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Abstract: Quantification of uncertainties associated with satellite precipitation products is a prior
requirement for their better applications in earth science studies. An improved scheme is developed in
this study to decompose mean bias error (MBE) and mean square error (MSE) into three components,
i.e., MBE and MSE associated hits, missed precipitation, and false alarms, respectively, which are
weighted by their relative frequencies of occurrence (RFO). The trend of total MBE or MSE is then
naturally decomposed into six components according to the chain rule for derivatives. Quantitative
estimation of individual contributions to total MBE and MSE is finally derived. The method is
applied to validation of Integrated MultisatellitE Retrievals for GPM (IMERG) in Mainland China.
MBE associated with false alarms is an important driver for total MBE, while MSE associated with
hits accounts for more than 85% of MSE, except in inland semi-arid area. The RFO of false alarms
increases, whereas the RFO of missed precipitation decreases. Both factors lead in part to a growing
trend for total MBE. Detection of precipitation should be improved in the IMERG algorithm. More
specifically, the priority should be to reduce false alarms.

Keywords: precipitation; IMERG; error decomposition; gauge rainfall rate; validation

1. Introduction

Satellite observation is the most important measure to retrieve precipitation at a global
scale, which provides a growing legacy of high-quality precipitation data for earth system
sciences [1–3]. In particular, the launches of the Tropical Rainfall Measurement Mission
satellite (TRMM) in 1997 and the Global Precipitation Measurement (GPM) core satellite
in 2004 are two milestones in this aspect. Precipitation Radar (PR) onboard TRMM is the
first spaceborne instrument to actively measure precipitation profiles. The dual-frequency
precipitation radar (DPR) on the GPM core satellite improves the detection capability of
light rainfall (0.2 mm h−1) and snowfall. It also expands coverage over latitude band
65◦N–65◦S [4]. These active instruments provide not only new insights into precipitation
but also a vital source for calibrating retrievals from other precipitation sensors, e.g., passive
microwave (PMW) sensors. PMW is sensitive to atmospheric column precipitation particles,
whereas infrared (IR) is only sensitive to the cloud top layer [5]. More reliable rainfall
estimations are then expected from PMW relative to IR. The TRMM microwave imager
(TMI) and GPM microwave imager (GPI) provide a good reference for the cross-calibration
of PWW imagers and sounders onboard other platforms, which spans the temporal and
spatial coverage of PMW precipitation retrievals [5,6]. PMW observation has wider space
coverage relative to PR and DPR. Specifically, a synergy of multiple PMW sensors on
board different polar-orbiting satellites can effectively improve the detection efficiency,
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although it is less than that of IR radiometers onboard geostationary satellites. Most
global precipitation products are mainly produced by PMW measurements but utilize IR
data for spatiotemporal completeness, such as TMPA (TRMM Multisatellite Precipitation
Analysis) [7] and IMERG (Integrated MultisatellitE Retrievals for GPM) [5].

There are dozens of high-resolution satellite precipitation products, among which
IMERG is the latest. The highest temporal and spatial resolutions of IMERG are half an
hour and 10 km, respectively [6]. The IMERG algorithm incorporated multiyear experience
from international partners in its PMW calibration technique [8], IR [9] and PMW [10]
precipitation retrievals, as well as PMW and IR morphing, and the Kalman filter algo-
rithm [11,12]. It has been widely used to improve the accuracy of climate modeling in
terms of extreme rain and snowfall to strengthen the applications for current and future
disasters, disease, resource management, energy production, and food security [6].

Precipitation is a complex phenomenon showing dramatic temporal and spatial vari-
ations, which makes it a challenging task to estimate it accurately. Mathematically, the
estimation is an ill-posed inversion problem. Satellite precipitation products are unavoid-
ably associated with substantial large systematic and random errors, which vary with
regions, climate, and precipitation types [10]. Therefore, it is necessary to evaluate the
retrievals at multitemporal and spatial scales. This can not only provide suggestions for
data users to select appropriate products, but also on how to apply and consider the impact
of data quality in actual applications. More importantly, it can recommend the direction to
improve the retrievals.

