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Abstract: Satellite remote sensing precipitation is useful for many hydrological and meteorological
applications such as rainfall-runoff forecasting. However, most studies have focused on the use
of satellite precipitation on daily, monthly, or larger time scales. This study focused on flash flood
simulation using satellite precipitation products (IMERG) on an hourly scale in a poorly gauged
mountainous catchment in southwestern China. Deep learning (long short-term memory, LSTM)
was used, merging satellite precipitation and gauge observations, and the merged precipitation data
were used as inputs for flood simulation based on the HEC-HMS model, compared with the gauged
precipitation data and original IMERG data. The results showed that the application of original
IMERG data used directly in the HEC-HMS hydrological model had much lower accuracy than
that of gauged data and merged data. The simulation using the merged precipitation in HEC-HMS
exhibited much better performances than gauged data. The mean NSE improved from 0.84 to 0.87
for calibration and 0.80 to 0.84 for verification, while the lower NSE improved from 0.81 to 0.84 for
calibration and 0.73 to 0.86 for verification, which showed that accuracy and robustness were both
significantly improved. Results of this study indicate the advances of remote sensing precipitation
with deep learning for flash flood forecasting in mountainous regions. It is likely that more significant
improvements can be made in flash flood forecasting by employing multi-source remote sensing
products and deep learning merging methods considering the impact of complex terrain.

Keywords: IMERG; satellite precipitation; flash flood forecasting; HEC-HMS; deep learning

1. Introduction

Flash flood is one of the most serious natural disasters around the world. The losses
from flash floods generally account for about 70% of all flood disasters in China, and the
frequency and severity of flash flood disasters are expected to increase with global climate
change [1–3].

Flood forecasting is very important for reducing the risk of flash floods [4,5]. Many
studies indicated that precipitation data were one of the essential inputs for hydrological
modeling, and about 70–80% of the uncertainties of hydrological simulations were due
to the uncertainties in precipitation data [2,6–8]. The commonly used precipitation data
are (1) rain gauge data, the advantage of which is providing accurate point precipitation
information. However, many small catchments with complex topography are poorly
gauged, so their spatial representativeness is deficient, which impacts the accuracy of
flash flood forecasting [9–11]. (2) Satellite precipitation products (SPPs)—these satellite
remote sensing technologies provide new ways for precipitation monitoring, which has
wide spatial coverage making up for the inadequate and uneven distribution of ground
precipitation observation, especially for ungauged basins [12–15]. Currently, SPPs have
become potential precipitation data sources for hydrometeorological studies [16–20].
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However, compared with rain gauge data, SPPs have relatively poor precision. Con-
sequently, many efforts have been made recently to merge SPPs and gauge observations
to improve the accuracy and spatial coverage of the precipitation estimates before other
applications. Many methods have been proposed, such as the simplest linear merging
methods [21], bias correction or residual-based methods [22,23], and optimal interpola-
tion methods [24]. Most of the methods above are limited by many assumptions [21,23].
For example, the linear correction method needs to assume a linear relationship between
the input and the corrected output sequence. The kriging correction method assumes
that the precipitation series conforms to gaussian normal distribution. In recent years,
machine learning methods, such as artificial neural networks (ANNs) and support vector
machines (SVMs), have been gradually applied to the study of satellite precipitation error
corrections. With strong self-learning ability, it has unique advantages in dealing with
spatial heterogeneity and nonlinear relational problems without restrictive assumptions.
Zhang et al. [25] proposed a double machine learning approach (random forest in com-
bination with the regression models of machine learning algorithms) to merge multiple
satellite-based precipitation products and gauge observations over the Chinese mainland.

Compared with traditional machine learning, deep learning has a much stronger
ability to better capture abstract spatial or temporal structures hidden in data [26] and has
been used in hydrometeorological research, such as image recognition, speech recognition,
natural language processing as well as precipitation forecasting [27,28]. Tao et al. [29]
compared retrieving precipitation from satellite images using an earlier generation neural
network system and a deep learning model, and the results showed the latter had a much
better performance. Wu et al. [30] proposed a deep fusion model (convolutional neural
network (CNN) combined with long short-term memory (LSTM)) to merge TRMM 3B42 V7
satellite data, rain gauge data, and thermal infrared images by exploiting their spatial and
temporal correlations, and the proposed model outperformed other comparative methods.
Although deep learning models have recently been found in successful applications in
merging SPPs and gauge observations, most studies have focused on assessing merging
satellite precipitation on daily, monthly, or larger time scales [31–34], and rarely for flash
flood simulation on an hourly scale. There is still a substantial gap between SPPs and gauge
observations at the hourly scale [21,35,36], which may not meet the qualified accuracy
standards and application requirements.

In previous studies, the orographic effect on satellite precipitation accuracy has been
reported. Studies have shown that the satellite–gauge merging results would be affected by
complex terrain conditions [10]. Peng et al. [37] evaluated the precipitation detection ability
of multiple satellite products in a typical agriculture area of China, and it indicated that
the higher the elevation, the lower the performance ability. Bhuiyan et al. [38] provided a
multiple machine learning technique (random forest and neural networks) based on error
modeling to improve the transferability of the error model among complex terrains over
the Brahmaputra River basin.

The objective of this study was to integrate hourly satellite precipitation data and the
deep learning method for improving flash flood simulation in a poor-gauged mountainous
catchment in southwestern China. To evaluate the precipitation accuracy over the complex
terrain of the study area, we firstly compared the remote sensing precipitation with gauged
precipitation, and secondly, remote sensing precipitation and gauge observations were
merged by the deep learning method for flash flood simulation, and thirdly, precipitation
was further validated by flood simulation accuracy reversely. The rest of the paper is
arranged as follows. Materials and methods are detailed in Sections 2 and 3, where the
study area, data, models, and evaluation criteria are described. Sections 4 and 5 present the
obtained results and discussions. Finally, in Section 6, the main conclusions and suggestions
for future studies are provided.
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2. Materials
2.1. Study Area

The Shouxi River is a small tributary of the Min River (in Sichuan Province), which
is a typical mountainous catchment. The Shouxi catchment covers an area of 632 km2,
and the length of the main channel is 56 km. It lies between 102◦02′–103◦30′ E longi-
tude and 30◦50′–31◦03′ N latitude and is dominated by a humid subtropical climate
(Figure 1). The annual precipitation is 1200–1900 mm, and the annual temperature is
10–20 ◦C. Landcover is dominated by shrubs. The average elevation is 2174.8 m, and the
average river slop is 31.4◦ (Table 1).

Figure 1. (a) Location of Shouxi catchment; (b) the top view of disaster site; (c) the destroyed village after the flash flood
event in August 2020.

