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Abstract: Remote sensing scene classification converts remote sensing images into classification
information to support high-level applications, so it is a fundamental problem in the field of remote
sensing. In recent years, many convolutional neural network (CNN)-based methods have achieved
impressive results in remote sensing scene classification, but they have two problems in extracting
remote sensing scene features: (1) fixed-shape convolutional kernels cannot effectively extract features
from remote sensing scenes with complex shapes and diverse distributions; (2) the features extracted
by CNN contain a large number of redundant and invalid information. To solve these problems, this
paper constructs a deformable convolutional neural network to adapt the convolutional sampling
positions to the shape of objects in the remote sensing scene. Meanwhile, the spatial and channel
attention mechanisms are used to focus on the effective features while suppressing the invalid ones.
The experimental results indicate that the proposed method is competitive to the state-of-the-art
methods on three remote sensing scene classification datasets (UCM, NWPU, and AID).

Keywords: remote sensing image; scene classification; convolutional neural network; deformable
convolution; attention mechanism

1. Introduction

With the development of remote sensing, it is more and more convenient to obtain very-
high resolution land-cover images, which provides a reliable data source for remote sensing
scene classification. As a basic problem in the field of remote sensing, remote sensing scene
classification is widely used in land resources planning [1–5], urban planning [6–8], and
disaster monitoring [9–11].

Remote sensing scene classification has always been a challenging problem because of
the following characteristics.

(1) Remote sensing scenes have a complex outline and structure, whether the scene is a
natural scene (island) or artificial scene (church), as shown in Figure 1a.

(2) The spatial distribution of remote sensing scenes is complex. Remote sensing images
are a bird’s-eye view, so the direction, size, and position of the scenes are arbitrary.
As shown in Figure 1b, the size of circular farmland is not fixed, and the position of
spark residential is arbitrary.

(3) There is intra-class diversity in remote sensing scenes. Affected by season, weather,
light, and other factors, the same scene may have different forms of expression. As
shown in Figure 1c, the forest has an obvious color difference due to different seasons;
the church has a distinct shape difference due to different cultures.

(4) There is inter-class similarity in remote sensing scenes. As shown in Figure 1d, the
parking lot and container are highly similar in color, shape, direction, and spatial
distribution in remote sensing images. The same situation also exists in the highway
and bridge.
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Figure 1. Examples of remote sensing scene images. (a) Complex outline and structure; (b) Complex
spatial distribution; (c) Intra-class diversity; (d) Inter-class similarity.

The early remote sensing scene classification methods mainly utilized some low-level
handcrafted features, such as Gabor [12], local binary patterns (LBPs) [13], scale-invariant
feature transform (SIFT) [14], and histogram of oriented gradients (HOG) [15]. Later, some
methods aggregated low-level features to generate mid-level features, such as Bag-of-
visual-words (BoVW) [16], spatial pyramid matching (SPM) [17], improved fisher kernel
(IFK) [18], and vectors of locally aggregated descriptors (VLAD) [19]. These methods can
deal with remote sensing scenes with simple shape and texture, but they fail to handle
remote sensing scenes with complex structure and spatial distribution because they cannot
extract high-level features.

The deep learning method automatically learns the distinguishing and expressive
high-level features from images. This kind of method first made a breakthrough in the
field of image classification [20–23] and then was successfully applied to the field of
remote sensing scene classification. Li et al. [24] proposed a fusion strategy for remote
sensing scene classification, which fuses the multi-layer features of the pre-trained CNN to
achieve discriminated feature expression. Lu et al. [25] investigated a bidirectional adaptive
feature fusion strategy, which fuses the deep learning features and the SIFT features to
obtain a discriminative image presentation. He et al. [26] used covariance pooling to fuse
the feature maps of different CNN layers to realize the rapid processing of large-scale
remote sensing images. Flores et al. [27] proposed a method that combines CNN with
the Gaussian mixture model to generate robust and compact features. Fang et al. [28]
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added a frequency-domain branch to CNN to enhance its robustness to rotating remote
sensing images. Sun et al. [29] proposed a gated bidirectional network to fuse semantic-
assist features and appearance-assist features, which solves the problem of multi-layer
CNN features information redundancy. Zheng et al. [6] proposed performance multiscale
pooling (MSP), which improves the remote sensing scene classification performance by
enhancing the ability of CNN to extract multiscale spatial information. Bi et al. [30] used
an attention mechanism to enhance the ability to extract local semantic information from
remote sensing scenes. Wu et al. [31] proposed a revolutionary neural network framework
based on a group revolution scheme, which improves the efficiency of CNN. Xie et al. [32]
proposed label augmentation to expand the remote sensing scene dataset, which realizes
the classification of few-shot remote sensing scenes. Chen et al. [33] proposed a contextual
information-preserved architecture learning (CIPAL) framework for remote sensing scene
classification to utilize the contextual information.