Many validation studies have been reported, which concern verification methods and
demonstrate the performance of multiple satellite precipitation products at different tem-
poral and spatial scales [13–18]. It is widely suggested that IMERG V06 outperforms other
satellite rainfall products as a result of several major improvements [17]. The performance
of the IMERG rainfall product depends on climate and topography. Underestimation of
rainfall by IMERG was found in subtropical regions; for example, in the Indian subcon-
tinent and Ganges Brahmaputra Meghna basin [19,20]. Although IMERG outperforms
the reanalysis rainfall products in many aspects, the triple collocation analysis implies
that IMERG snowfall needs further development [17], which may account for the fact
poor performance of IMERG over north China [21]. On the contrary, good performance
is generally found in the warm season, although systematic and random biases should
still be adjusted before driving hydrological models [22–24]. Satellite-based precipitation
retrieval techniques perform poorly in complex terrain, because low-level, topographically
forced updrafts may trigger heavy rainfall that shows great spatiotemporal variability [23],
which is also not captured by poor coverage of gauge measurements.

Uncertainties mainly come from three distinct situations, namely, hit (H): both gauged
and satellite rainfall exceed a threshold; missed (M): satellite rainfall is below the threshold
while gauged rainfall passes the threshold; false alarm (F): satellite rainfall exceeds thresh-
old but gauged rainfall does not. Uncertainty associated with corrective negatives (C):
both satellite and gauged rainfall are below the threshold, or are negligible. Knowledge
of dominant contribution to total uncertainty is essential for the algorithm developers.
Tian et al. (2009) proposed a novel error decomposition scheme of mean bias error (MBE),
pointing out that evaluating total MBE may lead to misunderstanding. This is because
missed precipitation is, to a certain extent, offset by false alarms, likely resulting in a
negligible overall error. Assessment of long-term performance of satellite precipitation
products is vital for climate study, which is addressed by a very few precious studies, for
example, Tang et al. (2020) [17].

The purpose of this study is to further the decomposition scheme but focusing on the
decomposition of MBE and mean square error (MSE) simultaneously. The outstanding
feature of this improved method is to produce quantitative relationships between total
MBE/MSE and their individual contributions. More importantly, long-term changes in
MBE (MSE) associated with H, M, and F, as well as their relative frequencies of occurrence
(RFO), are investigated. The contributions of these conditional errors to the unconditional
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errors are quantified and compared. The method is applied to the IMERG assessment
in Mainland China. Interesting spatial and temporal distributions of MBE and MSE
decomposition are presented. Spatial and temporal variability of IMERG performance
in mainland China is presented. Potential improvements in IMERG during the past two
decades are discussed.

2. Data and Method
2.1. Data

The latest IMERG precipitation product is derived by the V06 algorithm, which
includes several major improvements. Previous studies showed that the IMERG prod-
uct exhibited better performance than other satellite precipitation datasets, which were
mostly based on short-term observations (after 2014 when the GPM Core Observatory was
launched) [17]. Here we evaluate daily IMERG V06 rainfall covering the period beginning
from June 2000 since the retrospective processing of PMW data before GPM Core Observa-
tory was finalized. Daily rainfall, the accumulated rainfall from 00:00 to 24:00 UTC with
half-hourly resolution, is validated.

We use daily rain-gauge data from 2395 stations over Mainland China as the refer-
ence. Note that monthly rainfall data at some of these stations are used as the reference to
calibrate the IMERG V06 product. Therefore, strictly speaking, this is not an independent
validation. The gauged data are quality controlled by the Chinese Meteorological Admin-
istration, which include gross error checks, time stamp checks, etc. The data are widely
used for the validation studies [17,19–21,23]. Given that the ultimate goal of our research is
to drive our hydrological model by using the IMERG product after we carefully evaluate
its performance, the validation is made in nine watersheds, separately. Figure 1 shows
the gauge map with different colors in these watersheds. The Songliao watershed (SL) is
located in northeastern China, where the climate is cold-zone—dry in winter and warm in
summer. The Haihe watershed (HH) covers the north China plain, which has a subtropical
monsoon climate. Yellow River watershed (YR) has a semi-arid climate. The climate in the
inland watershed (IL) is arid-zone cold desert according to the Koppen–Geiger climate clas-
sification map. The climate in the Huaihe watershed (HU) is typically a temperate, warm
summer and dry winter. The climate in the western part of the Yangtze river watershed
(YZ) is temperate-zone dry in the warm season, whereas there is a temperate-zone warm
summer and no dry season in the eastern part. The climate in the southeast watershed (SE)
and the Pearl delta watershed (PD) is typically temperate-zone warm summer and no dry
season. Temperate-zone dry, warm summer is typical in the southwestern watershed (SW).
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2.2. Statistical Metrics

