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Abstract: The power network has a long transmission span and passes through wide areas with
complex topography setting and various human engineering activities. They lead to frequent
landslide hazards, which cause serious threats to the safe operation of the power transmission
system. Thus, it is of great significance to carry out landslide susceptibility assessment for disaster
prevention and mitigation of power network. We, therefore, undertake an extensive analysis and
comparison study between different data-driven methods using a case study from China. Several
susceptibility mapping results were generated by applying a multivariate statistical method (logistic
regression (LR)) and a machine learning technique (random forest (RF)) separately with two different
mapping-units and predictor sets of differing configurations. The models’ accuracies, advantages
and limitations are summarized and discussed using a range of evaluation criteria, including the
confusion matrix, statistical indexes, and the estimation of the area under the receiver operating
characteristic curve (AUROC). The outcome showed that machine learning method is well suitable
for the landslide susceptibility assessment along transmission network over grid cell units, and the
accuracy of susceptibility models is evolving rapidly from statistical-based models toward machine
learning techniques. However, the multivariate statistical logistic regression methods perform better
when computed over heterogeneous slope terrain units, probably because the number of units is
significantly reduced. Besides, the high model predictive performances cannot guarantee a high
plausibility and applicability of subsequent landslide susceptibility maps. The selection of mapping
unit can produce greater differences on the generated susceptibility maps than that resulting from
the selection of modeling methods. The study also provided a practical example for landslide
susceptibility assessment along the power transmission network and its potential application in
hazard early warning, prevention, and mitigation.

Keywords: landslide susceptibility assessment; power transmission network; slope terrain unit;
random forest; logistic regression

1. Introduction

As climate change intensified and energy demand expanded [1], the malfunctions
of power network frequently occurred in recent years, such as the massive outage in
Texas, in the United States, in 2021 [2,3], and the severe electricity shortage in northeast
China since September 2021 [4]. As the main frame of power network, high-voltage
transmission lines must span wide areas with different geographic and climatic features.
Power transmission infrastructures are usually built on mountainous and hilly area in order
to avoid the mutual interaction with human activity. However, such areas are also more
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prone to geohazard, especially landslide. According to statistics from China Electric Power
Research Institute (CEPRI), in the most recent 5 years, a total of over 6000 transmission
towers were under the potential threat of geohazards, and more than 25% were caused
by landslides [5]. Therefore, the identification of landslide susceptible areas along the
transmission network provides a basis for landslide early warning and integrated risk
analysis, which significantly contribute to hazard prevention and the safety operation of
power network.

Landslide susceptibility assessment aims to estimate the spatial probability of potential
unstable slopes based on the information of past and present landslide events. The quality
of landslide susceptibility map highly depends on the input data, especially the explana-
tory variables and landslides inventory [6–9]. Many approaches have been developed to
quantitatively assess landslide susceptibility, which could be loosely grouped into three
main groups, physically-driven models, knowledge-driven models, data-driven models,
including statistically-based classification methods and recently well-developed machine
learning (ML) methods [10–13]. Each of these approaches has shown its advantages and
limitations. The quality of a heuristic model largely depends on the understanding of the
real causes, and the conditioning factors of investigators in an area, currently, deliver a high
prediction accuracy, however, inevitably introducing a lot of subjective experience [14,15].
Among them, only physically-driven method considers the physical interactions between
landslide occurrence and its terrain condition. However, such models require high-quality
geotechnical and hydrological input data on the specific site [16–18], thus only being ap-
plicable to small scales. Thus, in this article, we focus on the susceptibility assessment
for landslide initiation along power transmission lines by using data-driven modeling
methods in Geographic Information System (GIS) integrated environment.

Statistical methods are sustained on the basic assumption that landslides are recurrent
events that occur independently, and future landslides are more likely to occur under the
same geologic and morphologic conditions which led to a past landslide [19–21]. Besides,
landslide conditioning factors are spatially linked and, therefore, can be used to predict
future landslides [22,23]. The development of landslide is dominated by the geological
and topographical conditions of the individual slopes, and also triggered by external
factors, such as hydrological conditions, climatic conditions, human engineering activities,
and earthquake [24]. More conditioning factors were identified for landslide susceptibility
assessment in past literatures [12,25]. Consequently, the selection of landslide conditioning
factors is a crucial step in landslide susceptibility mapping (LSM).