Although the existing deep learning methods have made some achievements in
remote sensing scene classification, they mostly enhance the expression of CNN features
from the perspective of feature fusion (such as fusing handcrafted features; fusing multi-
layer CNN features; fusing contextual information). These methods usually add model
parameters and computation. Different from these studies, our study designs a remote
sensing scene classification method from basic theory, which considers the data types and
task requirements. The main contributions of this study are summarized as follows.

(1) A Deformable CNN (D-CNN) is proposed. D-CNN breaks through the limitation of
fixed convolution kernel size and enhances the feature extraction ability of remote
sensing scenes with complex structure and spatial distribution.

(2) A Spatial-Channel Attention (SCA) is proposed. SCA enhances the effective infor-
mation of remote sensing scenes by assigning weight to the important positions and
channels in the CNN feature maps of remote sensing images.

The rest of this paper is organized as follows. Section 2 introduces the proposed
method in detail, including feature extraction, feature enhancement, and classification.
The experiments of our method on three datasets (UCM, NWPU, and AID) are shown in
Section 3. Section 4 gives the discussion. Section 5 concludes this study.

2. Materials and Methods
2.1. Overall Architecture

The overall architecture of our proposed method is shown in Figure 2. It consists
of three parts: feature extraction, feature enhancement, and classification. In the feature
extraction, D-CNN extracts the high-level features of the input remote sensing scene images.
In the feature enhancement, the spatial information in the CNN feature maps is enhanced by
the spatial attention enhancement mechanism; then, the channel information in the spatial
attention feature maps is enhanced by the channel attention enhancement mechanism;
finally, the spatial-channel attention feature maps are obtained. In the classification, the
spatial-channel attention feature maps are classified.
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Figure 2. The overall architecture of our proposed method.

2.2. Feature Extraction

Extracting the features of remote sensing images using CNN is an important step of
remote sensing scene classification methods based on deep learning, and the quality of
feature extraction directly affects the classification effect. The traditional CNN is limited
by the shape of the convolution kernels and cannot adapt to remote sensing scenes with
complex structure and spatial distribution. Generally, there are two methods to solve such
a problem. One method is data augmentation, which constructs a dataset with sufficient
transformation by enlarging, reducing, and rotating the original remote sensing images.
The other method introduces other features, to make the feature more adaptive by adding
scale-invariant features or rotation-invariant features. However, these two methods will
bring a computational burden and make the classification algorithm complex.

By contrast, the deformable convolution [34] enhances its adaptability to complex
remote sensing scenes by adding two offset parameters to the sampling position of the
standard convolution. In this way, the sampling grid of the convolution can be shifted hori-
zontally and vertically in the opposite direction. The comparison of standard convolution
and deformable convolution is shown in Figure 3.

Figure 3. Illustration of the sampling locations in 3 × 3 standard and deformable convolution. (a) Regular sampling
grid (blue squares) of standard convolution; (b) Deformed sampling location (yellow squares) with offsets in deformable
convolution.

The standard convolution is calculated as follows:

y(pi) = ∑
pi∈R

W(pi)·x(pi) (1)

where pi is the position of the regular grid R on the input feature map x; y is the output
feature map, and W is the weight. After the offset, ∆pn is added to pi, pi + ∆pn represents
a position of the feature map. The standard convolution is converted to deformable
convolution as follows:

y(pi) = ∑
pi∈R

W(pi)·x(pi + ∆pn) (2)
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The corresponding deformable pooling can be expressed as:

y′(pi) =
y(pi)

n(R)
(3)

where n(R) is the number of regular grids.
Based on deformable convolution and deformable pooling, this study constructs

