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Abstract: Satellite remote sensing precipitation is useful for many hydrological and meteorological 
applications such as rainfall-runoff forecasting. However, most studies have focused on the use of 
satellite precipitation on daily, monthly, or larger time scales. This study focused on flash flood 
simulation using satellite precipitation products (IMERG) on an hourly scale in a poorly gauged 
mountainous catchment in southwestern China. Deep learning (long short-term memory, LSTM) 
was used, merging satellite precipitation and gauge observations, and the merged precipitation data 
were used as inputs for flood simulation based on the HEC-HMS model, compared with the gauged 
precipitation data and original IMERG data. The results showed that the application of original 
IMERG data used directly in the HEC-HMS hydrological model had much lower accuracy than that 
of gauged data and merged data. The simulation using the merged precipitation in HEC-HMS ex-
hibited much better performances than gauged data. The mean NSE improved from 0.84 to 0.87 for 
calibration and 0.80 to 0.84 for verification, while the lower NSE improved from 0.81 to 0.84 for 
calibration and 0.73 to 0.86 for verification, which showed that accuracy and robustness were both 
significantly improved. Results of this study indicate the advances of remote sensing precipitation 
with deep learning for flash flood forecasting in mountainous regions. It is likely that more signifi-
cant improvements can be made in flash flood forecasting by employing multi-source remote sens-
ing products and deep learning merging methods considering the impact of complex terrain. 
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1. Introduction 
Flash flood is one of the most serious natural disasters around the world. The losses 

from flash floods generally account for about 70% of all flood disasters in China, and the 
frequency and severity of flash flood disasters are expected to increase with global climate 
change [1–3]. 

Flood forecasting is very important for reducing the risk of flash floods [4,5]. Many 
studies indicated that precipitation data were one of the essential inputs for hydrological 
modeling, and about 70–80% of the uncertainties of hydrological simulations were due to 
the uncertainties in precipitation data [2,6–8]. The commonly used precipitation data are 
(1) rain gauge data, the advantage of which is providing accurate point precipitation in-
formation. However, many small catchments with complex topography are poorly 
gauged, so their spatial representativeness is deficient, which impacts the accuracy of 
flash flood forecasting [9–11]. (2) Satellite precipitation products (SPPs)—these satellite 
remote sensing technologies provide new ways for precipitation monitoring, which has 
wide spatial coverage making up for the inadequate and uneven distribution of ground 
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precipitation observation, especially for ungauged basins [12–15]. Currently, SPPs have 
become potential precipitation data sources for hydrometeorological studies [16–20]. 

However, compared with rain gauge data, SPPs have relatively poor precision. Con-
sequently, many efforts have been made recently to merge SPPs and gauge observations 
to improve the accuracy and spatial coverage of the precipitation estimates before other 
applications. Many methods have been proposed, such as the simplest linear merging 
methods [21], bias correction or residual-based methods [22,23], and optimal interpolation 
methods [24]. Most of the methods above are limited by many assumptions [21,23]. For 
example, the linear correction method needs to assume a linear relationship between the 
input and the corrected output sequence. The kriging correction method assumes that the 
precipitation series conforms to gaussian normal distribution. In recent years, machine 
learning methods, such as artificial neural networks (ANNs) and support vector ma-
chines (SVMs), have been gradually applied to the study of satellite precipitation error 
corrections. With strong self-learning ability, it has unique advantages in dealing with 
spatial heterogeneity and nonlinear relational problems without restrictive assumptions. 
Zhang et al. [25] proposed a double machine learning approach (random forest in combi-
nation with the regression models of machine learning algorithms) to merge multiple sat-
ellite-based precipitation products and gauge observations over the Chinese mainland. 

Compared with traditional machine learning, deep learning has a much stronger 
ability to better capture abstract spatial or temporal structures hidden in data [26] and has 
been used in hydrometeorological research, such as image recognition, speech recogni-
tion, natural language processing as well as precipitation forecasting [27,28]. Tao et al. [29] 
compared retrieving precipitation from satellite images using an earlier generation neural 
network system and a deep learning model, and the results showed the latter had a much 
better performance. Wu et al. [30] proposed a deep fusion model (convolutional neural 
network (CNN) combined with long short-term memory (LSTM)) to merge TRMM 3B42 
V7 satellite data, rain gauge data, and thermal infrared images by exploiting their spatial 
and temporal correlations, and the proposed model outperformed other comparative 
methods. Although deep learning models have recently been found in successful applica-
tions in merging SPPs and gauge observations, most studies have focused on assessing 
merging satellite precipitation on daily, monthly, or larger time scales [31–34], and rarely 
for flash flood simulation on an hourly scale. There is still a substantial gap between SPPs 
and gauge observations at the hourly scale [21,35,36], which may not meet the qualified 
accuracy standards and application requirements. 