As a long-term research hotspot, basically all the issues about susceptibility mapping
have been extensively studied, including the selection and optimization of explanatory
variables, performance evaluation of various susceptibility models, and validation of the
susceptibility assessment result [23,26]. Recently, comparisons between the performance of
statistical and various novel machine learning models accounted for the majority of these
landslide susceptibility studies [27–30]. Besides, uncertainty related with landslide inven-
tories, predisposing factors, and analytical tools have been addressed in literature [31,32],
but little attention has been given to the effects on landslide susceptibility maps result-
ing from the selection of the terrain mapping unit to represent predicting result [33,34].
The type and size of the terrain mapping unit may exert significant influence on the final
results of the susceptibility assessment. The selection of the most adjusted terrain mapping
unit for modeling depends on the scale and aim of the work, the quality and resolution of
the available information, and the type and size of landslides [20,35–37]. Many authors
stated that landslide susceptibility models performance increased when slope unit (SU)
is used, probably owing to its clear topographic meaning and distinct ability to exploit
heterogeneous information in a consistent way [33,36].

A number of landslide susceptibility related analyses were developed in the selected
region due to the large amount of landslide and their potential threat to local habita-
tions [38–45]. Most of them mainly focused on enhancing the performance of predictive
model, by using hybrid machine learning models and hyper-parameter optimization
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methods, while neglecting the practical understanding and applications of landslide sus-
ceptibility result. Therefore, in this work, both SU and raster unit were employed to assess
the landslide susceptibility along power transmission lines, aiming to obtain the most
applicable LSM results.

Limited number of contributions are specifically oriented to the quantitative estima-
tion of landslide spatial probability to some specific risk-bearing element, such as roads
or power transmission lines, which has a long-linear distribution [46]. Jaiswal et al. pre-
sented a landslide hazard assessment study along a transportation line in southern India,
combining the spatial, temporal and volume probability estimation. [47]. Peng et al. per-
formed a regional landslide susceptibility mapping in the Three Gorges Area considering
different exposed elements, including roads [38]. Das et al. developed and applied a
quantitative methodology for landslide hazard assessment in a national highway corridor
in the Himalayan region, using homogeneous susceptible units [48]. Ge et al. compared
five different landslide susceptibility models using the case study in Longnan, City Gansu
Province, with a 330-kV transmission line [49].

Besides, for tasks, such as LSM, there is some subjectivity when dealing with their
performance evaluation. Both the performance of susceptibility models and the overall
quality of the LSM result required a comprehensive evaluation. The set of tests included
the degree of model fit, the robustness of the model, the uncertainty associated with the
probabilistic estimate, and the model prediction skill [20,50–53]. Usually, the overall model
performance determined by quantitative evaluation metrics is not enough to offer a full
assessment of model reliability. A deeper sufficiency analysis of landslide susceptibility
maps generated by the models is essential [13]. In such condition, Guzzetti et al. proposed
a set of criteria, the Susceptibility Quality Level (SQL), to rank the quality of a landslide
susceptibility assessment, which considers the type of tests performed to evaluate the
quality of susceptibility assessments results [20].

This study was designed and performed with the purpose of producing a susceptibility
map with the special attention to landslides along the power transmission networks.
The high-voltage transmission lines in the Three Gorges Reservoir area (TGRA), China,
was selected as a case study due to no landslide susceptibility map existing. The result
provided a comparison case between LR and RF models employing two different mapping
unit. Furthermore, a comprehensive validation of the generated LSM was presented.

2. Study Area

The study area is selected as the environs of the high-voltage transmission lines of
5 counties in the TGRA, China, namely Wanzhou, Yunyang, Wushan, Fengjie, and Badong,
between longitudes 30◦49′~31◦41′ N and latitudes 107◦55′~110◦19′ E (Figure 1). Regarding
the transmission lines as the center, the environs are created with a buffer distance of
2000 m. The distance is determined using the empirical equation of landslide runout
distance proposed in Reference [54]. Landslides out of this range are considered to have no
impact to the power transmission infrastructures.
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Figure 1. Geological map of the study area, with location and landslide distribution of the transmission line corridor.
The main strata include: T1d, T1j, T2b, T3xj: Triassic Daye Formation, Jialingjiang Formation, Badong Formation, and Xujiahe
Formation, respectively; J1: Jurassic Zhenzhuchong Formation and Ziliujing Formation; J2: Jurassic Shaximiao Formation
and Xingtiangou formation; J3p, J3s: Jurassic Penglaizhen Formation, and Suining Formation.

The region is in the southwest of China, close to the middle reaches of the Yangtze
River, with a maximum elevation of 2469 m. A complete power transmission network has
been established in the area, which is mainly composed of 7 different high-voltage lines,
such as Shenwan Line, Panlong Line, and Wanpan Line.

