects of laser point density, ground sampling intensity, and field sample plot size on
biophysical stand properties derived from airborne laser scanner data. Can. J. For. Res. 2008, 38, 1095–1109. [CrossRef]

24. Hansen, C.F. Lidar Remote Sensing of Forest Canopy Structure: An Assessment of the Accuracy of Lidar and Its Relationship to
Higher Trophic Levels. Master’s Thesis, University of Vermont, Burlington, VT, USA, 2015.

25. Næsset, E. Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical
stand properties derived from small-footprint airborne laser data. Remote Sens. Environ. 2009, 113, 148–159. [CrossRef]

26. Goodwin, N.R.; Coops, N.C.; Culvenor, D.S. Assessment of forest structure with airborne LiDAR and the effects of platform
altitude. Remote Sens. Environ. 2006, 103, 140–152. [CrossRef]

http://doi.org/10.3390/rs10040649
http://dx.doi.org/10.1139/x06-007
http://dx.doi.org/10.1080/02827580410019490
http://dx.doi.org/10.1016/j.rse.2004.07.016
http://dx.doi.org/10.5558/tfc2011-050
http://dx.doi.org/10.5558/tfc84807-6
http://dx.doi.org/10.5558/tfc2013-132
http://dx.doi.org/10.1080/07038992.2016.1229597
http://dx.doi.org/10.1186/s40663-021-00338-4
http://dx.doi.org/10.1016/j.rse.2016.10.022
http://dx.doi.org/10.1080/02827581.2017.1416666
http://dx.doi.org/10.1016/j.ecoinf.2017.01.005
https://cran.r-project.org/web/packages/rLiDAR/index.html
http://dx.doi.org/10.1080/07038992.2019.1612738
http://dx.doi.org/10.1016/j.rse.2020.112061
http://dx.doi.org/10.1109/TGRS.2015.2425916
http://dx.doi.org/10.1016/j.rse.2005.07.012
http://dx.doi.org/10.1139/X07-219
http://dx.doi.org/10.1016/j.rse.2008.09.001
http://dx.doi.org/10.1016/j.rse.2006.03.003


Remote Sens. 2021, 13, 5113 25 of 27

27. White, J.C.; Arnett, J.T.; Wulder, M.A.; Tompalski, P.; Coops, N.C. Evaluating the impact of leaf-on and leaf-off airborne laser
scanning data on the estimation of forest inventory attributes with the area-based approach. Can. J. For. Res. 2015, 45, 1498–1513.
[CrossRef]

28. Villikka, M.; Packalén, P.; Maltamo, M. The suitability of leaf-off airborne laser scanning data in an area-based forest inventory of
coniferous and deciduous trees. Silva Fenn. 2012, 46. [CrossRef]

29. Ørka, H.O.; Næsset, E.; Bollandsås, O.M. Effects of different sensors and leaf-on and leaf-off canopy conditions on echo
distributions and individual tree properties derived from airborne laser scanning. Remote Sens. Environ. 2010, 114, 1445–1461.
[CrossRef]

30. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

31. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process
understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef] [PubMed]

32. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
33. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7 –12 June
2015; pp. 1–9.

34. Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. Deepface: Closing the gap to human-level performance in face verification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 1701–1708.

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

36. Rizaldy, A.; Persello, C.; Gevaert, C.; Oude Elberink, S.; Vosselman, G. Ground and Multi-Class Classification of Airborne Laser
Scanner Point Clouds Using Fully Convolutional Networks. Remote Sens. 2018, 10, 1723. [CrossRef]

37. Ghamisi, P.; Höfle, B.; Zhu, X.X. Hyperspectral and LiDAR data fusion using extinction profiles and deep convolutional neural
network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3011–3024. [CrossRef]

38. Castelluccio, M.; Poggi, G.; Sansone, C.; Verdoliva, L. Land use classification in remote sensing images by convolutional neural
networks. arXiv 2015, arXiv:1508.00092.