D-CNN, and the framework is shown in Table 1. D-CNN is composed of a deformable
convolution layer, a deformable pooling layer, and four deformable convolution blocks, ×n
means the stack block is repeated n times. Specifically, the first layer is a deformable convo-
lution layer with a convolution filter size of 7 × 7, and the number of convolution filters is
64. The feature is first extracted extensively by a larger size deformable convolution, and
the information of the original image is preserved as much as possible, so that the feature
can be extracted in detail by the deformable convolution blocks later. The second layer
is a deformable pooling layer with a pooling filter size of 3 × 3. The third layer consists
of three deformable convolution block 1. In deformable convolution block 1, 64 1 × 1
convolution, 64 3 × 3 deconvolution, and 256 1 × 1 convolution are stacked sequentially.
Each block is connected internally through a shortcut connection to avoid network degra-
dation caused by the increase of network depth. Other deformable convolution blocks are
similar to deformable convolution block 1. In the deformable convolution block, stacking
multiple 3 × 3 deformable convolutions can increase the number of sampling locations
and improve the expressiveness of the feature with a significant reduction in the number
of parameters. For example, comparing 3 stacked 3 × 3 deformable convolutions with 1
7 × 7 deformable convolution: (1) the number of sampling positions for 3 stacked 3 × 3
deformable convolutions are (3 × 3)3 = 729, while the number of sampling positions for
1 7 × 7 deformable convolution are 7 × 7 = 49; (2) the number of parameters for 3 stacked
3 × 3 deformable convolutions are 3 × 3 × 3 × Cout × Cin = 27 Cout Cin, while the number
of parameters for 1 7 × 7 deformable convolutions are 7 × 7× Cout × Cin = 49 Cout Cin,
where Cout and Cin represent the number of channels of output and input, respectively;
(3) 3 stacked 3 × 3 deformable convolutions have 2 more activation functions than 1 7 × 7
deformable convolution.

Table 1. Framework of the proposed D-CNN.

Layer Name Type Filters Size

deformable convolution deformable convolution 64 7 × 7

deformable pooling deformable pooling 3 × 3

deformable convolution block 1
convolution 64 1 × 1

× 3deformable convolution 64 3 × 3
convolution 256 1 × 1

deformable convolution block 2
convolution 128 1 × 1

× 4deformable convolution 128 3 × 3
convolution 512 1 × 1

deformable convolution block 3
convolution 256 1 × 1

× 6deformable convolution 256 3 × 3
convolution 1024 1 × 1

deformable convolution block 4
convolution 512 1 × 1

× 3deformable convolution 512 3 × 3
convolution 2048 1 × 1

As shown in Figure 4, by combining multiple deformable convolutions, the function
of deformable convolution will be greatly improved. The small squares indicate the
sampling points of the network, and the red arrow indicates the corresponding relationship
between the feature maps of the two adjacent layers. From left to right, the feature maps
are presented from low to high. The filter size of each layer is 3 × 3. The highlighted
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positions correspond to the highlighted units on the previous layer. It can be seen that the
sampling position of the standard CNN is fixed for the object, while the deformable CNN
can adapt to the shape of the object. The sampling point of the deformable CNN has a
higher correlation with the object, which enhances the feature extraction of remote sensing
scenes with complex structure and diverse distribution.

Figure 4. Comparison of the sampling locations of standard CNN and deformable CNN. (a) The
sampling position of the standard CNN is fixed; (b) The sampling position of the deformable CNN
adapts to the shape of the object.

2.3. Feature Enhancement

Feature enhancement with attention mechanisms is a common and effective approach
to improve deep learning methods. The attention mechanism in deep learning is similar to
the human selective visual attention mechanism, which aims to select critical information
from a multitude of information. In this study, SCA is proposed for remote sensing scenes.
Spatial attention information and channel attention information are extracted by spatial
attention module and channel attention module, respectively. Based on this, comprehensive
attention information can be obtained.

2.3.1. Spatial Attention Module

The spatial attention module extracts the relationship between the spatial locations
of the feature maps, as shown in Figure 5. Suppose the input feature maps P ∈ RC×H×W ,
where C, H, and W represent the channel, height, and width of the feature maps, respec-
tively. First, P is converted to {A, B, D} ∈ RC×H×W by a convolution operation, and A and
B are reshaped to RC×N , where N = H ×W. Then, matrix multiplication is performed
between A and the transpose of B, and the spatial attention matrix S ∈ R(H×W)×(H×W) is
obtained by softmax:

sji =
exp

(
Ai·Bj

)
∑N

i=1 exp
(

Ai·Bj
) (4)

where sij denotes the influence of position i on position j. The more similar the features of
two locations, the greater the correlation between them. After this, the spatial attention
matrix is multiplied with the feature map D to obtain the spatial location-enhanced feature
map Fs:

Fs = ∑ N
i=1
(
sjiDi

)
(5)
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Figure 5. Spatial attention module.