Influenced by the Himalayan orogeny, the study area is mainly moderate to low
altitude mountains and river valleys sector of the TGRA. The current landscape was
marked by Fengjie County as a topographic turning point, with low altitude mountains
and hills in the west-side and higher altitude river valley and moderate mountains in the
east [55]. Meanwhile, solid evidence of intensive tectonics is observed in the area, including
large-scale structures, such as the Wanzhou synclinorium, Qiyueshan anticline, Wushan
syncline, Guandukou syncline, and Xiannvshan fault [55].

The age of the bedrock varies from Cambrian to Quaternary, and the lithology tran-
sitioned from Jurassic and Triassic clastic rock (sandstone, mudstone, and sandstone
interbedded with mudstone layers) to hard carbonaceous rocks (limestone, marlstone,
and dolostone) from west to east, with a large number of stratified hard and soft interbed-
ded rocks entrained. The so-called red strata are widespread in this area, mainly exposed
in the west of Fengjie, which refer to sandstone, mudstone, and sandstone interbedded
with mudstone layers, while the hard rocks form the steep gorges and valleys in the east of
Fengjie.
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3. Methods

In this study, we aim to assess the susceptibility for landslides along power transmis-
sion network with 2 data-driven methods and critically evaluate the generated LSM from
the perspective of the practical application of the power transmission divisions.

The adopted procedure we implemented mainly consisted of four steps (Figure 2):

(a) We construct a spatial database from various data sources and extract the landslide
conditioning factors from the constructed database using two types of mapping units
(raster and slope units).

(b) We analyze the landslide conditioning factors through the optimize processes, which
include multicollinearity diagnose and factor contribution analysis; then, the opti-
mized factors are used to create the training and test datasets through resampling
strategy.

(c) We establish the susceptibility models using data-driven methods: logistic regression
and random forest. The parameters of the involved machine learning methods are
obtained by error and trial method. In addition, we assess and compare the models’
performance using some evaluation methods and an independent landslide dataset;

(d) Lastly, we generate LSMs and comprehensively assess the overall performance of
them. The main process is operated in ArcGIS.

Figure 2. The flowchart of the landslide susceptibility assessment.
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3.1. Construction of a Spatial Database
3.1.1. Landslide Inventory

The study area has long been plagued by landslides, which are largely induced by
intensive rainfall and reservoir water level fluctuation [55]. Since the study area has been
cropped as a 4-km-wide belt-like area along the transmission line, a total of 264 landslides
within this area were defined as potentially threats to power transmission lines. It should
be noted that shallow landslides in colluvium are the most representative landslide in this
area; however, rock falls and soil mass movements with small magnitude were excluded
from this inventory due to the low degree of threat. Therefore, the remaining landslides in
the record tend to have large volume. According to the existing information, the inventory
contains 41 rock slides, with volume ranging from 3600 to 1.6 × 107 m3, and 207 earth
slides [56], with volume ranging from 500 to 7 × 106 m3. However, landslides o medium
(105 to 106 m3) to large-size (106 to 107 m3) account for 74% of the total landslides. A total of
50 landslides developed along the Yangtze River or its tributaries, which were considered
to be seriously affected by groundwater level fluctuation. More than 90% percent of
the recorded landslides were triggered or greatly affected by the intense rainfall which
frequently occurred during rainy season. The main source of this landslide inventory is
an old landslide inventory of the TGRA, supplemented with some recent reports of field
investigations and landslide news.

Another new landslide database was obtained from the annual transmission line
routine inspection implemented by the local power operation and maintenance department
and collected by CEPRI. In total, 14 landslides were reported to have exerted varying
degrees of influence on transmission towers in the study area from January 2016 to June
2020.

3.1.2. Landslide Conditioning Factors

Landslide conditioning factors need to represent the totality of possible influences that
govern landslide triggering mechanisms. Their acquisition path and classification scheme
are directly related to their different natures and environment characteristics [57]. Based on
field investigation, work experience, past literature, and available data of the study area,
various aspects of geo-spatial data were intentionally collected and used in this study; the
information of data source is shown in Table 1.

Table 1. Data and data sources.

Data Type Data Source Data Form Data Scale

DEM ASTER satellite raster 30 m
Land cover Chongqing Municipal Bureau of Land and Resources raster 30 m

Geological map National geological data museum Vector 1:200,000
Satellite image Landsat-8 OLI data raster 30 m

Administrative division Geospatial Data Cloud platform Vector 1:100,000
Water system Geospatial Data Cloud platform Vector 1:100,000
Road network Geospatial Data Cloud platform Vector 1:100,000

Power transmission towers China Electric Power Research Institute Vector (Coordinate) /

A total of 15 conditioning factors are considered for the analysis, including: elevation,
slope, aspect, profile curvature, plan curvature, topographic wetness index (TWI), Terrain
roughness index (TRI), stream power index (SPI), lithology, distance from lineaments, dis-
tance from river, distance from road, bedding structure, Normalized difference vegetation
index (NDVI), and land cover.