In previous studies, the orographic effect on satellite precipitation accuracy has been 
reported. Studies have shown that the satellite–gauge merging results would be affected 
by complex terrain conditions [10]. Peng et al. [37] evaluated the precipitation detection 
ability of multiple satellite products in a typical agriculture area of China, and it indicated 
that the higher the elevation, the lower the performance ability. Bhuiyan et al. [38] pro-
vided a multiple machine learning technique (random forest and neural networks) based 
on error modeling to improve the transferability of the error model among complex ter-
rains over the Brahmaputra River basin. 

The objective of this study was to integrate hourly satellite precipitation data and the 
deep learning method for improving flash flood simulation in a poor-gauged mountain-
ous catchment in southwestern China. To evaluate the precipitation accuracy over the 
complex terrain of the study area, we firstly compared the remote sensing precipitation 
with gauged precipitation, and secondly, remote sensing precipitation and gauge obser-
vations were merged by the deep learning method for flash flood simulation, and thirdly, 
precipitation was further validated by flood simulation accuracy reversely. The rest of the 
paper is arranged as follows. Materials and methods are detailed in Sections 2 and 3, 
where the study area, data, models, and evaluation criteria are described. Sections 4 and 
5 present the obtained results and discussions. Finally, in Section 6, the main conclusions 
and suggestions for future studies are provided. 
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2. Materials 
2.1. Study Area 

The Shouxi River is a small tributary of the Min River (in Sichuan Province), which 
is a typical mountainous catchment. The Shouxi catchment covers an area of 632 km2, and 
the length of the main channel is 56 km. It lies between 102°02′–103°30′ E longitude and 
30°50′–31°03′ N latitude and is dominated by a humid subtropical climate (Figure 1). The 
annual precipitation is 1200–1900 mm, and the annual temperature is 10–20 °C. Landcover 
is dominated by shrubs. The average elevation is 2174.8 m, and the average river slop is 
31.4° (Table 1). 

The Shouxi River is located in Wenchuan County, where the 8.2 magnitude earth-
quake occurred in 2008. Due to the severe earthquake, secondary disasters are more likely 
to occur after rainstorms and flash floods, which may cause more serious threats to the 
local economy, social stability, and native lives. Flash floods happen quite frequently in 
the Shouxi River, and more than five major flash floods have happened in the past 10 
years. For example, the heavy storm event that occurred on 20 August 2019 caused a se-
vere flash flood. The storm lasted for 13 h, and the peak flow reached 1860 m3/s, resulting 
in losses of lives of close to 50, land damage of more than 300 mu, road damage of 5 km, 
and economic losses of nearly 200 million RMB. In August 2020, another major flash flood 
took place in this catchment that caused economic losses of nearly 100 million RMB yuan. 
The extreme rainfall amounts and the severity of the flood response have made this catch-
ment as a case study for several investigations on flash flood prevention [39–41]. 

 
Figure 1. (a) Location of Shouxi catchment; (b) the top view of disaster site; (c) the destroyed village after the flash flood 
event in August 2020. 
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Table 1. Physiographic parameters (catchment area, elevation, and river slope). 

Area  
(km2) 

Elevation (m) River Slope (°) 
Maximum Minimum Average Maximum Minimum Average 

600.4 4897.0 774.0 2174.8 87.2 0 31.4 

2.2. Data Set 
There are two rain gauges (Sanjiang station and Guojiaba station) and one flow gauge 

(Guojiaba station) in the Shouxi catchment. The location of the rain and flow gauges are 
shown in Figure 1a. 

2.2.1. Hydrometeorological Database 
Hourly precipitation and discharge gauge data during 2014–2020 were collected 

from local meteorological agencies (Table 2). 
The IMERG version 6 GPM-Level 3 Final Run product was employed in the study. 

IMERG data are available in https://disc.gsfc.nasa.gov/ (accessed on 23 August 2020), the 
website of the NASA Goddard Earth Sciences (GES) Data and Information Services Center 
(DISC). In the study, we employed the product from 2014 to 2020 with a temporal resolu-
tion of 0.5 h, a spatial resolution of 0.1° × 0.1° (Table 2). To maintain consistency between 
the IMERG and gauged observations, the IMERG-Final adopting coordinated universal 
time (UTM) was shifted to China Standard Time (CST, UTM + 8 h) [42]. For evaluating 
and simulating, 0.5 h IMERG-Final was aggregated to 1-h accumulations. 

Table 2. Datatype, description, and sources used in this study. 