We used a simple collocation method to combine the gauge and IMERG grid in the
validation. Measurements at gauges with a IMERG grid are averaged to compare IMERG
pixel rainfall. Given that daily IMERG is calculated from half-hourly retrievals from 00:00
to 24:00 UTC, we used the daily gauged measurements from 08:00 to next 08:00 Beijing
Time that agrees with that of IMERG, since UTC is 8 h behind Beijing Time. In order
to evaluate the IMERG performance, the statistical merits were calculated based on the
collocated twenty years (2001–2020) of gauged and IMERG rainfall products. The metrics
include the Pearson correlation coefficient (CC) to describe the covariance between IMERG
and gauged data. The mean bias error (MBE) and root mean square error (RMSE) are used
to describe the systematic and random error characteristics of IMERG. We also used the
Kling–Gupta efficiency [24,25] that combines the contributions of correlation, bias, and
variability term.

KGE = 1 −
√
(CC − 1)2 + (β− 1)2 + (γ− 1)2 (1)

where β is the bias ratio, i.e., the ratio of the mean of IMERG to that of the gauged data; γ
is the ratio of the coefficient of variation between IMERG and gauged data.

Since missing and false alarm by the IMERG are two critical metrics demonstrating
its performance. The probability of detection (POD) and false alarm ratio (FAR) are also
calculated based on the number of hit events (H), the number of missed events (M), and
the number of false alarms (F). Finally, the critical success index (CSI = H/(H + M + F)) is
also calculated to demonstrate the capability of IMERG to detect precipitation occurrence.

2.3. Decomposition Scheme

The unconditional (total) MBET is calculated from the equation below.

MBET =
1

NT
∑NT

i=1(Yi − Xi), (2)

where Yi and Xi represent daily satellite and gauged rainfall rate (mm d−1), respectively.
NT represents annual total collocated samples of satellite and gauged rainfall rate. It is
natural to decompose MBET into three items as follows.

MBET =
1

NT
∑NH

h=1(Yh − Xh) +
1

NT
∑NM

m=1(Ym − Xm) +
1

NT
∑NF

f=1(Yf − Xf), (3)

where NH, NM and NF represent annual events associated with H, M, and F, respectively.
The three items in the bracket of the right-hand side of Equation (3) represent the sum
of individual MBEs associated with H, M, and F, from left to right, respectively. Note
that marginal biases associated with corrective negatives are neglected. The equation can
intuitively be transformed to Equation (4).

MBET =
NH

NT
MBEH +

NM

NT
MBEM +

NF

NT
MBEF, (4)

where MBEH, MBEM and MBEF represent annual mean MBEs associated with H, M, and F.
The ratios of NH, NM and NF to NT mean RFO associated with H, M and F, respectively.
MBET is actually the weighted average of mean MBEs associated with H, M, and F. The
weights are their RFOs. Since all items in Equation (4) vary with time, we can calculate the
derivatives using the chain rule and the following equation is then derived.

∂

∂t
(MBET) = ∑I=H,M,F

{
MBEI

∂

∂t

(
NI

NT

)
+

NI

NT

∂

∂t
(MBEI)

}
, (5)

Linear trends of all items in Equation (5) are calculated by the least-square regression.
This suggests that the MBET trend is attributable not only to changes in annual MBEs
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associated with H, M, and F, but also changes in their RFOs. It is straightforward to
discriminate between the contributions of individual components to the MBET trend using
Equation (5). The decomposition scheme is also applicable to unconditional MSE (MSET).
The investigation of the error sources is then achieved by this decomposition, the results
derived from which are presented in the following section. The threshold for the occurrence
of rainfall is 0.5 mm d−1, which accounts for the measurement uncertainties of satellite and
gauged rainfall products. Note that the method and findings here are weakly dependent
on the threshold.