Slope, aspect, profile curvature, plan curvature, TRI, TWI, and SPI were obtained from
digital elevation model (DEM) from ASTER GDEM with a 30 m resolution. Among them,
slope, aspect, profile curvature, plan curvature, and TRI are conventional factors. TWI and
SPI define the amount and power of water flow and accumulation, which can be used
to quantify topographic influence on hydrological processes [24]. Lithology and faults
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were extracted by vectorizing geological maps at scales of 1:200,000. Bedding Structure
indicates the intersection relationship between strata and slope, and it was subtracted by
reclassifying the combination of stratum direction and slope direction based on topographic
maps and geological maps [40]. NDVI was calculated using Landsat-8 OLI data. Distance
from lineaments, rivers, and roads was derived after buffering the vectors of faults, rivers,
and roads. The classification scheme for each conditioning factor was shown in Table 2.

Table 2. Classification of landslide conditioning factors.

Factors Class Classification Standard

Altitude (m) 5 1. <400; 2. 400–600; 3. 600–800; 4. 800–1000; 5. >1000
Slope (◦) 5 1. <10◦; 2. 10◦~20◦; 3. 20◦~30◦; 4. 30◦~40◦; 5. 40◦~90◦;
Aspect 9 1. Flat; 2. North; 3. Northeast; 4. East; 5. Southeast; 6. South; 7. Southwest; 8. West; 9. Northwest

Profile curvature 6 1. <−2; 2. −2~−1; 3. −1~0; 4. 0~1; 5. 1~2; 6. >2;
Plan curvature 6 1. <−2; 2. −2~−1; 3. −1~0; 4. 0~1; 5. 1~2; 6. >2;

Lithology 8 1.J3p/J3sn/J2x; 2. J2s/J2xs; 3. J2q/J1t; 4. J1-2z/J1zl; 5. T3-J1x/T3xj/T3j; 6. T2b; 7. T1d/T1-2j; 8.Q;

Bedding Structure 7 1.Horizontal strata slope; 2. Over-dip slope; 3. Under-dip slope; 4. Dip-oblique slope; 5. Transverse
slope; 6. Anticlinal oblique slope; 7. Anticlinal slope;

TRI 6 1. 1.0~1.1; 2. 1.1~1.3; 3. 1.3~1.5; 4. 1.50~2.0; 6. >2;
SPI 7 1. 0~1; 2. 1~2; 3. 2~3; 4. 3~4; 5. 4~5; 6. 5~6; 7. >6;
TWI 5 1. 1.88~4.73; 2. 4.73~5.94; 3. 5.94~7.36; 4. 7.36~9.36; 5. 9.36~20.03;

NDVI 7 1. <0.10; 2. 0.10–0.20; 3. 0.20–0.30; 4. 0.30–0.40; 5. 0.40–0.50; 6. 0.50–0.60; 7. >0.60
Distance from rivers (m) 6 1. <100; 2. 100~300; 3. 300~500; 4. 500~1000; 5. 1000~2000; 6. >2000;

Land cover 9 1.cropland; 2. Forest; 3. Grassland; 4. Shrub-land; 5. Wetland; 6. Water; 7. Tundra; 8. Impervious
surface; 9. Bare land

Distance from roads (m) 6 1. <150; 2. 150~300; 3. 300~450; 4. 450~600; 5. 600~1000; 6. >1000;
Distance from lineaments (m) 6 1. <1000; 2. 1000~2000; 3. 2000~3000; 4. 3000~4000; 5. 4000~5000; 6. >5000;

3.1.3. Mapping Unit

Two types of assessment units, namely 30-m grid unit and SU, are adopted in this
study. SU is defined as the region between ridges and valleys which is constrained by
homogeneous slope aspect and degree of inclination [58]. It is widely used for its clear
topographic condition.