Data Type Temporal Resolution Spatial Resolution Source Reference 
Precipitation gauge data 1 h (2014–2020) - Local meteorological agencies  

Discharge data 1 h (2014–2020) - Local meteorological agencies  

IMERG-Final data 0.5 h (2014–2020) 0.1° × 0.1° 
https://disc.gsfc.nasa.gov/ 

(accessed on 23 August 2020) 
[43] 

DEM - 30 m × 30 m 
http://www.gscloud.cn 

(accessed on 5 July 2020) 
 

Landuse - 1 km × 1 km 
https://www.resdc.cn/DOI/ 

(accessed on 5 July 2020) 
 

Soil - 1 km × 1 km FAO, HWSD [44] 

2.2.2. Physiographic Databases 
A 30 m × 30 m digital elevation model (DEM) was obtained from the Geospatial Data 

Cloud in http://www.gscloud.cn (accessed on 5 July 2020), which was used to extract 
HEC-HMS physiographic parameters such as catchment area, elevation, and river slope 
(Table 1), and perform terrain processing. 

Land use data were collected from the Resource and Environment Science and Data 
Center (https://www.resdc.cn/DOI/ (accessed on 5 July 2020)) with a resolution of 1 km. 
The sources of soil data were from FAO, Harmonized World Soil Database (HWSD). After 
processing in ArcGIS (extract and reclassify), there were five types of soil (Figure 2a), i.e., 
calcaric cambisols (CMs), eutric regosols (RGe), mollic leptosols (LPm), eutric leptosols 
(LPe), dystric cambisols (CMd), and haplic luvisols (LVh). Land use data (Figure 2b) were 
reclassified as agricultural land, mountainous forest, shrub and grassland, architectural 
land, open space, river, and water. 

https://disc.gsfc.nasa.gov/
https://disc.gsfc.nasa.gov/
http://www.gscloud.cn/
http://www.gscloud.cn/
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Figure 2. (a) Soil types and (b) landuse in the Shouxi catchment. 

3. Methodology 
In this study, three precipitation input schemes were designed based on satellite pre-

cipitation data and deep learning for solving ungauged precipitation data in the upper 
reaches of the Shouxi catchment: scheme 1—inputting the gauged precipitation data 
(Gauge) as the benchmark for comparison; scheme 2—inputting the original IMERG data 
(IMERG-original); scheme 3—inputting Gauge merged with IMERG data (Gauge-
IMERG) (in Section 3.1) into the model for flood simulation improvement. 

3.1. LSTM-Based Satellite-Gauge Merging Method 
LSTM network is one of the deep learning techniques that shows a great ability for 

learning from sequential data by considering information selections and long-term de-
pendencies. LSTM can capture highly complex data distributions through memory units, 
which are composed of a forget gate, an input gate, and an output gate. The addition of 
the memory unit in the hidden layer enables the LSTM to learn the state characteristics of 
the long-period sequence data, making the memory information in the time series con-
trollable, thereby solving the notorious problem of the exploding or vanishing recurrent 
neural network (RNN) gradient. 

Figure 3 presents the framework of the LSTM-based methods used to merge SPPs 
and gauge observations. The observed satellite data of the 5th and 6th grid (corresponding 
to gauge observations downstream of the catchment) at time t and the 4th and 9th grid 
(represent upstream precipitation) at time (t − 1) were normalized by the max–min 
method and input into LSTM (Figure 3). Then, the forward propagation equations of the 
present LSTM-based model could be summarized as the following: 

 ft = σ(Ufxt + Wfht-1 + bf) (1) 

  σ(x) =
1

1 + e−x (2) 

   it= σ(Uixt + Wiht-1+bi) (3) 

  c̅t = tanh(Uc̅xt + Wc̅ht-1 + bc̅) (4) 

  tanh(x)  =
ex  −  e−x

ex + e−x  (5) 

ct = ft⨀ct-1 + it⨀c�t (6) 

  ot = σ(Uoxt + Woht-1 + bo) (7) 

  ht = ot⨀tanh(ct) (8) 
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   yt = Wdht + bd (9) 

where ft, it, and ot are, respectively, the forget, input, and output gates; σ is the sigmoid 
activation function; U is the rectified linear unit; Ws are network weights; bs are bias pa-
rameters; ct represents the states of memory cells; ⨀ denotes pointwise multiplication; ht 

represents hidden states; yt is the predicted output, which is compared to satellite obser-
vations. 

 
Figure 3. Framework of the LSTM−based methods used to merge SPPs and gauge observations: PG(i),t is gauge precipita-
tion; PS(i),t is satellite precipitation; PSG(i),t is simulated gauge precipitation; PSS(i),t is simulated satellite precipitation; i is the 
location of observation; for gauge observations, i represents Guojiaba/Sanjiang; for satellite observations, i represents the 
grid number marked in Figure 4. 
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Figure 4. Distribution of grid networks and gauged/merged precipitation. 