Table 1. Physiographic parameters (catchment area, elevation, and river slope).

Area
(km2)

Elevation (m) River Slope (◦)

Maximum Minimum Average Maximum Minimum Average

600.4 4897.0 774.0 2174.8 87.2 0 31.4

The Shouxi River is located in Wenchuan County, where the 8.2 magnitude earthquake
occurred in 2008. Due to the severe earthquake, secondary disasters are more likely to
occur after rainstorms and flash floods, which may cause more serious threats to the local
economy, social stability, and native lives. Flash floods happen quite frequently in the
Shouxi River, and more than five major flash floods have happened in the past 10 years.
For example, the heavy storm event that occurred on 20 August 2019 caused a severe flash
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flood. The storm lasted for 13 h, and the peak flow reached 1860 m3/s, resulting in losses of
lives of close to 50, land damage of more than 300 mu, road damage of 5 km, and economic
losses of nearly 200 million RMB. In August 2020, another major flash flood took place in
this catchment that caused economic losses of nearly 100 million RMB yuan. The extreme
rainfall amounts and the severity of the flood response have made this catchment as a case
study for several investigations on flash flood prevention [39–41].

2.2. Data Set

There are two rain gauges (Sanjiang station and Guojiaba station) and one flow gauge
(Guojiaba station) in the Shouxi catchment. The location of the rain and flow gauges are
shown in Figure 1a.

2.2.1. Hydrometeorological Database

Hourly precipitation and discharge gauge data during 2014–2020 were collected from
local meteorological agencies (Table 2).

The IMERG version 6 GPM-Level 3 Final Run product was employed in the study.
IMERG data are available in https://disc.gsfc.nasa.gov/ (accessed on 23 August 2020), the
website of the NASA Goddard Earth Sciences (GES) Data and Information Services Center
(DISC). In the study, we employed the product from 2014 to 2020 with a temporal resolution
of 0.5 h, a spatial resolution of 0.1◦ × 0.1◦ (Table 2). To maintain consistency between the
IMERG and gauged observations, the IMERG-Final adopting coordinated universal time
(UTM) was shifted to China Standard Time (CST, UTM + 8 h) [42]. For evaluating and
simulating, 0.5 h IMERG-Final was aggregated to 1-h accumulations.

Table 2. Datatype, description, and sources used in this study.

Data Type Temporal
Resolution Spatial Resolution Source Reference

Precipitation gauge
data 1 h (2014–2020) - Local meteorological agencies

Discharge data 1 h (2014–2020) - Local meteorological agencies

IMERG-Final data 0.5 h (2014–2020) 0.1 × 0.1◦ https://disc.gsfc.nasa.gov/
(accessed on 23 August 2020) [43]

DEM - 30 × 30 m http://www.gscloud.cn (accessed
on 5 July 2020)

Landuse - 1 × 1 km https://www.resdc.cn/DOI/
(accessed on 5 July 2020)

Soil - 1 × 1 km FAO, HWSD [44]

2.2.2. Physiographic Databases

A 30 × 30 m digital elevation model (DEM) was obtained from the Geospatial Data
Cloud in http://www.gscloud.cn (accessed on 5 July 2020), which was used to extract
HEC-HMS physiographic parameters such as catchment area, elevation, and river slope
(Table 1), and perform terrain processing.

Land use data were collected from the Resource and Environment Science and Data
Center (https://www.resdc.cn/DOI/ (accessed on 5 July 2020)) with a resolution of 1 km.
The sources of soil data were from FAO, Harmonized World Soil Database (HWSD). After
processing in ArcGIS (extract and reclassify), there were five types of soil (Figure 2a), i.e.,
calcaric cambisols (CMs), eutric regosols (RGe), mollic leptosols (LPm), eutric leptosols
(LPe), dystric cambisols (CMd), and haplic luvisols (LVh). Land use data (Figure 2b) were
reclassified as agricultural land, mountainous forest, shrub and grassland, architectural
land, open space, river, and water.

https://disc.gsfc.nasa.gov/
https://disc.gsfc.nasa.gov/
http://www.gscloud.cn
https://www.resdc.cn/DOI/
http://www.gscloud.cn
https://www.resdc.cn/DOI/
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Figure 2. (a) Soil types and (b) landuse in the Shouxi catchment.

3. Methodology

In this study, three precipitation input schemes were designed based on satellite
precipitation data and deep learning for solving ungauged precipitation data in the upper
reaches of the Shouxi catchment: scheme 1—inputting the gauged precipitation data
(Gauge) as the benchmark for comparison; scheme 2—inputting the original IMERG data
(IMERG-original); scheme 3—inputting Gauge merged with IMERG data (Gauge-IMERG)
(in Section 3.1) into the model for flood simulation improvement.

3.1. LSTM-Based Satellite-Gauge Merging Method

LSTM network is one of the deep learning techniques that shows a great ability
for learning from sequential data by considering information selections and long-term
dependencies. LSTM can capture highly complex data distributions through memory units,
which are composed of a forget gate, an input gate, and an output gate. The addition of the
memory unit in the hidden layer enables the LSTM to learn the state characteristics of the
long-period sequence data, making the memory information in the time series controllable,
thereby solving the notorious problem of the exploding or vanishing recurrent neural
network (RNN) gradient.

Figure 3 presents the framework of the LSTM-based methods used to merge SPPs and
gauge observations. The observed satellite data of the 5th and 6th grid (corresponding
to gauge observations downstream of the catchment) at time t and the 4th and 9th grid
(represent upstream precipitation) at time (t − 1) were normalized by the max–min method
and input into LSTM (Figure 3). Then, the forward propagation equations of the present
LSTM-based model could be summarized as the following:

ft = σ
(

U f xt + W f ht−1 + b f

)
(1)

σ(x) =
1

1 + e−x (2)

it = σ(Uixt + Wiht−1 + bi) (3)

−
c t = tanh(U−

c
xt + W−

c
ht−1 + b−

c
) (4)

tanh(x) =
ex − e−x

ex + e−x (5)

ct = ft
⊙

ct−1 + it
⊙

c̃t (6)

ot = σ(Uoxt + Woht−1 + bo) (7)
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ht = ot
⊙

tanh(ct) (8)

yt = Wdht + bd (9)

where ft, it, and ot are, respectively, the forget, input, and output gates; σ is the sigmoid acti-
vation function; U is the rectified linear unit; Ws are network weights; bs are bias parameters;
ct represents the states of memory cells; � denotes pointwise multiplication; ht represents
hidden states; yt is the predicted output, which is compared to satellite observations.