3. Results

Figure 2 presents spatial distribution of four statistical metrics describing the precip-
itation detection capacity of the IMERG product. POD in the IL watershed is generally
smaller than that in other watersheds. Another interesting feature is that POD in the
Yungui Plateau is relatively smaller than the surrounding regions, which likely implies
that PMW sensor nighttime precipitation should be improved in the algorithm. In addi-
tion, this is also likely to be associated with large uncertainties of satellite remote-sensing
precipitation over the complex terrain [26–28]. Furthermore, FAR in the IL watershed is
larger than that in other watersheds, which suggests that much effort should be paid to the
improvement of precipitation retrieval over semi-arid regions [23]. Table 1 presents the
statistical metrics derived from seasonal pairs of IMERG and gauged data in nine catch-
ments. Several features merit mention. First, the performance of IMERG shows remarkable
spatial and temporal variability. Second, seasonal mean IMERG rainfall tends to be smaller
than gauged measurements, especially in the summer rainy season, which likely indicates
that IMERG underestimates convective rainfall. Third, precipitation occurrence detection
described by POD, FAR, and CSI are highly dependent on rainfall amount. Precipitation
occurrence detection is better in rainy seasons or humid regions than that in dry seasons or
semi-arid regions. On the contrary, the KGE that combines the contributions of correlation,
bias, and variability term shows smaller variation between seasons and regions than POD,
FAR, and CSI.
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Table 1. Statistical metrics derived from seasonal pairs of IMERG and gauged data in nine catchments. The metrics include
the average daily gauged rainfall (Mean_G), average daily IMERG rainfall (Mean_I), correlation coefficient (CC), root
mean square error (RMSE), percentage of detection (POD), false alarm ratio (FAR), the critical success index (CSI), and the
Kling–Gupta efficiency (KGE).