(1) Parameter Setting 
Hidden layer number, neuron number, and training times are the main impact fac-

tors of the LSTM training. Although increasing the number of hidden layers of the neural 
network can improve convergence accuracy, Villiers and Barnard [45] showed that the 
neural network consisting of two hidden layers had poor robustness and low convergence 
accuracy. Hornik et al. [46] proved that a single hidden layer neural network with enough 
neurons could complete any measurable functional relationship from input data to output 
data and achieve the desired accuracy. Therefore, the initial settings of LSTM in the re-
search were as follows: the hidden layer is 1 layer, the hidden layer contains 10 neurons, 
the learning rate is 0.0005, and the number of training times is 10. The simulated satellite 
precipitation process would be adjusted by changing the number of neurons in the hidden 
layer (10, 20, 30, 40, 60, 80, 100, 120, and 150) and training times (10, 20, 30, 40, 50, 100, 150, 
200, and 300). 

(2) Training and Validation 
In the study, the gauge observations were subdivided into two parts (i.e., 70% and 

30%); one was used as the training dataset, while the other was the validation dataset. R2 
was used to evaluate the predicted results. When the number of neurons was 100 and the 
number of training times was 200, the R2 of training (calibration) and verification reached 
0.89 and 0.81 (Figure 5), which showed the best relationship between the observed satellite 
data and the simulated satellite data at 4th and 9th grid. 

(3) Output Merged Data 
Finally, Gauge observed data of Guojiaba and Sanjiang station at time t and the 4th 

and 9th grid at time (t − 1) were input into the adjusted LSTM-based model, thus generat-
ing merged data at the 4th and 9th grid. 
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Figure 5. Effects of neuron numbers and training times adjustment on simulation results. 

3.2. Hydrological Model 
In this study, a physically based semi-distributed Hydrologic Engineering Center’s 

Hydrologic Modelling System (HEC-HMS) was used. It was designed by the US Army 
Corps of Engineers in 1998 and has been applied for flood simulations in a multitude of 
scientific applications [47,48]. The main idea of HEC-HMS modeling is to, firstly, build a 
digital river watershed relying on HEC-GeoHMS, and then import the digital river water-
shed into the model. By setting and debugging four model components (basin models, 
meteorological model, control specifications, and time series data), the calculation of rain-
fall-runoff simulation can be completed. 

3.2.1. Preprocessing 
The HEC-GeoHMS is designed to process geospatial data and create input files for 

the HEC-HMS model under a GIS environment [49,50]. In this study, the HEC-GeoHMS 
was used to calculate DEM data, delineate sub-basins, and construct the river network of 
the catchment. All hydrological elements were connected to the network in order to model 
the relationship between precipitation and flow. Figure 6 shows that the Shouxi catchment 
was divided into 11 sub-basins, depending on the characteristics of land use, soil, and the 
DEM. 

 
Figure 6. Catchment subdivision of Shouxi catchment. 
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3.2.2. Model Setup 
The HEC-HMS model has four model components: basin model, meteorological 

model, control specifications, and time series data. 

(1) Basin Model 
The basin model has a set of hydrological modeling options, i.e., seven types of pre-

cipitation loss, seven types of direct runoff (transform), five types of baseflow methods, 
and eight types of routing methods [51,52]. Based on the characteristics of the Shouxi 
catchment, we used methods of the SCS curve number, SCS unit hydrograph, recession, 
and Muskingum to simulate the flood discharge. Figure 7 presents the main parameters 
of the basin model. The curve number (CN) is a physical parameter determined by soil 
types, land uses, and the antecedent moisture condition (AMC) of each sub-basin, etc. [51]. 
It was calculated for each sub-basin by the Generate CN Grid tool of the HEC-GeoHMS. 
The lag time (tlag) depended on CN and used the CN lag method to estimate. The initial 
discharge of baseflow (Q0) and the recession index (k) were based on the process of ob-
served runoff. The travel time K was calculated by the TR-55 method, and the degree of 
storage (x) was assumed 0.47 by trial and error [47]. 

(2) Meteorological Model 
The meteorological model holds information related to precipitation data. In this pa-

per, three kinds of precipitation data, Gauge, IMERG-original, and Gauge-IMERG, were 
used as input for the HEC-HMS model to simulate the flash flood at the Shouxi catchment. 

(3) Control Specifications 
Control specifications are used to set the timing of the simulation to use in the model, 

such as the initial time and terminal time of a storm, what type of time interval (second, 
minute, hour, or day). In this study, we used hourly time steps for flash flood simulating. 

(4) Time Series Data 
Finally, the time series data component contains parameters or boundary conditions 

for basin and meteorological models. The main time series data used for this study were 
three kinds of precipitation data, observed stream flow, and different basin characteristics 
resulting from the HEC-GeoHMS process. 
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Figure 7. Methodology used for HEC-HMS model for the research. 