Figure 3. Framework of the LSTM−based methods used to merge SPPs and gauge observations: PG(i),t is gauge precipitation;
PS(i),t is satellite precipitation; PSG(i),t is simulated gauge precipitation; PSS(i),t is simulated satellite precipitation; i is the
location of observation; for gauge observations, i represents Guojiaba/Sanjiang; for satellite observations, i represents the
grid number marked in Figure 4.
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Figure 4. Distribution of grid networks and gauged/merged precipitation.

(1) Parameter Setting

Hidden layer number, neuron number, and training times are the main impact factors
of the LSTM training. Although increasing the number of hidden layers of the neural
network can improve convergence accuracy, Villiers and Barnard [45] showed that the
neural network consisting of two hidden layers had poor robustness and low convergence
accuracy. Hornik et al. [46] proved that a single hidden layer neural network with enough
neurons could complete any measurable functional relationship from input data to output
data and achieve the desired accuracy. Therefore, the initial settings of LSTM in the research
were as follows: the hidden layer is 1 layer, the hidden layer contains 10 neurons, the
learning rate is 0.0005, and the number of training times is 10. The simulated satellite
precipitation process would be adjusted by changing the number of neurons in the hidden
layer (10, 20, 30, 40, 60, 80, 100, 120, and 150) and training times (10, 20, 30, 40, 50, 100, 150,
200, and 300).

(2) Training and Validation

In the study, the gauge observations were subdivided into two parts (i.e., 70% and
30%); one was used as the training dataset, while the other was the validation dataset. R2

was used to evaluate the predicted results. When the number of neurons was 100 and the
number of training times was 200, the R2 of training (calibration) and verification reached
0.89 and 0.81 (Figure 5), which showed the best relationship between the observed satellite
data and the simulated satellite data at 4th and 9th grid.

(3) Output Merged Data

Finally, Gauge observed data of Guojiaba and Sanjiang station at time t and the 4th and
9th grid at time (t − 1) were input into the adjusted LSTM-based model, thus generating
merged data at the 4th and 9th grid.
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Figure 5. Effects of neuron numbers and training times adjustment on simulation results.

3.2. Hydrological Model

In this study, a physically based semi-distributed Hydrologic Engineering Center’s
Hydrologic Modelling System (HEC-HMS) was used. It was designed by the US Army
Corps of Engineers in 1998 and has been applied for flood simulations in a multitude of
scientific applications [47,48]. The main idea of HEC-HMS modeling is to, firstly, build
a digital river watershed relying on HEC-GeoHMS, and then import the digital river
watershed into the model. By setting and debugging four model components (basin
models, meteorological model, control specifications, and time series data), the calculation
of rainfall-runoff simulation can be completed.

3.2.1. Preprocessing

The HEC-GeoHMS is designed to process geospatial data and create input files for the
HEC-HMS model under a GIS environment [49,50]. In this study, the HEC-GeoHMS was
used to calculate DEM data, delineate sub-basins, and construct the river network of the
catchment. All hydrological elements were connected to the network in order to model the
relationship between precipitation and flow. Figure 6 shows that the Shouxi catchment was
divided into 11 sub-basins, depending on the characteristics of land use, soil, and the DEM.

Figure 6. Catchment subdivision of Shouxi catchment.

3.2.2. Model Setup

The HEC-HMS model has four model components: basin model, meteorological
model, control specifications, and time series data.
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(1) Basin Model

The basin model has a set of hydrological modeling options, i.e., seven types of
precipitation loss, seven types of direct runoff (transform), five types of baseflow methods,
and eight types of routing methods [51,52]. Based on the characteristics of the Shouxi
catchment, we used methods of the SCS curve number, SCS unit hydrograph, recession,
and Muskingum to simulate the flood discharge. Figure 7 presents the main parameters of
the basin model. The curve number (CN) is a physical parameter determined by soil types,
land uses, and the antecedent moisture condition (AMC) of each sub-basin, etc. [51]. It was
calculated for each sub-basin by the Generate CN Grid tool of the HEC-GeoHMS. The lag
time (tlag) depended on CN and used the CN lag method to estimate. The initial discharge
of baseflow (Q0) and the recession index (k) were based on the process of observed runoff.
The travel time K was calculated by the TR-55 method, and the degree of storage (x) was
assumed 0.47 by trial and error [47].

(2) Meteorological Model

The meteorological model holds information related to precipitation data. In this
paper, three kinds of precipitation data, Gauge, IMERG-original, and Gauge-IMERG, were
used as input for the HEC-HMS model to simulate the flash flood at the Shouxi catchment.

(3) Control Specifications

Control specifications are used to set the timing of the simulation to use in the model,
such as the initial time and terminal time of a storm, what type of time interval (second,
minute, hour, or day). In this study, we used hourly time steps for flash flood simulating.

(4) Time Series Data

Finally, the time series data component contains parameters or boundary conditions
for basin and meteorological models. The main time series data used for this study were
three kinds of precipitation data, observed stream flow, and different basin characteristics
resulting from the HEC-GeoHMS process.

Figure 7. Methodology used for HEC-HMS model for the research.
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3.2.3. Model Calibration and Validation

The model was calibrated by observed stream flow. Optimization trials were imple-
mented to calibrate the parameters so as to improve the calibration results the HEC-HMS
model can achieve in terms of either manual or automated calibration (such as univariate
gradient optimization) [53]. We used a combination of the two calibration methods. In this
study, the curve number (CN) in the SCS curve number method and the lag time (tlag)
in the SCS unit hydrograph were adjusted to the best possible match for the observed
stream flow in terms of peak value/time and shape of the hydrograph. The model calibra-
tion was performed with the objective function of the peak-weighted root mean square
error (PWRMS).

For validation, it is the process of testing model capability to simulate observed data
with acceptable accuracy. Throughout this process, calibrated model parameters must be
kept constant. In this study, the model was calibrated for 6 years (2014–2018) and 2019–2020
for validation.

3.2.4. Model Evaluation

The observed hourly precipitation and discharge data from 2014 to 2020 were used for
simulation. A total of 20 flash flood events in 2014–2020 were chosen for calibrating and
validating the HEC-HMS model, with data from 2014–2018 for calibration and 2019–2020
for validation.

Nash–Sutcliffe efficiency (NSE), relative bias (BIAS), and root mean square error
(RMSE) were used to evaluate rainfall–runoff simulation process results. The error of peak
discharge (EPD) was used to assume the ability of the model to simulate peak discharge,
and the max of all peak discharge in an event was used as an indicator. The ideal values
for NSE, BIAS, RMSE, and EPD are 1, 0, 0, 0, respectively. All functions are as follow:

NSE = 1 − ∑n
i=1 (QS,i − QG,i)

2

∑n
i=1 (QG,i −

−
QG)

2 (10)

BIAS =
∑n

i=1 (QS,i − QG,i)

n
(11)

RMSE =

√
∑n

i=1 (QS,i − QG,i)
2

n
(12)

EPD =
QS,t − QG,t

QG,t
× 100% (13)

where QS is the simulated discharge at time t, QG is the gauged discharge at time t, and n
is time steps in a given event.