Catchment Season Mean_G Mean_I RMSE CC POD FAR CSI KGE

SL

Spring 1.23 1.06 2.67 0.75 0.54 0.24 0.46 0.67

Summer 4.31 3.90 7.34 0.72 0.65 0.11 0.60 0.64

Autumn 1.26 1.06 3.05 0.73 0.54 0.22 0.47 0.64

Winter 0.27 0.21 1.18 0.40 0.26 0.66 0.17 0.35

HH

Spring 0.94 0.84 2.46 0.77 0.52 0.19 0.46 0.64

Summer 3.90 3.70 8.43 0.69 0.61 0.13 0.56 0.61

Autumn 1.24 1.11 3.36 0.72 0.52 0.17 0.47 0.59

Winter 0.18 0.16 0.81 0.69 0.37 0.52 0.26 0.65

IL

Spring 0.42 0.47 1.73 0.55 0.48 0.40 0.36 0.51

Summer 1.20 1.11 3.05 0.60 0.55 0.19 0.49 0.53

Autumn 0.47 0.44 1.62 0.63 0.47 0.34 0.38 0.60

Winter 0.11 0.17 1.36 0.14 0.29 0.80 0.14 −0.10

YR

Spring 1.01 0.95 2.56 0.72 0.55 0.26 0.46 0.68

Summer 3.19 2.95 6.56 0.68 0.64 0.16 0.57 0.63

Autumn 1.53 1.41 3.36 0.73 0.60 0.22 0.51 0.70

Winter 0.19 0.19 0.90 0.59 0.35 0.61 0.23 0.59

HU

Spring 1.81 1.61 3.90 0.78 0.53 0.14 0.49 0.66

Summer 5.75 5.34 10.96 0.73 0.63 0.14 0.57 0.68

Autumn 1.94 1.77 4.80 0.73 0.55 0.16 0.50 0.63

Winter 0.84 0.71 2.18 0.73 0.48 0.30 0.40 0.69

YZ

Spring 3.93 3.66 6.77 0.73 0.68 0.21 0.58 0.72

Summer 6.21 5.83 10.74 0.71 0.68 0.14 0.61 0.68

Autumn 2.75 2.59 5.78 0.73 0.67 0.28 0.53 0.72

Winter 1.40 1.33 4.43 0.63 0.61 0.44 0.41 0.62

SW

Spring 1.98 1.91 4.74 0.67 0.64 0.28 0.51 0.66

Summer 6.49 5.80 9.04 0.62 0.77 0.13 0.69 0.60

Autumn 2.45 2.31 5.52 0.67 0.68 0.27 0.54 0.66

Winter 0.47 0.53 2.11 0.79 0.56 0.54 0.34 0.71

SE

Spring 5.90 5.50 8.67 0.73 0.76 0.15 0.67 0.72

Summer 7.44 7.25 12.60 0.72 0.68 0.13 0.62 0.68

Autumn 3.26 3.15 7.92 0.74 0.69 0.28 0.55 0.73

Winter 2.53 2.40 5.55 0.77 0.76 0.38 0.52 0.67

PD

Spring 5.05 4.81 10.09 0.70 0.72 0.27 0.57 0.70

Summer 8.60 8.28 14.01 0.71 0.73 0.14 0.65 0.70

Autumn 3.53 3.37 9.02 0.74 0.67 0.29 0.52 0.74

Winter 1.35 1.43 4.47 0.74 0.65 0.57 0.35 0.67

Spatial distribution of MBET and weighted MBEs of H, M, and F are shown in Figure 3.
Table 2 presents their spatial mean biases and one standard deviations in nine watersheds.
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MBET (Figure 3a) is generally not further away from zero at most stations in northern
China (SL, HU, IL, YR, and HU), while in southern China (YZ, SW, SE, and PD), a few
stations evidence relatively large MBET exceeding 1.5 mm d−1. Regional mean MBET are
within 0.10 to approximately 0.23 mm d−1 in all watersheds except in IL (inland semi-arid
area), where it is close to zero (Table 2). Positive MBET values imply that IMERG tends
to overestimate precipitation in general from the statistical view. Weighted MBEH (by
its RFO) is generally smaller than MBET, while a similar spatial distribution is observed
(correlation coefficient between them is 0.88). Small weighted MBEH values are derived
in northern China, varying from −0.05 to 0 mm d−1; while in southern China, weighted
MBEH is relatively large and occasionally comparable to MBET, indicating a considerable
contribution to MBET. For example, weighted MBEH in PD reaches 0.13, which accounts
for 81% of MBET. Weighted MBEF is an important contributor to MBET in all watersheds
(Table 2), while it is partly offset by weighted MBEM values that is relatively smaller in
magnitude. The reason for larger weighted MBEF is mostly due to more occurrence of false
alarms than missed precipitations. This is more evident in the SL watershed where the RFO
associated with missed precipitation are below 5%, while it exceeds 8% for false alarms.
Poor precipitation occurrence detection there is partly because detection of snowfall by
the PMW remote sensing is still a big challenge. Therefore, it is essential to improve the
detection accuracy of IMERG, especially to reduce the probability of false alarms.
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Table 2. The regional average and one standard deviation of total MBE (MBET) and its three
components (H, M, and F) weighted by their relative occurrence frequency in nine catchments. Note
that MBET is equal to the sum of its three components.

Catchment MBET
(mm d−1)

MBEH
(mm d−1)

MBEM
(mm d−1)

MBEF
(mm d−1)

SL 0.21 ± 0.13 0.03 ± 0.09 −0.10 ± 0.04 0.26 ± 0.06
HH 0.12 ± 0.11 −0.05 ± 0.09 −0.09 ± 0.02 0.24 ± 0.03
IL 0.00 ± 0.23 −0.05 ± 0.15 −0.10 ± 0.08 0.14 ± 0.07
YR 0.10 ± 0.16 −0.01 ± 0.11 −0.12 ± 0.06 0.22 ± 0.07
HU 0.23 ± 0.16 0.00 ± 0.13 −0.12 ± 0.03 0.32 ± 0.05
YZ 0.22 ± 0.35 0.10 ± 0.25 −0.25 ± 0.13 0.36 ± 0.09
SW 0.22 ± 0.53 0.13 ± 0.39 −0.22 ± 0.11 0.31 ± 0.12
SE 0.21 ± 0.38 0.14 ± 0.29 −0.30 ± 0.10 0.37 ± 0.04
PD 0.16 ± 0.47 0.13 ± 0.37 −0.35 ± 0.11 0.38 ± 0.10