3.2.3. Model Calibration and Validation 
The model was calibrated by observed stream flow. Optimization trials were imple-

mented to calibrate the parameters so as to improve the calibration results the HEC-HMS 
model can achieve in terms of either manual or automated calibration (such as univariate 
gradient optimization) [53]. We used a combination of the two calibration methods. In this 
study, the curve number (CN) in the SCS curve number method and the lag time (tlag) in 
the SCS unit hydrograph were adjusted to the best possible match for the observed stream 
flow in terms of peak value/time and shape of the hydrograph. The model calibration was 
performed with the objective function of the peak-weighted root mean square error 
(PWRMS). 

For validation, it is the process of testing model capability to simulate observed data 
with acceptable accuracy. Throughout this process, calibrated model parameters must be 
kept constant. In this study, the model was calibrated for 6 years (2014–2018) and 2019–
2020 for validation. 

3.2.4. Model Evaluation 
The observed hourly precipitation and discharge data from 2014 to 2020 were used 

for simulation. A total of 20 flash flood events in 2014–2020 were chosen for calibrating 
and validating the HEC-HMS model, with data from 2014–2018 for calibration and 2019–
2020 for validation. 

Nash–Sutcliffe efficiency (NSE), relative bias (BIAS), and root mean square error 
(RMSE) were used to evaluate rainfall–runoff simulation process results. The error of peak 
discharge (EPD) was used to assume the ability of the model to simulate peak discharge, 
and the max of all peak discharge in an event was used as an indicator. The ideal values 
for NSE, BIAS, RMSE, and EPD are 1, 0, 0, 0, respectively. All functions are as follow: 

    NSE = 1 −
∑ (QS,i − QG,i)

2n
i=1

∑ (QG,i − Q�G)2n
i=1

 (10) 
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 BIAS = 
∑ (QS,i − QG,i)

n
i=1

n
  (11) 

 𝑅𝑅MSE = �
∑ (QS,i − QG,i)

2n
i=1

n
  (12) 

 EPD = 
QS,t − QG,t

QG,t
 × 100%  (13) 

where 𝑄𝑄𝑆𝑆 is the simulated discharge at time t, 𝑄𝑄𝐺𝐺  is the gauged discharge at time t, and 
n is time steps in a given event. 

4. Results 
4.1. Accuracy Evaluation of Satellite Precipitation 

The accuracy of satellite precipitation is evaluated. Figure 8 shows the scatter plots 
of IMERG versus the gauged precipitation at Guajiaba and Sanjiang stations. IMERG at 
Guojiaba and Sanjiang stations both show large spread at an hourly resolution with R2 = 
0.14 and 0.12. In Table 3, the correlation coefficient (CC) is unsatisfactory, with 0.36 and 
0.51 at two grids. The IMERG data show overestimation according to RMSE and BIAS 
(Table 3). 

Table 3. Summary of accuracy evaluation of IMERG products at Guojiaba station and Sanjiang sta-
tion. 

Station 
Evaluation Criteria 

CC RMSE BIAS 
Guojiaba 0.36 1.45 0.09 
Sanjiang 0.51 1.58 0.1 

 
Figure 8. Scatterplots of ground-observed precipitation versus satellite-observed precipitation from 
IMERG products at Guojiaba station and Sanjiang station. 

4.2. Overall Performance of Different Precipitation Data for Flood Simulation 
The model driven by gauged precipitation is used as the benchmark for comparison. 

The results show that the mean NSE using gauged precipitation data is 0.84 for calibration 
and 0.80 for validation (Figure 9 and Table 4), which has an acceptable capability to sim-
ulate flood discharge. However, the simulated discharge in some events is in poor agree-
ment with the observed duo to ungauged data upstream of the catchment (as discussed 
in Section 5.1); for example, the event in 07/24/2016 (NSE = 0.7) and 08/16/2020 (NSE = 0.64) 
shown in Table 5. 



Remote Sens. 2021, 13, 5083 12 of 19 
 

 

Table 4. Evaluation criteria for 20-event flood simulations. 

Statistical Indicators 
Gauge IMERG-Original Gauge-IMERG 

Calibration Validation Calibration Validation Calibration Validation 

NSE 

Mean 0.84 0.80 −1.22 −1.33 0.87 0.84 
Lower quartile 0.81 0.72 −2.31 −0.13 0.86 0.75 

Median 0.88 0.81 0.64 0.16 0.89 0.88 
Upper quartile 0.91 0.86 0.83 0.57 0.92 0.90 

Range [0.65,0.95] [0.64,0.95] [−9.72,0.94] [−11.26,0.94] [0.7,0.94] [0.71,0.97] 

RMSE 
(m3/s) 

Mean 17.84 46.83 52.40 116.95 19.04 41.67 
Lower quartile 8.14 25.28 19.58 50.39 10.47 27.92 

Median 11.01 36.87 34.59 91.48 11.51 35.68 
Upper quartile 19.51 63.34 50.71 134.83 23.74 48.59 

Range [4.54,51.75] [24.07,89.64] [6.68,194.71] [33.39,323.31] [4.26,61.37] [19.85,83.14] 