4. Results
4.1. Accuracy Evaluation of Satellite Precipitation

The accuracy of satellite precipitation is evaluated. Figure 8 shows the scatter plots
of IMERG versus the gauged precipitation at Guajiaba and Sanjiang stations. IMERG
at Guojiaba and Sanjiang stations both show large spread at an hourly resolution with
R2 = 0.14 and 0.12. In Table 3, the correlation coefficient (CC) is unsatisfactory, with 0.36
and 0.51 at two grids. The IMERG data show overestimation according to RMSE and BIAS
(Table 3).
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Figure 8. Scatterplots of ground-observed precipitation versus satellite-observed precipitation from
IMERG products at Guojiaba station and Sanjiang station.

Table 3. Summary of accuracy evaluation of IMERG products at Guojiaba station and Sanjiang station.

Station
Evaluation Criteria

CC RMSE BIAS

Guojiaba 0.36 1.45 0.09
Sanjiang 0.51 1.58 0.1

4.2. Overall Performance of Different Precipitation Data for Flood Simulation

The model driven by gauged precipitation is used as the benchmark for comparison.
The results show that the mean NSE using gauged precipitation data is 0.84 for calibration
and 0.80 for validation (Figure 9 and Table 4), which has an acceptable capability to simulate
flood discharge. However, the simulated discharge in some events is in poor agreement
with the observed duo to ungauged data upstream of the catchment (as discussed in
Section 5.1); for example, the event in 24 July 2016 (NSE = 0.7) and 16 August 2020
(NSE = 0.64) shown in Table 5.
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Figure 9. Statistical indices of three precipitation inputs (Gauge, IMERG−original, and Gauge−IMERG): (a) NSE; (b) RMSE;
(c) BIAS; (d) EPD for calibration (C) and validation (V).

Table 4. Evaluation criteria for 20-event flood simulations.

Statistical Indicators
Gauge IMERG-Original Gauge-IMERG

Calibration Validation Calibration Validation Calibration Validation

NSE

Mean 0.84 0.80 −1.22 −1.33 0.87 0.84
Lower quartile 0.81 0.72 −2.31 −0.13 0.86 0.75

Median 0.88 0.81 0.64 0.16 0.89 0.88
Upper quartile 0.91 0.86 0.83 0.57 0.92 0.90

Range [0.65, 0.95] [0.64, 0.95] [−9.72, 0.94] [−11.26, 0.94] [0.7, 0.94] [0.71, 0.97]

RMSE
(m3/s)

Mean 17.84 46.83 52.40 116.95 19.04 41.67
Lower quartile 8.14 25.28 19.58 50.39 10.47 27.92

Median 11.01 36.87 34.59 91.48 11.51 35.68
Upper quartile 19.51 63.34 50.71 134.83 23.74 48.59

Range [4.54, 51.75] [24.07, 89.64] [6.68, 194.71] [33.39,
323.31] [4.26, 61.37] [19.85, 83.14]

BIAS
(%)

Mean 0.2% −4.8% −7.6% 0.5% −0.9% 1.3%
Lower quartile −0.5% −7.8% −13.1% −20.9% −2.5% −0.7%

Median −0.1% −4.5% −2.5% 0.2% −0.7% 2.5%
Upper quartile 0.9% −2.0% 5.5% 14.5% −0.2% 3.4%

Range [−3.0%,
3.1%]

[−9.3%,
−0.1%]

[−57.4%,
19.5%]

[−65.2%,
81.2%]

[−3.8%,
4.3%]

[−10.2%,
11.1%]

EPD
(%)

Mean −0.6% 1.4% 20.5% 14.0% −7.8% −6.9%
Lower quartile −5.9% −13.5% −6.3% −17.2% −8.3% −15.8%

Median 1.4% −0.6% 6.0% −2.0% −5.3% −1.9%
Upper quartile 4.6% 14.2% 25.2% 42.1% −2.7% 3.4%

Range [−14.9%,
12.8%]

[−16.0%,
25.5%]

[−21.5%,
117.7%]

[−62.3%,
112.3%]

[−26.0%,
4.4%]

[−41.1%,
19.8%]
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Table 5. Results of 20-event flood simulations in the Shouxi catchment.

Events
NSE RMSE (m3/s) BIAS (%) EPD (%)

Gauge IMERG-
Original

Gauge-
IMERG Gauge IMERG-

Original
Gauge-
IMERG Gauge IMERG-

Original
Gauge-
IMERG Gauge IMERG-

Original
Gauge-
IMERG

12 September 2014 0.81 0.46 0.80 10.62 19.58 11.51 −1.5% 19.2% −3.8% 3.6% −21.5% 0.3%
22 September 2015 0.77 0.75 0.90 6.50 6.68 4.26 0.8% −2.5% −0.5% 1.4% 3.5% −3.8%

14 July 2016 0.93 0.94 0.94 11.01 10.05 10.47 0.2% 5.5% −3.8% 4.6% −8.0% 1.8%
24 July 2016 0.70 −5.92 0.92 8.14 40.65 4.49 3.1% −0.5% 4.3% 1.8% 74.7% −5.3%
26 July 2016 0.88 −9.72 0.80 20.85 194.71 26.33 −3.0% −57.4% 1.0% −14.9% 117.7% −25.1%

4 August 2017 0.95 0.51 0.93 7.85 35.31 13.83 3.0% −20.6% 0.9% −1.7% 14.5% −8.3%
25 August 2017 0.91 0.75 0.88 19.51 34.59 23.74 2.1% 8.2% −1.3% 11.2% 22.2% −17.9%
28 August 2017 0.89 0.83 0.86 47.23 66.20 61.37 0.9% −12.2% −0.7% −14.7% 1.5% −26.0%

9 July 2018 0.84 0.64 0.92 15.54 22.68 10.70 −0.5% −13.1% −0.4% 6.4% 25.2% 4.4%
10 July 2018 0.89 −2.31 0.88 4.54 24.48 4.64 −0.1% 19.5% −0.2% −0.4% −17.0% −2.7%
11 July 2018 0.93 −4.50 0.91 19.01 167.38 21.05 −0.1% −43.5% −3.5% −5.9% 53.4% −7.8%
19 July 2018 0.65 0.84 0.70 9.45 8.18 10.90 −1.9% −2.8% −2.5% 12.8% 6.0% −3.6%
20 July 2018 0.82 0.85 0.89 51.75 50.71 44.16 −0.1% 1.5% −1.0% −11.9% −6.3% −7.8%