SU could be delineated manually from topographic map or automatically partitioned
by some auxiliary software with or without input parameters [58–60]. The main procedures
are as follows: (i) filling the original and the reverse DEM; (ii) extracting the surface water
flow direction and flow accumulation to establish the stream link; (iii) extracting the valley
lines and ridge lines and establish watershed; and (iv) delineating the slope units based on
the watershed; all of these can be found in many previous literature [33,61,62]. The whole
procedure was integrated and automatically processed in an ArcGIS-based hydrologic
analysis modules to avoid subjective uncertainty. Then, in order to rectify the unreasonable
delineation due to the insufficient resolution of the applied DEM, the auto-generated SU
map was manually modified using the digital terrain map. Table 3 shows the general
characteristics of the mapping units.

Table 3. General characteristics of the mapping units.

Mapping Unit Numbers Average Size
(m2)

Minimum
Size (m2)

Maximum Size
(m2)

Number of
Landslide Units

Percentage of
Landslide Units %

Slope Unit 6735 215,764 5610 1,514,390 231 3.43

Grid cell Unit 1,426,231 900 900 900 39, 190 2.75

3.1.4. Feature Selection Methods

Information gain ratio (IGR) is the most efficient and widely used feature selection
method in susceptibility modeling [40,63,64], since they disregard the scales and units of
the landslide conditioning factors and allow preliminary ranking [13].
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IG is defined as a reduction in entropy E(Y) of a referent landslide inventory Y
(with j classes), due to the informational interference of a conditioning factor F (with n
classes). It measures the amount of information gained about a random variable from
observing another random variable. The factor with a higher value of IGR indicates a
higher contribution in the models. The Information Gain value for landslide conditioning
factor Fi corresponding to the out-class Y (landslide and non-landslide) is measured as
(Equation (1)):

Information Gain(Y, F i) = E(Y)− E(Y|F i), (1)

where E(Y) is the entropy value of Fi and is calculated by using Equation (2); E(Y|Fi) is the
entropy of Y after associating values of landslide conditioning factor Fi and is estimated
using Equation (3)

E(Y) = −∑ iP(Y i) log2P(Yi), (2)

E(Y|F i) = −∑ j=1
Yj

|Y| log2 E(Y) , (3)

where P(Yi) is the prior probability of the class Y and P(Yi|Fi) is the posterior probabilities
of Y given the values of conditioning factor Fi.

Then, the IGR of the landslide conditioning factor Y is calculated as:

IGR(Y) =
E(T)− E(T|F i)

IntI(T, F)
, (4)

where IntI is the potential information generated by dividing the training data T into m
subsets. The formula of IntI was shown as follows:

IntI(T, F) = −∑ m
j=1

Tj

|T| log2
Tj

|T| . (5)

Multicollinearity occurs when the input variables have a high linear correlation be-
tween specific conditioning factors [65]. Variance Inflation Factors (VIF) provides an index
of how much the variance of the estimated regression coefficient has increased due to
collinearity. The degree of multicollinearity can be quantified by calculating the standard
error variations of landslide conditioning factors. The formula of VIF is given as:

VIF =
1(

1− R2
) , (6)

TOL = 1− R2 =
1

VIF
, (7)

where R2 measured the extent of one specific factor that is correlated with another factor in
linear regression. The lower the standard error and VIF value, the lower the multicollinear-
ity risk.

3.2. Preparation of the Sample Datasets

Both of pixel-based unit and slope unit were used to cross tabulated with values
of the landslide conditioning factors to obtain the corresponding attribute matrices for
susceptibility assessment. It should be noted that all the individual SU is assumed to have
a homogeneous terrain and lithologic condition; thus, the mode of the categorized factors
values within the area of the SU is used to represent such discrete attribute.

The modeling dataset is comprised of the positive cases (with landslides) and the
negative ones (with no landslide), with the target class value (landslide) set to ‘1’ and ‘0’ for
non-landslide. In raster-based models, positive cells comprised 39,190 historical landslide
cells, which were selected by the 264 landslide polygons. The same number of no landslide
cells were extracted and randomly selected from the non-landslide areas, such as river
networks or terrains with slope angle close to 0◦. Finally, the whole model dataset was
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randomly separated into the training dataset (70%) and the test dataset (30%). In slope-
based models, the same sampling strategy is used for model construction, including
231 landslide SU and 231 non-landslide SU. The modeling process is implemented in SPSS
Modeler.

3.3. Landslide Susceptibility Models
3.3.1. Logistic Regression

Logistic regression (LR) [66] is a widely used multivariate statistical method for
landslide susceptibility modeling which can reveal the empirical relationship between
the target of landslide occurrence and various independent explanatory variables [67,68].
In the function of a usual linear LR model, the explanatory variables can be continuous,
discrete interval, dichotomous, categorical, or any combination of them which do not need
to be normally distributed [69]. The formula of LR is as follows:

Y =
1

1 + e−(a+b1x1+b2x2+...+bnxn)
, (8)

where x1, x2, . . . xn are explanatory variables, and Y is a combination function that de-
scribe the linear relationship of these variables. For predicting the presence or absence of
landslides, Y is used as a binary variable (0 or 1). The parameters b1, b2, . . . bn are the
coefficients at normalized scale which allow for comparison of the relative importance of
each independent variables on the response, and a is the intercept.