BIAS 
(%) 

Mean 0.2% −4.8% −7.6% 0.5% −0.9% 1.3% 
Lower quartile −0.5% −7.8% −13.1% −20.9% −2.5% −0.7% 

Median −0.1% −4.5% −2.5% 0.2% −0.7% 2.5% 
Upper quartile 0.9% −2.0% 5.5% 14.5% −0.2% 3.4% 

Range [−3.0%,3.1%] [−9.3%,−0.1%] [−57.4%,19.5%] [−65.2%,81.2%] [−3.8%,4.3%] [−10.2%,11,1%] 

EPD 
(%) 

Mean −0.6% 1.4% 20.5% 14.0% −7.8% −6.9% 
Lower quartile −5.9% −13.5% −6.3% −17.2% −8.3% −15.8% 

Median 1.4% −0.6% 6.0% −2.0% −5.3% −1.9% 
Upper quartile 4.6% 14.2% 25.2% 42.1% −2.7% 3.4% 

Range [−14.9%,12.8%] [−16.0%,25.5%] [−21.5%,117.7%] [−62.3%,112.3%] [−26.0%,4.4%] [−41.1%,19.8%] 

Table 5. Results of 20-event flood simulations in the Shouxi catchment. 

Events 
NSE RMSE (m3/s) BIAS (%) EPD (%) 

Gauge 
IMERG-
Original 

Gauge-
IMERG 

Gauge 
IMERG-
Original 

Gauge-
IMERG 

Gauge 
IMERG-
Original 

Gauge-
IMERG 

Gauge 
IMERG-
Original 

Gauge-
IMERG 

09/12/2014 0.81 0.46 0.80 10.62 19.58 11.51 −1.5% 19.2% −3.8% 3.6% −21.5% 0.3% 
09/22/2015 0.77 0.75 0.90 6.50 6.68 4.26 0.8% −2.5% −0.5% 1.4% 3.5% −3.8% 
07/14/2016 0.93 0.94 0.94 11.01 10.05 10.47 0.2% 5.5% −3.8% 4.6% −8.0% 1.8% 
07/24/2016 0.70 −5.92 0.92 8.14 40.65 4.49 3.1% −0.5% 4.3% 1.8% 74.7% −5.3% 
07/26/2016 0.88 −9.72 0.80 20.85 194.71 26.33 −3.0% −57.4% 1.0% −14.9% 117.7% −25.1% 
08/04/2017 0.95 0.51 0.93 7.85 35.31 13.83 3.0% −20.6% 0.9% −1.7% 14.5% −8.3% 
08/25/2017 0.91 0.75 0.88 19.51 34.59 23.74 2.1% 8.2% −1.3% 11.2% 22.2% −17.9% 
08/28/2017 0.89 0.83 0.86 47.23 66.20 61.37 0.9% −12.2% −0.7% −14.7% 1.5% −26.0% 
07/09/2018 0.84 0.64 0.92 15.54 22.68 10.70 −0.5% −13.1% −0.4% 6.4% 25.2% 4.4% 
07/10/2018 0.89 −2.31 0.88 4.54 24.48 4.64 −0.1% 19.5% −0.2% −0.4% −17.0% −2.7% 
07/11/2018 0.93 −4.50 0.91 19.01 167.38 21.05 −0.1% −43.5% −3.5% −5.9% 53.4% −7.8% 
07/19/2018 0.65 0.84 0.70 9.45 8.18 10.90 −1.9% −2.8% −2.5% 12.8% 6.0% −3.6% 
07/20/2018 0.82 0.85 0.89 51.75 50.71 44.16 −0.1% 1.5% −1.0% −11.9% −6.3% −7.8% 
08/21/2019 0.81 0.16 0.88 41.58 91.48 35.68 −6.8% −15.9% 2.5% −14.5% 56.2% −1.9% 
08/22/2019 0.88 0.36 0.91 24.07 59.82 22.71 −0.1% 28.1% 2.7% −0.6% −26.5% 7.4% 
06/26/2020 0.95 −0.32 0.97 24.84 131.28 19.85 −1.5% 81.2% 0.1% −12.6% −62.3% −4.0% 
08/07/2020 0.76 −11.26 0.71 36.87 323.31 49.68 −8.9% −65.2% 11.1% −16.0% 112.3% −41.1% 
08/12/2020 0.84 0.77 0.78 25.71 33.39 33.12 −2.5% 0.2% 4.1% 4.9% −2.0% −27.7% 
08/16/2020 0.64 0.05 0.89 85.09 138.37 47.50 −9.3% −25.9% −1.4% 25.0% 27.9% −0.6% 
08/31/2020 0.69 0.94 0.73 89.64 40.96 83.14 −4.5% 0.9% −10.2% 23.4% −7.8% 19.8% 

The results show that the IMERG-original has worse performance in predicting the 
flood. It is observed that the LSTM model is unable to capture the flash flood, as a negative 
NSE value is predicted. The mean NSE is −1.22 for calibration and −1.33 for validation 
(Figure 9 and Table 4). Results indicate that precipitation errors are further propagated to 
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rainfall–runoff simulations, leading to much lower accuracy than using gauged precipita-
tion to forecast (Figure 9 and Table 4). 