21 August 2019 0.81 0.16 0.88 41.58 91.48 35.68 −6.8% −15.9% 2.5% −14.5% 56.2% −1.9%
22 August 2019 0.88 0.36 0.91 24.07 59.82 22.71 −0.1% 28.1% 2.7% −0.6% −26.5% 7.4%

26 June 2020 0.95 −0.32 0.97 24.84 131.28 19.85 −1.5% 81.2% 0.1% −12.6% −62.3% −4.0%
7 August 2020 0.76 −11.26 0.71 36.87 323.31 49.68 −8.9% −65.2% 11.1% −16.0% 112.3% −41.1%
12 August 2020 0.84 0.77 0.78 25.71 33.39 33.12 −2.5% 0.2% 4.1% 4.9% −2.0% −27.7%
16 August 2020 0.64 0.05 0.89 85.09 138.37 47.50 −9.3% −25.9% −1.4% 25.0% 27.9% −0.6%
31 August 2020 0.69 0.94 0.73 89.64 40.96 83.14 −4.5% 0.9% −10.2% 23.4% −7.8% 19.8%

The results show that the IMERG-original has worse performance in predicting the
flood. It is observed that the LSTM model is unable to capture the flash flood, as a
negative NSE value is predicted. The mean NSE is −1.22 for calibration and −1.33 for
validation (Figure 9 and Table 4). Results indicate that precipitation errors are further
propagated to rainfall–runoff simulations, leading to much lower accuracy than using
gauged precipitation to forecast (Figure 9 and Table 4).

The results of using Gauge-IMERG data exhibit much better performances. The mean
NSE improves from 0.84 to 0.87 for calibration and 0.80 to 0.84 for verification, while the
lower NSE from 0.81 to 0.84 for calibration and 0.73 to 0.86 for verification (Figure 9 and
Table 4). The same results are also observed in RMSE, BIAS, and EPD (Figure 9), which
illustrate that the accuracy and robustness are both significantly improved.

4.3. Performance Assessment of Typical Flood Events Simulation

We choose the events of 24 July 2016 and 16 August 2020 as two typical flood events.
The event of 24 July 2016 represents the most common single-peak flood process, and
the event of 16 August 2020 represents multi-peak and major floods. Figure 10 is the
simulation results of two typical flood events using three precipitation datasets. We can
see that, in the flood event 24 July 2016, the simulation of Gauge-IMERG outperforms that
of the other two, with the NSE rising from 0.7/−5.92 for the other two to 0.92 (Table 6).
The errors of time to the peak discharge simulation using merged data are 0 h, which also
show a better performance than that of using the other two data. The simulation of peak
discharge (EPD) using merged precipitation is much better than that using original data
(74.7% and −5.3%, respectively). A similar improvement can also be observed in the event
of 16 August 2020. The NSE is improved from 0.64/0.05 for the other two to 0.89 (Table 6).
The RMSE from the merged precipitation is 37.59 m3/s and 90.87 m3/s less than that from
the original data and gauged data, respectively. The simulation of peak discharge (EPD)
using merged precipitation is improved from 25.0%/27.9% to −0.6%. The results exhibit
that the LSTM-based merging method has a better performance for flash flood simulation.
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Figure 10. Flood discharge simulation by using four precipitation datasets for two typical events (the events of 24 July 2016
(a) in calibration and 16 August 2020 (b) in validation).

Table 6. Statistical indices of the event in 24 July 2016 (the actual peak discharge = 100 m3/s, time to peak = 9 h) and 16
August 2020 (the actual peak discharge = 593 m3/s, time to peak = 17 h).

Events Precipitation
Inputs

Error of
Time

to Peak
(h)

Peak Disch
(m3/s) NSE RMSE

(m3/s) BIAS EPD

24 July 2016
Gauge 1 101.8 0.70 8.14 3.1% 1.8%

IMERG-origin 6 174.7 −5.92 40.65 −0.5% 74.7%
Gauge-IMERG 0 94.7 0.92 4.49 4.3% −5.3%

Gauge 0 741.3 0.64 85.09 −9.3% 25.0%
16 August

2020
IMERG-origin 0 758.7 0.05 138.37 −25.9% 27.9%
Gauge-IMERG 1 589.7 0.89 47.50 −1.4% −0.6%

5. Discussion
5.1. Validating the LSTM-Based Satellite-Gauge Merging Method

The Gauge-IMERG input in HEC-HMS shows much better performances because
it improves the spatial distribution, which was made despite the lack of precipitation
data upstream of the Shouxi catchment. Figure 11 shows the differences in the spatial
precipitation distribution between gauged precipitation (a)/merged precipitation (b) in
the event of 16 August 2020. The areal precipitation of upstream based on gauged data
was calculated by the Thiessen Polygon, the same as the gauged precipitation at Sanjiang
station (136 mm), due to lack of observation in the upper reaches of the Shouxi catchment.
However, a significant difference in the distribution of precipitation is shown when using
the merged data. The precipitation upstream is much lower than downstream in the event
of 16 August 2020; that is, the precipitation is 84.4 mm upstream, 50 mm less than Gauge
(136 mm) (Table 7).
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Figure 11. The spatial precipitation distribution of gauged precipitation (a) /merged precipitation (b) in the event of 16
August 2020.

Table 7. Comparison between Gauge and Gauge-IMERG on the precipitation amount and peak discharge/time in the event
of 16 August 2020.

Type of Inputs Precipitation Amount (mm) Discharge

Peak Discharge (m3/s) Peak Time (h)

Upstream Downstream Upstream Downstream Upstream Downstream

Gauge 136 128 361.3 184.7 16 16
Gauge-IMERG 84.4 131.9 189.8 205.1 18 17

The difference in precipitation leads to a difference in flood simulation. The spatial
distribution information of precipitation has a very important impact on the formation of
runoff in a physical sense, especially the formation of peak discharge [54,55]. HEC-HMS,
as a semi-distributed hydrological model, is driven by distributed precipitation and so
it can simulate the runoff of each sub-catchment. Figure 12a,b is the flood simulation of
sub-catchment W20 located upstream and W120 downstream. For W20, the results show a
great distinction between the discharge process simulated by the two schemes, especially
in peak discharge (Figure 12a), because of the differences in precipitation upstream (as
shown in Figure 11). The peak discharge of Gauge is 361.3 m3/s, which is much larger than
that of Gauge-IMERG (189.8 m3/s), while the peak time is a 2-h difference. With respect
to downstream (W120), the two simulated flow processes are quite similar, and the peak
discharge is 128 and 131.9 m3/s, respectively (Table 7). The peak time of Gauge-IMERG,
affected by the upstream, is 1 h behind Gauge. These observations are why the results in
Figure 10b show that the simulated discharge is overestimated by using the Gauge data
and improved by using the merged data.
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Figure 12. Simulated hydrographs of sub-catchment W20 (a) and W120 (b) in the event of 16 August 2020, respectively.