3.3.2. Random Forest

Random Forest is a supervised classification algorithm and is an ensemble method
of a large set of independently trained decision trees [70]. With each tree voting for the
class membership, the prediction of respective class assignment is determined according to
the majority voting of all trees. Taking advantage of the variance among individual trees,
such an ensemble method is considered to be robust, accurate, and less prone to overfitting,
especially performing on complex dataset with undisclosed noisy variables [71]. RF is
known to provide high accuracy rates with respect to outliers in predictors due to the
use of random selection of the predictors (bagging) and the subsequently combination of
model construction [72].

The main hyper-parameters in RF models include the number of trees, the maximum
depth of trees, and the maximum number of features considered at each split. Parameters
of the models was usually conducted by means of internal cross-validation, OOB (out of
bag) method, which is used to estimate variable importance and the internal classification
error.

3.4. LSMs Performance and Validation

It is necessary to evaluate both of the fitness of the applied landslide susceptibility
models and the overall quality of the generated LSMs [20].

In this study, the confusion matrix, statistical indexes, and ROC curve were used to
analyze the accuracy of susceptibility models [22,23]. In the confusion matrices, landslide
samples are denoted as positive, while non-landslide samples are negative. The instance
which correctly classified landslide samples is recorded as TP (true positive), and the
instance which correctly classified non-landslide samples is TN (true negative); FP (false
positive) are the non-landslide samples that are predicted as landslide; FN (false negative)
are the landslide samples that are predicted to be non-landslide. A set of quantitative
indexes, including accuracy (ACC), precision (PRE), TP rate, TN rate, and MCC, were esti-
mated based on confusion matrices using the formulas shown as follows:

Accuracy (ACC) = (TP + TN)(TP + TN + FP + FN), (9)

Precision (PRE) = TP(TP + FP), (10)
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True Positive Rate (TPR) = Sensitivity = TP(TP + FN), (11)

True Negative Rate (TNR) = Specificity = TN/(TN + FP), (12)

Matthews correlation coefficient (MCC) =
TP× TN− FP× FN/

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN).

(13)

Among them, the overall accuracy (ACC) describes the number of correctly classified
events of both landslide samples and non-landslide samples. Other confusion-matrix-based
statistical index, such as precision, sensitivity, and specificity, were also used to evaluate
the capabilities of the predictive models and generate Receiver operating characteristic
(ROC), which is a type of curve consider ‘1-specificity’ and sensitivity as the horizontal and
vertical axes, respectively [73]. The area under the ROC curves (AUC) can be implemented
to evaluate the performance of the models, and the model with a larger AUC is considered
to have a higher predictive capability. Besides, mean absolute error (MAE) and root mean
squared error (RMSE) are useful indicators for predictive accuracy evaluation of continuous
variables [74].

To test the quality of the generated LSM, the landslide distribution in different sus-
ceptibility levels was statistically analyzed. Meanwhile, area extent covered by each
susceptibility class is validated against the landslide density distribution. The independent
dataset, with landslides having occurred in the most recent 5 years (2016–2020), was also
used in this procedure, and the overall performance of the LSMs were comprehensively
discussed.

4. Results
4.1. Selection of Landslide Conditioning Factor

The selection of model parameters in landslide susceptibility makes a major determi-
nant of model accuracy. Fifteen factors were prepared and considered as initial conditioning
factors for landslide susceptibility assessment. VIF, which is used to detect and quantify
multicollinearity between conditioning factors, and IGR, for factors contribution ranking,
are implemented in this study for feature selection. The feature analysis shows that all
the implemented landslide condition factors are linearly independent and effective to be
used in the LSM for this study. As shown in Table 4, all factors are under the critical multi-
collinearity threshold (TOL < 0.2 or VIF > 5 [75]) and beyond the contribution threshold of
IGR > 0. However, two factors (SPI and TWI) were removed in the SU form because of the
unbalance in the sample size of various categories (namely, too much sample for a single
category).

Furthermore, two conditioning factors (Altitude and Land cover) ranked among the
top three in factor contribution in both raster and SU form. Distance from rivers and slope
showed a high importance in SU form, while showing much less importance in raster form.