2.3.2. Channel Attention Module

The channel attention module extracts the relationship between the individual chan-
nels of the feature maps, as shown in Figure 6. Unlike the spatial attention module, matrix
multiplication is performed directly between P and the transpose of P, and the channel
attention matrix X ∈ RC×C is obtained by softmax:

xji =
exp

(
Pi·Pj

)
∑N

i=1 exp
(

Pi·Pj
) (6)

where xji denotes the influence of channel i on channel j. After this, the channel attention
matrix is multiplied with the feature map P to obtain the feature map Fc for channel position
enhancement:

Fc = ∑ C
i=1
(
xjiPi

)
(7)

Figure 6. Channel attention module.

2.4. Classification

In the classification, global average pooling is employed to reduce the dimension of
the global average of F from RC×H×W to RC×1×1, which greatly reduces the number of
parameters. Then, the softmax function is used to achieve the final scene classification:

L =

 − 1
N

N
∑

n=1

C
∑

c=1
log exp(θcxn)

∑C
i=1 exp(θixn)

, yn = c

0, yn 6= c
(8)

where x is the result of feature concatenation; y is the scene label; θ is the classifier parameter;
C is the number of scene categories, and N is the number of training samples.

3. Experiment and Analysis
3.1. Datasets

To evaluate the effectiveness of the proposed method on remote sensing scenes, exper-
iments are conducted on three remote sensing scene image datasets, and the comparison of
the three datasets is shown in Table 2.
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(1) UCM: UC Merced Land Use dataset [16] was constructed by Yang et al. of the
University of California at Merced using the United States Geological Survey National
Map. The dataset contains 21 land use classes, with 100 samples in each class and a
total of 2100 images. The size of each image is 256 × 256, with a spatial resolution of
0.3 m per pixel. Some samples from the UCM dataset are shown in Figure 7. UCM is
an early proposed remote sensing scene dataset, and it is also one of the most widely
used datasets.

(2) NWPU: NWPU-RESISC45 dataset [35] was built by Cheng et al. of Northwestern
Polytechnical University using Google Earth. The dataset contains 45 scenes, with
700 samples in each class and a total of 31,500 images. The size of each image is
256 × 256, with a spatial resolution of 0.2–30 m per pixel. Some samples from the
NWPU Dataset are shown in Figure 8. NWPU is the remote sensing scene dataset
with the richest scene categories and the largest number of samples so far. Besides,
there are great variations in translation, spatial resolution, viewpoint, object pose,
illumination, background, and occlusion, which makes it difficult for remote sensing
scene classification.

(3) AID: Aerial Image dataset [36] was built by Xia et al. of Wuhan University using
Google Earth. The dataset contains 30 scenes, with 200−400 samples in each class and
a total of 10,000 images. The size of each image is 600 × 600, with a spatial resolution
of 0.5−8 m per pixel. Some samples from the AID Dataset are shown in Figure 9.
Among the current remote sensing scene datasets, AID has the largest image size,
which provides richer information for scene classification.

Figure 7. The UCM dataset.

Table 2. The comparison of the three datasets.

Datasets Scene Classes Images Per Class Total Images Image Sizes Spatial Resolution
(in meters)

UCM 21 100 2100 256 × 256 0.3

NWPU 45 700 31,500 256 × 256 0.2–30

AID 30 220−400 10,000 600 × 600 0.5–8
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Figure 8. The NWPU dataset.
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Figure 9. The AID dataset.

3.2. Evaluating Indexes

Overall accuracy (OA) and confusion matrix (CM) are used as evaluation indexes for
remote sensing scene classification.

(1) OA: It is defined as the proportion of the number of correctly classified samples to
the total number of samples in the test set. It simply and effectively represents the
prediction capacity of the model on the overall dataset. OA is calculated as follows:

OA =
1
T ∑ m

i ∑ n
j I
(

f
(
xi,j
)
= yi,j

)
(9)

where T is the total number of samples in the test set; m and n are the total number
of categories and the number of samples of each category, respectively; f () is a
classification function that predicts the category of a single sample x in the test set;
y is the sample label indicating the real category of the sample; I() is the indicator
function, which takes the value of 1 when it is true and 0 when it is false.