The spatial distribution of MSET (Figure 4a) generally follows that of a rainfall rate that
decreases from north to south and from west to east. As shown in Table 3, the minimum
regional mean MSET is observed in IL, being 4.4 mm d−1, which is smaller by a factor of
100 than the maximum in PD (104.9 mm d−1). The reason for this phenomenon is that
the precipitation intensity and RFO in PD, the humid region, are far larger than that in IL,
which is located in the semi-arid region. The decomposition of MSET suggests that it is
overwhelmingly contributed to (>85%) by weighted MSEH in all watersheds, even in IL
where the smallest weighted MSEH can even account for 68% of MSET. Weighted MSEM
is also smaller than weighted MSEF, which is mostly because of larger RFO associated
with false alarms relative to missed precipitation. Furthermore, occasional false alarms of
relatively large IMERG rainfall rates also contribute to a larger MSEF. This feature is more
outstanding in HU and HH where MSFF is more than twice larger than MSEM. Weighted
MSEM and MSEF in IL contributed to MSET by 14% and 18%, respectively, indicating
that there is much room to improve IMERG rainfall detection in this inland semi-arid
region. Specifically, detection of light rainfall events should be improved and false alarms
of relatively larger rainfall events should be avoided as far as possible.

Table 3. The regional average and one standard deviation of total MSE (MSET) and the percentages
accounted for by MSE associated with H, M, and F in nine catchments.

Catchment MSET
(mm d−1)

MSEH
(mm d−1)

MSEM
(mm d−1)

MSEF
(mm d−1)

SL 19.0 ± 8.3 87.3 ± 5.6 4.3 ± 5.2 8.4 ± 2.8
HH 22.7 ± 6.7 89.1 ± 3.1 3.9 ± 1.9 6.9 ± 2.1
IL 4.4 ± 5.5 68.0 ± 13.4 14.2 ± 10.5 17.7 ± 11.6
YR 16.1 ± 7.7 85.8 ± 4.0 5.6 ± 2.8 8.5 ± 3.0
HU 41.4 ± 9.4 91.5 ± 2.0 3.0 ± 1.4 5.4 ± 1.5
YZ 54.4 ± 19.7 90.1 ± 3.1 4.0 ± 2.2 5.9 ± 2.0
SW 36.3 ± 24.3 85.1 ± 7.3 5.4 ± 2.5 9.5 ± 7.4
SE 85.6 ± 22.1 91.8 ± 1.8 3.7 ± 1.4 4.4 ± 1.3
PD 104.9 ± 44.9 91.6 ± 3.5 4.0 ± 3.1 4.3 ± 1.6
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Figure 5 presents the long-term trend of MBET in nine watersheds, which is composed
of six components according to Equation (4). All nine watersheds saw an increase in MBET
during the past twenty years, which suggests a slight deterioration of the IMERG product
from this point of view. The growing trend of MBET is generally supported by the trends
of MBEH, MBEM, and MBEF except in SW and PD. MBEM has shown a relatively stable
trend in the past 20 years. MBEF decreased from 4.2 to 3.4 in PD and decreased from 3.8
to 3.4 in SE, which would support a decreased MSET to some extent. With the help of
Equation (5), we can see that the MBET trend is not only determined by trends in MBEH,
MBEM, and MBEF that are weighted by their mean RFOs, but it is also attributable to
changes in the RFOs associated with H, M, and F that are weighted by their average MBE
values. The major feature of Figure 6, the time series of RFOs associated with H, M, F, and
C, is that IMERG tends to miss fewer precipitation events but produces more false alarms.
This feature can be found in nine watersheds but is most prominent in PD, where RFOF
increases from about 7% to 13%, whereas RFOM decreases from about 10% to 8%. Both
would be expected to produce a growing MBET as suggested by Equation (4). Regarding
MSET, the trends in nine watersheds are marginal (Figure 7). Although MSEH, MSEM, and
MSEF have improved more or less in SE, SW, and PD (especially in PD, MSEH, MSEM and
MSEF has decreased by a quarter in the past 20 years), the MSET trend is still negligible.
This is because these improvements are partially or fully offset by the negative effect of the
large increasing tendency of false alarms on the MSET trend.
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4. Discussion