However, three conditioning factors, i.e., Aspect, Plan curvature, and Profile curvature,
show relative less important to other topographic factors. It should be noted that geological
factors (i.e., Lithology, distance from lineaments) are normally identified as critical factors
in susceptibility models in the TGRA, owing to the complex geological condition. However,
such factors seem to be less importance for landslides along power transmission network.
Instead, environmental factors (i.e., Land cover, NDVI, Distance from river, Distance from
roads) become the dominant factors.
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Table 4. Multicollinearity analysis and factor contribution analysis result for each landslide conditioning factor in raster and
SU form.

Conditioning
Factors

Raster Unit Slope Unit

VIF Tolerance IGR VIF Tolerance IGR

1 Altitude 1.334 0.750 0.023 1.254 0.798 0.025
2 TRI 2.732 0.366 0.019 3.057 0.327 0.019
3 Land cover 1.265 0.790 0.019 1.126 0.888 0.043
4 NDVI 1.233 0.818 0.015 1.164 0.859 0.018
5 Distance from rivers 1.052 0.950 0.014 1.061 0.942 0.038
6 TWI 1.180 0.847 0.012 / / /
7 Distance from roads 1.214 0.824 0.012 1.161 0.861 0.019
8 Slope 2.941 0.340 0.012 2.211 0.452 0.022
9 Lithology 1.172 0.853 0.011 1.231 0.812 0.015
10 SPI 1.261 0.793 0.011 / / /
11 Distance from lineaments 1.095 0.913 0.010 1.064 0.939 0.014
12 Plan curvature 1.627 0.615 0.010 1.025 0.975 0.014
13 Bedding Structure 1.120 0.893 0.010 1.044 0.958 0.016
14 Profile curvature 1.515 0.660 0.010 1.220 0.819 0.016
15 Aspect 1.059 0.945 0.009 1.058 0.945 0.013

4.2. Validation and Model Comparison

The machine learning models of RF and the multivariate statistical model of LR
were applied to assess the susceptibility of landslide. To evaluate the performance of the
applied models, several statistical index-based evaluation metrics were employed using
both training and testing datasets (which are mentioned in Section 3.4).

In this case study, both the RF and the LR models show satisfactory performance,
and the result of the testing dataset also shows the same trend as the training dataset (see
Table 5). The RF model is able to outperform the LR models in raster-form concerning
all the statistical index. When comparing the LR models with different mapping unit,
the LR-SU model showed noticeable enhancement over the LR-Raster model.

Table 5. Evaluation metrics on the performance of different models.

Model Stage AUC ACC Precision TPR TNR MCC RMSE MAE

Training
RF (Raster) 0.927 0.867 0.826 0.929 0.805 0.740 0.359 0.133
LR (Raster) 0.846 0.771 0.762 0.787 0.756 0.543 0.478 0.229

LR (SU) 0.882 0.793 0.786 0.797 0.779 0.577 0.457 0.207

Testing
RF (Raster) 0.915 0.856 0.817 0.919 0.793 0.718 0.374 0.144
LR (Raster) 0.839 0.766 0.759 0.781 0.751 0.532 0.484 0.234

LR (SU) 0.879 0.798 0.809 0.784 0.813 0.597 0.465 0.214

The ROC curves in Figure 3 show the training and testing performance of the applied
models. The RF model achieved excellent performance of AUC over 0.9, while LR also
showed a good result, of AUC over 0.8. It is interesting to note that the LR-SU obviously
outperformed the LR-Raster, despite the much smaller sample size.



Remote Sens. 2021, 13, 5068 12 of 22

Figure 3. The ROC curves of the RF and LR models in landslide susceptibility assessment: (a) training and (b) testing.