5.2. Uncertainties of Satellite Precipitation Products (SPPs) over Complex Terrains

Precipitation gauges are usually sparse in many catchments and generally situated
in lowlands under accessibility considerations, especially in regions with complex ter-
rains; thus, underrepresenting precipitation may occur in highlands [32]. SPPs offer a
potentially viable solution to observation coverage problems and hydrometeorological
application in complex terrain areas. However, the uncertainty of SPPs would be increased
over the regions with complex topography, and precipitation estimates can be associated
with significant error due to variability and uncertainty introduced by orographic effects.
In prior studies, Mei et al. [56] investigated the error characteristics of satellite precipitation
products and their error propagation in flow simulations for a range of mountainous
basin scales. Results suggested a positive correlation between systematic error and basin
elevation. Derin et al. [32] evaluated the performance of four SPPs over a typical complex
topography that exerts strong controls on the precipitation regime. Results indicated the
evaluated SPPs generally had difficulty in representing the precipitation gradient normal to
the orography, and precipitation was underestimated during winter. In addition, complex
terrain conditions would affect the satellite–gauge merging results. Zhang et al. [25] pro-
posed a novel double method and applied it over mainland China; the results showed that
the proposed method performed better than the other method in most sub-regions except
the Tibetan Plateau (QTP), which, with a complex terrain, showed worse performance
using the proposed method. In summary, performances of SPPs vary significantly over
topographically complex regions and are complicated by significant elevation change.
Therefore, the effects of complex terrain on SPP estimates need more consideration.

In this paper, the Shouxi catchment consists of a highly complex terrain with elevation
differences greater than 4000 m and slopes ranging from 0◦ to 60◦. Although the integration
of satellite precipitation data and deep learning fixes the issues of lack of upstream data
and improves the accuracy of flood forecasting to some extent, the impact of complex
terrain still needs further investigation of the satellite–gauge merging method in the future.
Geographical and topographical covariates, such as elevation, soil type, land type, and
soil moisture [38], need to be considered as input variables for merging models based on
deep learning.
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6. Conclusions

Satellite remote sensing precipitation has a high spatio-temporal resolution but needs
to be assessed and corrected/merged before being used in hydrological research. In this
study, the performance of the IMERG product for a poor-gauged mountainous catch-
ment in China was assessed, and deep learning was used for precipitation data merging.
The merged precipitation data, compared with the gauged data and original IMERG data,
were used as inputs for flood simulation based on the HEC-HMS model. The results
showed that the HEC-HMS flood discharge simulation using merged precipitation data
exhibited much better performances, with NSE greatly improved. The results indicated the
good performance of the method proposed in this study and also revealed a high potential
for the application of IMERG in other mountainous and data-sparse watersheds in the
world. It is suggested that future work should focus on employing multi-source remote
sensing products and deep learning merging methods considering the impact of complex
terrains to further improve flash flood forecasting.

Author Contributions: Conceptualization, H.L. and X.T.; methodology, H.L. and X.T.; software,
X.T. and Z.Y.; validation, X.T.; formal analysis, H.L. and X.T.; investigation, H.L., X.T. and G.Q.;
resources, X.T. and Z.Y.; data curation, H.L. and X.T.; writing—original draft preparation, X.T.
writing—review and editing, all authors; visualization, H.L. and X.T.; supervision, H.L. and L.G.;
project administration, H.L.; funding acquisition, H.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (Grant No. 2019YFC1510700) and the National Natural Science Foundation of China (Grant No.
51979177). Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the funding agencies.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and codes used for this study are available from the corre-
sponding author upon request.

Acknowledgments: The authors would like to acknowledge the TRMM and GPM research communities
for making the data available to international users and the provider of Gauge observation data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kleinen, T.; Petschel-Held, G. Integrated assessment of changes in flooding probabilities due to climate change. Clim. Chang.

2007, 81, 283–312. [CrossRef]
2. Todini, E. Flood Forecasting and Decision Making in the new Millennium. Where are We? Water Resour. Manag. 2017, 31,

3111–3129. [CrossRef]
3. Beniston, M. Trends in joint quantiles of temperature and precipitation in Europe since 1901 and projected for 2100. Geophys. Res.

Lett. 2009, 36. [CrossRef]
4. Borga, M.; Anagnostou, E.N.; Blöschl, G.; Creutin, J.D. Flash flood forecasting, warning and risk management: The HYDRATE

project. Environ. Sci. Policy 2011, 14, 834–844. [CrossRef]
5. Norbiato, D.; Borga, M.; Dinale, R. Flash flood warning in ungauged basins by use of the flash flood guidance and model-based

runoff thresholds. Meteorol. Appl. 2009, 16, 65–75. [CrossRef]
6. Gebregiorgis, A.S.; Hossain, F. Understanding the Dependence of Satellite Rainfall Uncertainty on Topography and Climate for

Hydrologic Model Simulation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 704–718. [CrossRef]
7. Sangati, M.; Borga, M.; Rabuffetti, D.; Bechini, R. Influence of rainfall and soil properties spatial aggregation on extreme flash

flood response modelling: An evaluation based on the Sesia river basin, North Western Italy. Adv. Water Resour. 2009, 32,
1090–1106. [CrossRef]

8. Viglione, A.; Chirico, G.B.; Woods, R.; Blöschl, G. Generalised synthesis of space–time variability in flood response: An analytical
framework. J. Hydrol. 2010, 394, 198–212. [CrossRef]

9. Levizzani, V.; Kidd, C.; Aonashi, K.; Bennartz, R.; Ferraro, R.R.; Huffman, G.J.; Roca, R.; Turk, F.J.; Wang, N.Y. The activities of the
international precipitation working group. Q. J. R. Meteorol. Soc. 2018, 144, 3–15. [CrossRef]

http://doi.org/10.1007/s10584-006-9159-6
http://doi.org/10.1007/s11269-017-1693-7
http://doi.org/10.1029/2008GL037119
http://doi.org/10.1016/j.envsci.2011.05.017
http://doi.org/10.1002/met.126
http://doi.org/10.1109/TGRS.2012.2196282
http://doi.org/10.1016/j.advwatres.2008.12.007
http://doi.org/10.1016/j.jhydrol.2010.05.047
http://doi.org/10.1002/qj.3214