(2) CM: It uses a matrix of N rows and N columns to represent the classification effect,
where each row represents the actual category and each column represents the pre-
dicted value. It can indicate the categories that are prone to confusion, thus more
intuitively representing the performance of the algorithm.

3.3. Implementation Details

The experiments are conducted on an AI Studio platform equipped with Tesla V100
(32GB memory). The initial learning rate is 0.01. Every 20 epochs, the learning rate is
divided by 10. Besides, the momentum is set to 0.9.
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3.4. The Performance of the Proposed Method
3.4.1. Results on UCM

To demonstrate the superiority of our proposed method, it is compared with other
methods on UCM, including Bidirectional adaptive feature fusion method (BDFF method) [25],
Multiscale CNN (MCNN) [37], ResNet with weighted spatial pyramid matching col-
laborative representation-based classification (ResNet with WSPM-CRC) [38], VGG16
with multi-layer stacked covariance pooling (VGG16 with MSCP) [26], Gated bidirec-
tional network (GBNet) [29], Feature aggregation CNN (FACNN) [39], Scale-free CNN
(SF-CNN) [40], Deep discriminative representation learning with attention map method
(DDRL-AM method) [41], and CNN based on attention-oriented multi-branch feature
fusion (AMB-CNN) [42]. The training ratio of 80% is used on this dataset, and OA is taken
as the evaluation index. The results are shown in Figure 10. Our method achieves the best
OA of up to 99.62%.

Figure 10. The OA (%) of different methods on UCM under the training ratio of 80%.

Then, CM is adopted to analyze the performance of our proposed method in detail,
and the results are shown in Figure 11. The vast majority of results are correct. The error
only occurs between confusing categories such as dense residential, medium residential,
and mobile home park, while the classification results of other categories are correct.

The above experiments show that our method achieves good performance on UCM,
which is a dataset with a small sample type and sample size.

3.4.2. Results on NWPU

Compared with UCM, NWPU has 45 scene classes and 700 images per class. Therefore,
NWPU can better reflect the performance of scene classification methods. On NWPU,
our proposed method is compared with other methods, including CNN-CapsNet [43],
Discriminative CNN with VGG16 (D-CNN with VGG16) [44], VGG16 with MSCP [26],
Skip-connected covariance network (SCCov Network) [45], and AMB-CNN [42]. The
training ratios of 10% and 20% are used on this dataset, respectively, and the results
are shown in Figure 12. Regardless of the training ratio, our method achieves the best
classification accuracy.
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Figure 11. CM on UCM under the training ratio of 80%.

Figure 12. The OA (%) of different methods on NWPU under the training ratio of 10% and 20%.

Then, CM is adopted to analyze the performance of our proposed method in detail,
and the results are shown in Figures 13 and 14. Our method achieves a good classification
accuracy on each scene. When the training ratio is 10%, it achieves an OA of more than 90%
on 26 of the 45 scenes and 80% on 44 scenes. When the training ratio is 20%, it achieves an
OA of more than 90% on 43 of the 45 scenes and 100% on 9 scenes.
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Figure 13. CM on NWPU under the training ratio of 10%.

Figure 14. CM on NWPU under the training ratio of 20%.

The above experiments show that our method still achieves a good classification
accuracy under a large scene type and size.
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3.4.3. Results on AID

Different from UCM and NWPU, the image size in AID reaches 600 × 600. To test
the classification performance of our proposed method for large-scale remote sensing
images, it is compared with other methods on AID, including CNN-CapsNet [43], D-CNN
with VGG16 [44], VGG16 with MSCP [26], GBNet [29], SCCov Network [45], and AMB-
CNN [42]. The training ratios of 20% and 50% are used on this dataset, respectively, and
the results are shown in Figure 15. When the training ratio is 20%, our method achieves
the best classification accuracy. When the training ratio is 50%, the difference between our
method and the best classification method is 0.45%.

Figure 15. The OA (%) of different methods on AID under the training ratio of 20% and 50%.