The results of using Gauge-IMERG data exhibit much better performances. The mean 
NSE improves from 0.84 to 0.87 for calibration and 0.80 to 0.84 for verification, while the 
lower NSE from 0.81 to 0.84 for calibration and 0.73 to 0.86 for verification (Figure 9 and 
Table 4). The same results are also observed in RMSE, BIAS, and EPD (Figure 9), which 
illustrate that the accuracy and robustness are both significantly improved. 

4.3. Performance Assessment of Typical Flood Events Simulation 
We choose the events of 07/24/2016 and 08/16/2020 as two typical flood events. The 

event of 07/24/2016 represents the most common single-peak flood process, and the event 
of 08/16/2020 represents multi-peak and major floods. Figure 10 is the simulation results 
of two typical flood events using three precipitation datasets. We can see that, in the flood 
event 07/24/2016, the simulation of Gauge-IMERG outperforms that of the other two, with 
the NSE rising from 0.7/−5.92 for the other two to 0.92 (Table 6). The errors of time to the 
peak discharge simulation using merged data are 0 h, which also show a better perfor-
mance than that of using the other two data. The simulation of peak discharge (EPD) using 
merged precipitation is much better than that using original data (74.7% and −5.3%, re-
spectively). A similar improvement can also be observed in the event of 08/16/2020. The 
NSE is improved from 0.64/0.05 for the other two to 0.89 (Table 6). The RMSE from the 
merged precipitation is 37.59 m3/s and 90.87 m3/s less than that from the original data and 
gauged data, respectively. The simulation of peak discharge (EPD) using merged precip-
itation is improved from 25.0%/27.9% to −0.6%. The results exhibit that the LSTM-based 
merging method has a better performance for flash flood simulation. 

 
Figure 9. Statistical indices of three precipitation inputs (Gauge, IMERG−original, and Gauge−IMERG): (a) NSE; (b) RMSE; 
(c) BIAS; (d) EPD for calibration (C) and validation (V). 
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Figure 10. Flood discharge simulation by using four precipitation datasets for two typical events (the events of 07/24/2016 
(a) in calibration and 08/16/2020(b) in validation). 

Table 6. Statistical indices of the event in 07/24/2016 (the actual peak discharge = 100 m3/s, time to peak = 9 h) and 
08/16/2020 (the actual peak discharge = 593 m3/s, time to peak = 17 h). 

Events 
Precipitation  

Inputs 

Error of Time 
to Peak 

(h) 

Peak Disch  
(m3/s) 

NSE 
RMSE 
(m3/s) 

BIAS EPD 

07/24/2016 
Gauge 1 101.8 0.70 8.14 3.1% 1.8% 

IMERG-origin 6 174.7 −5.92 40.65 −0.5% 74.7% 
Gauge-IMERG 0 94.7 0.92 4.49 4.3% −5.3% 

 Gauge 0 741.3 0.64 85.09 −9.3% 25.0% 

08/16/2020 
IMERG-origin 0 758.7 0.05 138.37 −25.9% 27.9% 
Gauge-IMERG 1 589.7 0.89 47.50 −1.4% −0.6% 

5. Discussion 
5.1. Validating the LSTM-Based Satellite-Gauge Merging Method 

The Gauge-IMERG input in HEC-HMS shows much better performances because it 
improves the spatial distribution, which was made despite the lack of precipitation data 
upstream of the Shouxi catchment. Figure 11 shows the differences in the spatial precipi-
tation distribution between gauged precipitation (a)/merged precipitation (b) in the event 
of 08/16/2020. The areal precipitation of upstream based on gauged data was calculated 
by the Thiessen Polygon, the same as the gauged precipitation at Sanjiang station (136 
mm), due to lack of observation in the upper reaches of the Shouxi catchment. However, 
a significant difference in the distribution of precipitation is shown when using the 
merged data. The precipitation upstream is much lower than downstream in the event of 
08/16/2020; that is, the precipitation is 84.4 mm upstream, 50 mm less than Gauge (136 
mm) (Table 7). 
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Figure 11. The spatial precipitation distribution of gauged precipitation (a)/merged precipitation (b) in the event of 
08/16/2020. 