Remote Sens. 2021, 13, 5083 18 of 19

10. Sungmin, O.; Kirstetter, P.E. Evaluation of diurnal variation of GPM IMERG-derived summer precipitation over the contiguous
US using MRMS data. Q. J. R. Meteorol. Soc. 2018, 144, 270–281. [CrossRef]

11. Zoccatelli, D.; Borga, M.; Zanon, F.; Antonescu, B.; Stancalie, G. Which rainfall spatial information for flash flood response
modelling? A numerical investigation based on data from the Carpathian range, Romania. J. Hydrol. 2010, 394, 148–161.
[CrossRef]

12. Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [CrossRef]
13. Wang, H.; Wang, L.; He, J.; Ge, F.; Chen, Q.; Tang, S.; Yao, S. Can the GPM IMERG Hourly Products Replicate the Variation in

Precipitation During the Wet Season Over the Sichuan Basin, China? Earth Space Sci. 2020, 7, e2020EA001090. [CrossRef]
14. Mishra, V.; Shah, R.D. Development of an Experimental Near-Real-Time Drought Monitor for India. J. Hydrometeorol. 2015, 16,

327–345. [CrossRef]
15. Mekonnen, K.; Melesse, A.M.; Woldesenbet, T.A. Spatial evaluation of satellite-retrieved extreme rainfall rates in the Upper

Awash River Basin, Ethiopia. Atmos. Res. 2021, 249, 105297. [CrossRef]
16. Solakian, J.; Maggioni, V.; Godrej, A.N. On the Performance of Satellite-Based Precipitation Products in Simulating Streamflow

and Water Quality During Hydrometeorological Extremes. Front. Environ. Sci. 2020, 8, 585451. [CrossRef]
17. Soo, E.Z.X.; Wan Jaafar, W.Z.; Lai, S.H.; Othman, F.; Elshafie, A.; Islam, T.; Srivastava, P.; Othman Hadi, H.S. Precision of raw and

bias-adjusted satellite precipitation estimations (TRMM, IMERG, CMORPH, and PERSIANN) over extreme flood events: Case
study in Langat river basin, Malaysia. J. Water Clim. Chang. 2020, 11, 322–342. [CrossRef]

18. Zhu, B.; Huang, Y.; Zhang, Z.; Kong, R.; Tian, J.; Zhou, Y.; Chen, S.; Duan, Z. Evaluation of TMPA Satellite Precipitation in Driving
VIC Hydrological Model over the Upper Yangtze River Basin. Water 2020, 12, 3230. [CrossRef]

19. Zema, D.A.; Labate, A.; Martino, D.; Zimbone, S.M. Comparing Different Infiltration Methods of the HEC-HMS Model: The Case
Study of the Mésima Torrent (Southern Italy). Land Degrad. Dev. 2016, 28, 294–308. [CrossRef]

20. Zhou, L.; Rasmy, M.; Takeuchi, K.; Koike, T.; Selvarajah, H.; Ao, T. Adequacy of Near Real-Time Satellite Precipitation Products in
Driving Flood Discharge Simulation in the Fuji River Basin, Japan. Appl. Sci. 2021, 11, 1087. [CrossRef]

21. Habib, E.; Haile, A.; Sazib, N.; Zhang, Y.; Rientjes, T. Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations
at the Source of the Upper Blue Nile. Remote Sens. 2014, 6, 6688–6708. [CrossRef]

22. Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B. Real-Time Bias Reduction for Satellite-Based Precipitation Estimates. J. Hydrometeorol.
2010, 11, 1275–1285. [CrossRef]

23. Borga, M.; Tonelli, F.; Moore, R.J.; Andrieu, H. Long-term assessment of bias adjustment in radar rainfall estimation. Water Resour.
Res. 2002, 38, 8-1–8-10. [CrossRef]

24. Ren, P.; Li, J.; Feng, P.; Guo, Y.; Ma, Q. Evaluation of Multiple Satellite Precipitation Products and Their Use in Hydrological
Modelling over the Luanhe River Basin, China. Water 2018, 10, 677. [CrossRef]

25. Zhang, L.; Li, X.; Zheng, D.; Zhang, K.; Ma, Q.; Zhao, Y.; Ge, Y. Merging multiple satellite-based precipitation products and gauge
observations using a novel double machine learning approach. J. Hydrol. 2021, 594, 125969. [CrossRef]

26. Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour.
Res. 2018, 54, 8558–8593. [CrossRef]

27. Kumar, D.; Singh, A.; Samui, P.; Jha, R.K. Forecasting monthly precipitation using sequential modelling. Hydrol. Sci. J. 2019, 64,
690–700. [CrossRef]

28. Oshri, B.; Hu, A.; Adelson, P.; Chen, X.; Dupas, P.; Weinstein, J.; Burke, M.; Lobell, D.; Ermon, S. Infrastructure Quality Assessment
in Africa using Satellite Imagery and Deep Learning. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 616–625.

29. Tao, Y.M.; Gao, X.G.; Hsu, K.L.; Sorooshian, S.; Ihler, A. A Deep Neural Network Modeling Framework to Reduce Bias in Satellite
Precipitation Products. J. Hydrometeorol. 2016, 17, 931–945. [CrossRef]

30. Wu, H.; Yang, Q.; Liu, J.; Wang, G. A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China. J.
Hydrol. 2020, 584, 124664. [CrossRef]

31. Wang, X.; Li, B.; Chen, Y.; Guo, H.; Wang, Y.; Lian, L. Applicability Evaluation of Multisource Satellite Precipitation Data for
Hydrological Research in Arid Mountainous Areas. Remote Sens. 2020, 12, 2886. [CrossRef]

32. Derin, Y.; Anagnostou, E.; Berne, A.; Borga, M.; Boudevillain, B.; Buytaert, W.; Chang, C.-H.; Chen, H.; Delrieu, G.;
Hsu, Y.; et al. Evaluation of GPM-era Global Satellite Precipitation Products over Multiple Complex Terrain Regions. Remote Sens.
2019, 11, 2936. [CrossRef]

33. Freitas, E.d.S.; Coelho, V.H.R.; Xuan, Y.; Melo, D.d.C.D.; Gadelha, A.N.; Santos, E.A.; Galvão, C.d.O.; Ramos Filho, G.M.;
Barbosa, L.R.; Huffman, G.J.; et al. The performance of the IMERG satellite-based product in identifying sub-daily rainfall events
and their properties. J. Hydrol. 2020, 589, 125128. [CrossRef]