Satellite remote-sensing precipitation is still a challenging task even though much
progress has been made during recent decades. With the release of new satellite precipi-
tation products, evaluation of the quality of these new products is still urgently required.
The fact that most satellite precipitation products provide more than two decades’ data is
worthy of record. Detailed assessment of long-term performance of satellite precipitation
products is critical for its usage in sciences and applications, which has been overlooked
in most previous validation studies. Validation must go beyond reporting the overall
error metrics. In this study, we use rainfall measurements at 2395 gauge in mainland
China to evaluate the latest IMERG rainfall product during the last two decades. To that
end, time-series features are used here to study the correspondence between the satellite-
derived and measured precipitation transients. We developed an improved validation
method that is capable of decomposing MBE and MSE into independent components. A
simple but effective method to decompose the trends of MBE and MSE to six individual
components are presented, which would be expected to reveal detection capability and
retrieval uncertainties, as well as their quantitative contributions to total MBE and MSE. It
was suggested that the accuracy of IMERG precipitation retrievals increases over the time
period from 2001 to 2018 by using such metrics as CC, CSI, and KGE. This is attributed
to more PMW sensors, higher resolutions and more frequency channels [17]. However, it
is shown here that the false alarm ratio increases, whereas missing rainfall rate decreases,
which leads to an increasing MBE of IMERG precipitation. There are dozens of statistical
metrics used in the validation, but no consensus is reached in the community with regard to
how many statistical metrics should be included. Generally, these metrics may suffer from
three weaknesses, i.e., interdependence, underdetermination, and incompleteness [15]. It
is suggested that the error characteristics can be fully described by the joint probability
distribution, namely, p(Y,X), which may provide more insight of satellite precipitation
retrieval uncertainties. Gauged measurements are always taken as the reference; however,
it should be kept in mind that they also suffer from many measurement uncertainties.
Furthermore, the spatial scale mismatch between satellite gridded precipitation products
and in situ gauged measurements is perhaps the least-understood topic, which needs
further discussion. Dense gauge networks are absolutely required for inquiring into the
spatial representativeness of gauge stations, which has been shown by very few previous
studies [18]. Given the fact that satellite and gauge-based rainfall products are complemen-
tary, it is of significance that they may be blended together to produce a more accurate
product, a prerequisite for which is certainly to fully understand their uncertainties via
comprehensive validation [29,30].

5. Conclusions

Based on the collocated daily IMERG and gauged data during 2000–2020, a compre-
hensive evaluation of IMERG rainfall products has been performed. A decomposition
scheme was developed to separate total MBE and MSE to their components, i.e., the cor-
responding values associated with hit, missed, and false alarms. The trends of MBE and
MSE are partly accounted for by weighted trends in MBEs associated with hit, missed,
and false alarms that are weighted by their relative occurrence; furthermore, trends in the
relative occurrence frequency of hit, missed, and false alarms weighted by their average
MBE or MSE values are also important drivers for changes in total MBE and MSE. Major
conclusions are as follows.

IMERG tends to underestimate multiannual mean precipitation in mainland China,
which is more evident in rainy seasons. The precipitation-occurrence-detection capability
of IMERG in rainy seasons and humid regions is better than that in dry seasons and
semi-arid regions.

Weighted MBEF is larger than weighted MBEM in magnitude partly as a result of more
occurrence of false alarms than missed precipitations. Total MSE is dominantly contributed
by weighted hit MSE.
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A downward tendency of missed precipitation rate was observed in nine watersheds,
while the false-alarm rate increased, thereby leading to a growing trend of total MBE.
Improvement in IMERG rainfall detection still needs improvement, especially in reducing
the impact of false alarms of precipitation.
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