The difference in precipitation leads to a difference in flood simulation. The spatial 
distribution information of precipitation has a very important impact on the formation of 
runoff in a physical sense, especially the formation of peak discharge [54,55]. HEC-HMS, 
as a semi-distributed hydrological model, is driven by distributed precipitation and so it 
can simulate the runoff of each sub-catchment. Figure 12a,b is the flood simulation of sub-
catchment W20 located upstream and W120 downstream. For W20, the results show a 
great distinction between the discharge process simulated by the two schemes, especially 
in peak discharge (Figure 12a), because of the differences in precipitation upstream (as 
shown in Figure 11). The peak discharge of Gauge is 361.3 m3/s, which is much larger than 
that of Gauge-IMERG (189.8 m3/s), while the peak time is a 2-h difference. With respect to 
downstream (W120), the two simulated flow processes are quite similar, and the peak 
discharge is 128 and 131.9 m3/s, respectively (Table 7). The peak time of Gauge-IMERG, 
affected by the upstream, is 1 h behind Gauge. These observations are why the results in 
Figure 10b show that the simulated discharge is overestimated by using the Gauge data 
and improved by using the merged data. 

 
Figure 12. Simulated hydrographs of sub-catchment W20 (a) and W120 (b) in the event of 08/16/2020, respectively. 
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Table 7. Comparison between Gauge and Gauge-IMERG on the precipitation amount and peak discharge/time in the 
event of 08/16/2020. 

Type of Inputs 
Precipitation Amount (mm) 

Discharge 
Peak Discharge (m3/s) Peak Time (h) 

Upstream Downstream Upstream Downstream Upstream Downstream 
Gauge 136 128 361.3 184.7 16 16 

Gauge-IMERG 84.4 131.9 189.8 205.1 18 17 

5.2. Uncertainties of Satellite Precipitation Products (SPPs) over Complex Terrains 
Precipitation gauges are usually sparse in many catchments and generally situated 

in lowlands under accessibility considerations, especially in regions with complex ter-
rains; thus, underrepresenting precipitation may occur in highlands [32]. SPPs offer a po-
tentially viable solution to observation coverage problems and hydrometeorological ap-
plication in complex terrain areas. However, the uncertainty of SPPs would be increased 
over the regions with complex topography, and precipitation estimates can be associated 
with significant error due to variability and uncertainty introduced by orographic effects. 
In prior studies, Mei et al. [56] investigated the error characteristics of satellite precipita-
tion products and their error propagation in flow simulations for a range of mountainous 
basin scales. Results suggested a positive correlation between systematic error and basin 
elevation. Derin et al. [32] evaluated the performance of four SPPs over a typical complex 
topography that exerts strong controls on the precipitation regime. Results indicated the 
evaluated SPPs generally had difficulty in representing the precipitation gradient normal 
to the orography, and precipitation was underestimated during winter. In addition, com-
plex terrain conditions would affect the satellite–gauge merging results. Zhang et al. [25] 
proposed a novel double method and applied it over mainland China; the results showed 
that the proposed method performed better than the other method in most sub-regions 
except the Tibetan Plateau (QTP), which, with a complex terrain, showed worse perfor-
mance using the proposed method. In summary, performances of SPPs vary significantly 
over topographically complex regions and are complicated by significant elevation 
change. Therefore, the effects of complex terrain on SPP estimates need more considera-
tion. 

In this paper, the Shouxi catchment consists of a highly complex terrain with eleva-
tion differences greater than 4000 m and slopes ranging from 0° to 60°. Although the inte-
gration of satellite precipitation data and deep learning fixes the issues of lack of upstream 
data and improves the accuracy of flood forecasting to some extent, the impact of complex 
terrain still needs further investigation of the satellite–gauge merging method in the fu-
ture. Geographical and topographical covariates, such as elevation, soil type, land type, 
and soil moisture [38], need to be considered as input variables for merging models based 
on deep learning. 

6. Conclusions 
Satellite remote sensing precipitation has a high spatio-temporal resolution but needs 

to be assessed and corrected/merged before being used in hydrological research. In this 
study, the performance of the IMERG product for a poor-gauged mountainous catchment 
in China was assessed, and deep learning was used for precipitation data merging. The 
merged precipitation data, compared with the gauged data and original IMERG data, 
were used as inputs for flood simulation based on the HEC-HMS model. The results 
showed that the HEC-HMS flood discharge simulation using merged precipitation data 
exhibited much better performances, with NSE greatly improved. The results indicated 
the good performance of the method proposed in this study and also revealed a high po-
tential for the application of IMERG in other mountainous and data-sparse watersheds in 
the world. It is suggested that future work should focus on employing multi-source 

http://www.baidu.com/link?url=nRyE2Fj9blY49WexikDhhLd_sKJrKC5OVxdNw9vurpwhbqWDxKFfGI1QtlPgjyrtpTH-4UXAvgkAOIuU4j0qIvART98ttQ7QEvHCjYE37Tq
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remote sensing products and deep learning merging methods considering the impact of 
complex terrains to further improve flash flood forecasting. 
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