Then, CM is adopted to analyze the performance of our proposed method in detail,
and the results are shown in Figures 16 and 17. Our method achieves a good classification
accuracy on each scene. When the training ratio is 20%, it achieves an OA of more than
90% on 24 of the 30 scenes, and more than 80% on all scenes, and even 100% on 9 scenes.
When the training ratio is 50%, it achieves an OA of more than 90% on all scenes and even
100% for 12 scenes.
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Figure 16. CM on AID under the training ratio of 20%.

Figure 17. CM on AID under the training ratio of 50%.
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4. Discussion
4.1. Analysis of D-CNN

In Section 2.2, the principle of D-CNN is described in detail. In the experiment, more
tests are conducted to show the effectiveness of D-CNN. The test results are shown in
Figure 18, the yellow point indicates the activation unit and the red point indicates the
sampling location. In D-CNN, three deformable convolutional layers are stacked, and the
size of the deformable filters in each layer is 3 × 3. Therefore, each active unit corresponds
to (3 × 3)3 = 729 sampling locations. It clearly shows that: if the activate unit is in the green
space, the sampling locations are adjusted to the shape of the green space; if the activate
unit is in the basketball court, the sampling locations are adjusted to the shape of the
basketball court; if the activate unit is in the island, the sampling locations are adjusted to
the shape of the island; if the activate unit is in the sea, the sampling locations are adjusted
to the shape of the sea. The sampling locations are adaptively adjusted to the shape of
objects in D-CNN.

Figure 18. Sampling locations of the D-CNN. (a) Basketball court; (b) Island.

4.2. Analysis of SCA

To evaluate the feature enhancement ability of SCA, SCA is added to other classical
CNNs, and experiments are conducted on the AID dataset; 20% of the data in the AID
dataset is randomly selected for training and the remaining data is used for testing. Mean-
while, OA is taken as the evaluation index. The experimental results are shown in Figure 19.
It can be seen that SCA is applicable to a variety of classic CNNs and improves the clas-
sification accuracy. Especially for GoogLeNet, the classification accuracy is improved by
5.35%.

As each attention module has different functions, the arrangement strategies of at-
tention modules affect the overall performance. Table 3 summarizes the experimental
results on different attention arranging methods. Note that the spatial attention module
outperforms using the channel attention module. In addition, the spatial-channel attention
module performs better than the channel-spatial module. This is because the deformable
convolution in D-CNN changes the sampling positions of the convolution kernel. Addi-
tionally, the feature maps have discriminative spatial features, which is conducive to the
spatial attention module to enhance the spatial features. Moreover, the channel attention
module associates scene types with the channels of the feature maps, which enhances the
effectiveness of the overall approach. Reasonable attention module arrangement strategy
improves the classification accuracy.
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Figure 19. CM on AID under the training ratio of 20%.

Table 3. The comparison between different strategies.

Method OA (%) under the Training Ratio of 20% OA (%) under the Training Ratio of 50%

D-CNN 87.62 88.35

D-CNN + spatial 90.28 92.23

D-CNN + channel 89.67 91.56

D-CNN + channel + spatial 93.28 94.26

D-CNN + spatial + channel 94.63 96.43

4.3. Visualization

In addition to using specific indices to evaluate the performance of the proposed
method, this study also uses Gradient-weighted Class Activation Mapping (Grad-CAM) [45]
to visualize the proposed method to analyze the concerns of the model. The results are
shown in Figure 20. Grad-CAM reflects the distribution of the sensitive area of the pro-
posed method to the scenes through heat map. The more contribution to the classification
results, the redder the color on the heat map. It is obvious that our method focuses well on
differentiated positions.
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Figure 20. Visualizations for scenes sampled from the NWPU dataset. The redder color indicates the higher classification
contribution and the more blue color represents the lower classification contribution.

5. Conclusions

The complex shape and diverse distribution of remote sensing scenes bring challenges
to remote sensing scene classification. To address this problem, this paper proposed a new
feature extraction network called D-CNN and a new feature enhancement method called
SCA. D-CNN uses deformable convolution to change the convolution sampling position.
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Based on this, the applicability of the network to irregular remote sensing scene images
and the feature extraction capability is improved. As for SCA, it first extracts spatial key
information and then extracts key channels to enhance effective features while suppressing
invalid features. Extensive experiments have been conducted on three data (UCM, NWPU,
and AID). The experimental results indicate that our method achieves good classification
performance under various scene types and sizes and training ratios.
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