34. Wang, S.; Liu, J.; Wang, J.; Qiao, X.; Zhang, J. Evaluation of GPM IMERG V05B and TRMM 3B42V7 Precipitation Products over
High Mountainous Tributaries in Lhasa with Dense Rain Gauges. Remote Sens. 2019, 11, 2080. [CrossRef]

35. Bhatti, H.A.; Rientjes, T.; Haile, A.T.; Habib, E.; Verhoef, W. Evaluation of Bias Correction Method for Satellite-Based Rainfall
Data. Sensors 2016, 16, 884. [CrossRef] [PubMed]

36. Anagnostou, E.N.; Nikolopoulos, E.I.; Ehsan Bhuiyan, M.A. Machine Learning–Based Blending of Satellite and Reanalysis
Precipitation Datasets: A Multiregional Tropical Complex Terrain Evaluation. J. Hydrometeorol. 2019, 20, 2147–2161. [CrossRef]

http://doi.org/10.1002/qj.3218
http://doi.org/10.1016/j.jhydrol.2010.07.019
http://doi.org/10.5194/hess-15-1109-2011
http://doi.org/10.1029/2020EA001090
http://doi.org/10.1175/jhm-d-14-0041.1
http://doi.org/10.1016/j.atmosres.2020.105297
http://doi.org/10.3389/fenvs.2020.585451
http://doi.org/10.2166/wcc.2020.180
http://doi.org/10.3390/w12113230
http://doi.org/10.1002/ldr.2591
http://doi.org/10.3390/app11031087
http://doi.org/10.3390/rs6076688
http://doi.org/10.1175/2010JHM1246.1
http://doi.org/10.1029/2001WR000555
http://doi.org/10.3390/w10060677
http://doi.org/10.1016/j.jhydrol.2021.125969
http://doi.org/10.1029/2018WR022643
http://doi.org/10.1080/02626667.2019.1595624
http://doi.org/10.1175/JHM-D-15-0075.1
http://doi.org/10.1016/j.jhydrol.2020.124664
http://doi.org/10.3390/rs12182886
http://doi.org/10.3390/rs11242936
http://doi.org/10.1016/j.jhydrol.2020.125128
http://doi.org/10.3390/rs11182080
http://doi.org/10.3390/s16060884
http://www.ncbi.nlm.nih.gov/pubmed/27314363
http://doi.org/10.1175/jhm-d-19-0073.1


Remote Sens. 2021, 13, 5083 19 of 19

37. Peng, F.; Zhao, S.; Chen, C.; Cong, D.; Wang, Y.; Ouyang, H. Evaluation and comparison of the precipitation detection ability of
multiple satellite products in a typical agriculture area of China. Atmos. Res. 2020, 236, 104814. [CrossRef]

38. Bhuiyan, M.A.E.; Yang, F.; Biswas, N.K.; Rahat, S.H.; Neelam, T.J. Machine Learning-Based Error Modeling to Improve GPM
IMERG Precipitation Product over the Brahmaputra River Basin. Forecasting 2020, 2, 14. [CrossRef]

39. Ding, L.; Ma, L.; Li, L.; Liu, C.; Li, N.; Yang, Z.; Yao, Y.; Lu, H. A Survey of Remote Sensing and Geographic Information System
Applications for Flash Floods. Remote Sens. 2021, 13, 1818. [CrossRef]

40. He, J.; Zhang, K.; Liu, X.; Liu, G.; Zhao, X.; Xie, Z.; Lu, H. Vegetation restoration monitoring in Yingxiu landslide area after the
2008 Wenchuan earthquake. Earthq. Res. China 2020, 34, 157–166. [CrossRef]

41. Lu, H.; Ma, L.; Fu, X.; Liu, C.; Wang, Z.; Tang, M.; Li, N. Landslides Information Extraction Using Object-Oriented Image Analysis
Paradigm Based on Deep Learning and Transfer Learning. Remote Sens. 2020, 12, 752. [CrossRef]

42. Lo Conti, F.; Hsu, K.-L.; Noto, L.V.; Sorooshian, S. Evaluation and comparison of satellite precipitation estimates with reference to
a local area in the Mediterranean Sea. Atmos. Res. 2014, 138, 189–204. [CrossRef]

43. Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Kelkin, E.J.; Tan, J. GPM IMERG Late Precipitation L3 1 Day 0.1 Degree×0.1 Degree V06;
Andrey, S., Greenbelt, M.D., Eds.; Goddard Earth Sciences Data and Information Services Center (GES DISC): Washington, DC,
USA, 2019. Available online: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary (accessed on 1 May 2020).

44. FAO/IIASA/ISRIC/ISS-CAS/JRC. Harmonized World Soil Database (Version 1.1); FAO: Rome, Italy; IIASA: Laxenburg, Austria,
2009; Available online: http://www.fao.org/3/a-aq361e.pdf (accessed on 1 May 2020).

45. De Villiers, J.; Barnard, E. Backpropagation neural nets with one and two hidden layers. IEEE Trans. Neural Netw. 1993, 4, 136–141.
[CrossRef]

46. Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward Networks Are Universal Approximators. Neural Netw. 1989, 2,
359–366. [CrossRef]

47. Cheng, X.; Ma, X.; Wang, W.; Xiao, Y.; Wang, Q.; Liu, X. Application of HEC-HMS Parameter Regionalization in Small Watershed
of Hilly Area. Water Resour. Manag. 2021, 35, 1961–1976. [CrossRef]

48. El Hassan, A.A.; Sharif, H.O.; Jackson, T.; Chintalapudi, S. Performance of a conceptual and physically based model in simulating
the response of a semi-urbanized watershed in San Antonio, Texas. Hydrol. Process. 2013, 27, 3394–3408. [CrossRef]

49. Bai, Y.; Zhang, Z.; Zhao, W. Assessing the Impact of Climate Change on Flood Events Using HEC-HMS and CMIP5. Water Air
Soil Pollut. 2019, 230, 119. [CrossRef]

50. Mohammadi Hashemi, M.; Saghafian, B.; Zakeri Niri, M.; Najarchi, M. Applicability of Rainfall–Runoff Models in Two Simplified
Watersheds. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021. [CrossRef]

51. Hussain, F.; Wu, R.-S.; Yu, K.-C. Application of Physically Based Semi-Distributed Hec-Hms Model for Flow Simulation in
Tributary Catchments of Kaohsiung Area Taiwan. J. Mar. Sci. Technol. 2021, 29, 4. [CrossRef]

52. Belayneh, A.; Sintayehu, G.; Gedam, K.; Muluken, T. Evaluation of satellite precipitation products using HEC-HMS model. Model.
Earth Syst. Environ. 2020, 6, 2015–2032. [CrossRef]
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