39. Guan, H.; Yu, Y.; Ji, Z.; Li, J.; Zhang, Q. Deep learning-based tree classification using mobile LiDAR data. Remote Sens. Lett. 2015,
6, 864–873. [CrossRef]

40. Ko, C.; Kang, J.; Sohn, G. Deep Multi-task Learning for Tree Genera Classification. ISPRS Ann. Photogramm. Remote Sens. Spat.
Inf. Sci 2018, 153–159. [CrossRef]

41. Weinstein, B.; Marconi, S.; Bohlman, S.; Zare, A.; White, E. Individual tree-crown detection in RGB imagery using self-supervised
deep learning neural networks. Remote Sens. 2019, 11, 1309. [CrossRef]

42. Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep learning based oil palm tree detection and counting for high-resolution remote sensing
images. Remote Sens. 2016, 9, 22. [CrossRef]

43. Liu, Z.; Tang, H.; Lin, Y.; Han, S. Point-voxel cnn for efficient 3d deep learning. arXiv 2019, arXiv:1907.03739.
44. Maturana, D.; Scherer, S. 3d convolutional neural networks for landing zone detection from lidar. Robotics and Automation

(ICRA). In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems, Istanbul, Turkey, 2–5 August 2015;
pp. 3471–3478.

45. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; Volume 1, p. 4.

46. Ciuti, S.; Tripke, H.; Antkowiak, P.; Gonzalez, R.S.; Dormann, C.F.; Heurich, M. An efficient method to exploit LiDAR data in
animal ecology. Methods Ecol. Evol. 2018, 9, 893–904. [CrossRef]

47. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. Imagenet
large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

48. MacPhee, C.; Kershaw, J.A.; Weiskittel, A.R.; Golding, J.; Lavigne, M.B. Comparison of approaches for estimating individual tree
height–diameter relationships in the Acadian forest region. For. Int. J. For. Res. 2018, 91, 132–146. [CrossRef]

49. Weiskittel, A.; Kershaw, J.; Crookston, N.; Hennigar, C. The Acadian variant of the Forest Vegetation Simulator: Continued
development and evaluation. e-Gen. In Proceedings of the 2017 Forest Vegetation Simulator (FVS) e-Conference, Asheville, NC,
USA, 28 February–2 March 2017; Keyser, C.E., Keyser, T.L., Eds.; USDA Forest Service, Southern Research Station: Asheville, NC,
USA, 2017; pp. 10–13.

50. Li, R.; Weiskittel, A.; Dick, A.R.; Kershaw, J.A., Jr.; Seymour, R.S. Regional stem taper equations for eleven conifer species in the
Acadian region of North America: Development and assessment. North. J. Appl. For. 2012, 29, 5–14. [CrossRef]

51. Woodall, C.W.; Heath, L.S.; Domke, G.M.; Nichols, M.C. Methods and Equations for Estimating Aboveground Volume, Biomass, and
Carbon for Trees in the U.S. Forest Inventory, 2010; Gen. Tech. Rep. NRS-88.; U.S. Department of Agriculture, Forest Service,
Northern Research Station: Newtown Square, PA, USA, 2011; 30p. [CrossRef]

52. Russell, M.B.; Weiskittel, A.R. Maximum and largest crown width equations for 15 tree species in Maine. North. J. Appl. For. 2011,
28, 84–91. [CrossRef]

http://dx.doi.org/10.1139/cjfr-2015-0192
http://dx.doi.org/10.14214/sf.68
http://dx.doi.org/10.1016/j.rse.2010.01.024
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1038/s41586-019-0912-1
http://www.ncbi.nlm.nih.gov/pubmed/30760912
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.3390/rs10111723
http://dx.doi.org/10.1109/JSTARS.2016.2634863
http://dx.doi.org/10.1080/2150704X.2015.1088668
http://dx.doi.org/10.5194/isprs-annals-IV-2-153-2018
http://dx.doi.org/10.3390/rs11111309
http://dx.doi.org/10.3390/rs9010022
http://dx.doi.org/10.1111/2041-210X.12921
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1093/forestry/cpx039
http://dx.doi.org/10.5849/njaf.10-037
http://dx.doi.org/10.2737/NRS-GTR-88
http://dx.doi.org/10.1093/njaf/28.2.84


Remote Sens. 2021, 13, 5113 26 of 27

53. Taylor, L.; Nitschke, G. Improving deep learning with generic data augmentation. In Proceedings of the 2018 IEEE Symposium
Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 1542–1547.

54. Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion
of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change
information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354.

55. Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; Le Moine, J.; Ryu, S.R. Estimating aboveground biomass using Landsat
7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens. Environ. 2004, 93, 402–411. [CrossRef]

56. Pflugmacher, D.; Cohen, W.B.; Kennedy, R.E. Using Landsat-derived disturbance history (1972–2010) to predict current forest
structure. Remote Sens. Environ. 2012, 122, 146–165. [CrossRef]

57. Kilbride, J.B. Forest Disturbance Detection and Aboveground Biomass Modeling Using Moderate-Resolution, Time-Series
Satellite Imagery. Master’s Thesis, University of Maine, Orono, ME, USA, 2018.

58. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

59. Key, C.H.; Benson, N.C. The Normalized Burn Ratio (NBR): A Landsat TM Radiometric Measure of Burn Severity; United States
Geological Survey, Northern Rocky Mountain Science Center: Bozeman, MT, USA, 1999.

60. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec.
Publ. 1974, 351, 309.

61. Cibula, W.; Zetka, E.; Rickman, D. Response of thematic mapper bands to plant water stress. Int. J. Remote Sens. 1992,
13, 1869–1880. [CrossRef]

62. Gitelson, A.A.; Viña, A.; Verma, S.B.; Rundquist, D.C.; Arkebauer, T.J.; Keydan, G.; Leavitt, B.; Ciganda, V.; Burba, G.G.; Suyker,
A.E. Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring
of vegetation productivity. J. Geophys. Res. Atmos. 2006, 111. [CrossRef]

63. Hunt, E.R.; Daughtry, C.; Eitel, J.U.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. J. Agron
2011, 103, 1090–1099. [CrossRef]

64. Crist, E.P.; Cicone, R.C. A physically-based transformation of Thematic Mapper data—The TM Tasseled Cap. IEEE Trans. Geosci.
Remote Sens. 1984, 256–263. [CrossRef]

65. Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1.
LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [CrossRef]

66. Friedl, M.; Gray, J.; Sulla-Menashe, D. MCD12Q2 MODIS/Terra+ Aqua Land Cover Dynamics Yearly L3 Global 500 m SIN Grid V006
[Data Set]; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2019. [CrossRef]

67. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

68. Zhou, Y.; Hauser, K. Incorporating side-channel information into convolutional neural networks for robotic tasks. In Proceedings
of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 2177–2183.

69. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. Tensorflow: A
system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation, Savannah, GA, USA, 2–4 November 2016; Volume 16, pp. 265–283.

70. Hayashi, R.; Weiskittel, A.; Sader, S. Assessing the feasibility of low-density LiDAR for stand inventory attribute predictions in
complex and managed forests of northern Maine, USA. Forests 2014, 5, 363–383. [CrossRef]

71. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
72. Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. VSURF: An R package for variable selection using random forests. R J. 2015, 7, 19–33.

[CrossRef]
73. Woudenberg, S.W.; Conkling, B.L.; O’Connell, B.M.; LaPoint, E.B.; Turner, J.A.; Waddell, K.L. The Forest Inventory and Analysis

Database: Database Description and Users Manual Version 4.0 for Phase 2; US Department of Agriculture, Forest Service, Rocky
Mountain Research Station: Fort Collins, CO, USA, 2010; Volume 245, 336p.

74. Team, B.M. Microsoft Releases 125 million Building Footprints in the US as Open Data. 2018. Available online: https:
//github.com/microsoft/USBuildingFootprints (accessed on 1 June 2019).

75. Legaard, K.; Simons-Legaard, E.; Weiskittel, A. Multi-Objective Support Vector Regression Reduces Systematic Error in Moderate
Resolution Maps of Tree Species Abundance. Remote Sens. 2020, 12, 1739. [CrossRef]

76. Gregoire, T.G.; Næsset, E.; McRoberts, R.E.; Ståhl, G.; Andersen, H.E.; Gobakken, T.; Ene, L.; Nelson, R. Statistical rigor in
LiDAR-assisted estimation of aboveground forest biomass. Remote Sens. Environ. 2016, 173, 98–108. [CrossRef]

77. Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Hall, D.E.; Falkowski, M.J. Nearest neighbor imputation of species-level, plot-scale
forest structure attributes from LiDAR data. Remote Sens. Environ. 2008, 112, 2232–2245. [CrossRef]

78. Packalen, P.; Temesgen, H.; Maltamo, M. Variable selection strategies for nearest neighbor imputation methods used in remote
sensing based forest inventory. Can. J. Remote Sens. 2012, 38, 557–569. [CrossRef]

79. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
80. Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep convolutional neural

networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med.
Imaging 2016, 35, 1285–1298. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.rse.2004.08.008
http://dx.doi.org/10.1016/j.rse.2011.09.025
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1080/01431169208904236
http://dx.doi.org/10.1029/2005JD006017
http://dx.doi.org/10.2134/agronj2010.0395
http://dx.doi.org/10.1109/TGRS.1984.350619
http://dx.doi.org/10.1016/j.rse.2010.07.008
http://dx.doi.org/10.5067/MODIS/MCD12Q2.006
http://dx.doi.org/10.3390/f5020363
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.32614/RJ-2015-018
https://github.com/microsoft/USBuildingFootprints
https://github.com/microsoft/USBuildingFootprints
http://dx.doi.org/10.3390/rs12111739
http://dx.doi.org/10.1016/j.rse.2015.11.012
http://dx.doi.org/10.1016/j.rse.2007.10.009
http://dx.doi.org/10.5589/m12-046
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TMI.2016.2528162
http://www.ncbi.nlm.nih.gov/pubmed/26886976


Remote Sens. 2021, 13, 5113 27 of 27

81. Hoppus, M.; Lister, A. The status of accurately locating forest inventory and analysis plots using the Global Positioning System. In
Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium, Portland, OR, USA, 3–6 October 2005; McRoberts,
R.E., Reams, G.A.,Van Deusen, P.C. McWilliams, W.H., Eds.; US Department of Agriculture, Forest Service: Washington, DC,
USA; Volume 77, pp. 179–184.

82. Zhao, P.; Lu, D.; Wang, G.; Wu, C.; Huang, Y.; Yu, S. Examining spectral reflectance saturation in Landsat imagery and
corresponding solutions to improve forest aboveground biomass estimation. Remote Sens. 2016, 8, 469. [CrossRef]

83. Mohammadi, J.; Shataee Joibary, S.; Yaghmaee, F.; Mahiny, A. Modelling forest stand volume and tree density using Landsat
ETM+ data. Int. J. Remote Sens. 2010, 31, 2959–2975. [CrossRef]

84. Treitz, P.; Lim, K.; Woods, M.; Pitt, D.; Nesbitt, D.; Etheridge, D. LiDAR sampling density for forest resource inventories in
Ontario, Canada. Remote Sens. 2012, 4, 830–848. [CrossRef]

85. Shang, C.; Treitz, P.; Caspersen, J.; Jones, T. Estimating stem diameter distributions in a management context for a tolerant
hardwood forest using ALS height and intensity data. Can. J. Remote Sens. 2017, 43, 79–94.

86. Almeida, D.R.A.d.; Stark, S.C.; Shao, G.; Schietti, J.; Nelson, B.W.; Silva, C.A.; Gorgens, E.B.; Valbuena, R.; Papa, D.d.A.; Brancalion,
P.H.S. Optimizing the remote detection of tropical rainforest structure with airborne lidar: Leaf area profile sensitivity to pulse
density and spatial sampling. Remote Sens. 2019, 11, 92. [CrossRef]

87. Blackard, J.; Finco, M.; Helmer, E.; Holden, G.; Hoppus, M.; Jacobs, D.; Lister, A.; Moisen, G.; Nelson, M.; Riemann, R. Mapping
US forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ. 2008,
112, 1658–1677. [CrossRef]

88. Cartus, O.; Santoro, M.; Kellndorfer, J. Mapping forest aboveground biomass in the Northeastern United States with ALOS
PALSAR dual-polarization L-band. Remote Sens. Environ. 2012, 124, 466–478. [CrossRef]

89. Ahmed, R.; Siqueira, P.; Bergen, K.; Chapman, B.; Hensley, S. A biomass estimate over the harvard forest using field measurements
with radar and lidar data. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA,
25–30 July 2010; pp. 4768–4771.

http://dx.doi.org/10.3390/rs8060469
http://dx.doi.org/10.1080/01431160903140811
http://dx.doi.org/10.3390/rs4040830
http://dx.doi.org/10.3390/rs11010092
http://dx.doi.org/10.1016/j.rse.2007.08.021
http://dx.doi.org/10.1016/j.rse.2012.05.029

	Introduction
	Overview
	The Current Approach
	Deep Learning
	Objectives

	Materials and Methods
	Forest Attributes
	Training Data
	Remote Sensing Data
	LiDAR
	Satellite Variables

	Deep Learning Modeling
	Data Preparation
	Deep Learning Model Architecture
	Deep Learning Model Training

	Traditional Modeling
	Validation

	Results
	Phase One Validation and Model Comparison
	Phase Two Validation (CNN Model Only)
	County-Level Comparisons

	Discussion
	Model Comparison
	Assessing Performance
	Mapping Errors
	Our Results in Context
	Conclusions

	
	References