4.3. Producing LSMs and Result Evaluation

Once the susceptibility models were successfully trained, they were used to determine
the landslide susceptibility index for every pixel or SU, which are calculated as decimal
float numbers range from 0 to 1. Then, the generated LSMs were reclassified into four
levels by defining the limits of the cumulative distribution of the susceptibility values,
namely low (40%), moderate (30%), high (20%), and very high (10%). This four-level
classification system was mainly designed in order to correspond to the current criterion of
hazard early-warning system of the CEPRI. Figure 4 shows the distribution of the landslide
susceptibility classes and their defined susceptibility index (LSI) using three ensemble
models, respectively. Comparing the distribution of LSI in each susceptibility level of the
three generated LSMs, the model built with RF in raster unit has the highest threshold for
very-high susceptibility area (LSI > 0.898), and the lowest LSI for low susceptibility area
(<0.134). Such distribution of LSI indicates higher probability of landslide occurrence in
area with very-high susceptibility, and lower likelihood of landslide occurrence in area
with low susceptibility. This is followed by the LR model in SU, which has a threshold for
very-high susceptibility level at LSI > 0.833, and LSI < 0.168 for low susceptibility level,
respectively. This observation implies that, with more reasonable LSI distribution, the RF
model in raster unit is less sensitive than the LR model in both raster unit and SU. This is
probably because the RF model is more capable of dealing with redundant or scattered
features and capturing the dominant factors.
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Figure 4. Landslide Susceptibility Maps obtained with different models and mapping units. (a) RF model in Raster unit.
(b) LR model in Raster unit. (c) LR model in SU.
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The statistics of the susceptibility maps are shown in Table 6. All the generated LSM
results fulfill the two basic spatial principals: (i) an increase in landslide density ratio
from low susceptible classes to high susceptible classes; and (ii) high susceptibility classes
covering small extents. For the LSM from RF model, 61.9% of the total landslides, covering
61.5% of the total landslide area, occurred in 7.75% of the study area which is categorized
as very high susceptibility level. Only 9.43% of the landslides, covering less than 5% of the
total landslide area, occurred in low to moderate susceptible area, which took up 72.85%
of the total study area. As for the LR model in raster form, 49.8% of the total landslide,
covering 48.73% of the total landslide area, occurred in 10% of the study area (which is
classified as very high susceptibility level). However, 48 landslides (18.11%) occurred in
low to moderate susceptible area, which took up 70.14% of the total study area. It is quite
noticeable that the LR model showed a relatively weak predictive ability comparing to
the machine learning RF model. Such an outcome provides another example in accord
with the current trend which highlights the predictive power of advanced and evolving
machine learning models.

Table 6. Accuracy statistics of the generated LSMs.

Susceptibility
Level

Numbers of
Landslides

Units in
Landslide (A)

Units in
Domain (B)

Proportion of
Landslide in Total

Landslide (C)

Proportion of
Domain in Total

Domain (D)

Proportion of
Landslide in

Domain (A/B)

RF
(Raster)

Low 5 379 663,979 0.97% 46.56% 0.05%
Moderate 20 1568 374,940 4.00% 26.29% 0.37%

High 76 13,140 276,480 33.53% 19.39% 4.24%
Very high 164 24,103 110,832 61.50% 7.75% 19.39%

LR
(Raster)

Low 16 1627 584,948 4.15% 41.01% 0.28%
Moderate 32 5412 415,503 13.81% 29.13% 1.30%

High 85 13,054 283,220 33.31% 19.86% 4.61%
Very high 132 19,097 142,560 48.73% 10.00% 13.40%

LR
(SU)

Low 8 8 2670 3.46% 39.64% 0.30%
Moderate 43 38 2036 16.45% 30.23% 1.87%

High 86 82 1357 35.50% 20.15% 6.04%
Very high 128 103 672 44.59% 9.98% 15.32%

When it comes to the LR models with different mapping unit, the results reveal that
the proportion of landslides in each level of susceptibility region are quite close. In spite
of the difference in size and total number of the mapping unit, LR-SU model has a better
performance in landslide prediction compared to the LR-Raster model.

Furthermore, landslide data from 2016 to 2020 were applied for further validation.
Fourteen towers were reported to have suffered varying degrees of damage from landslides
during this period. By overlaying the 14 coordinated landslides on the LSMs generated by
the LR-SU and RF models (Figure 5a,b), it can be discovered that most of the new landslides
fell into the high- or very-high-susceptibility regions of LSMs generated by both LR-SU
and RF models (Table 7), showing a certain prediction ability. Apart from this, 30 towers
are predicted to be of very high susceptibility levels in all the LSM results, which need to
be paid special attention in future line inspections.
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Figure 5. Distribution of recent landslides from 2016–2021 in generated landslide susceptibility maps, with 2 representative
landslides showing in detail view: (a) LSM by RF model in raster unit; (b) LSM by LR model in SU.
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Table 7. Susceptibility level of the recent landslide from 2016 to 2020.

Low Moderate High Very High

RF 1 3 6 4
LR (SU) 1 3 4 6

The No. 200 tower of the Panlong line, as a key transmission tower connecting
the long-span line across the Yangtze River, was situated on the Yanzi ancient landslide.
However, signs of landslide reactivation were found in February 2016 (Figure 6). The tower
No. 200 was detected to have noticeable inclination and immediately relocated to the new
site beyond the range of the landslide. Comparative analyses indicated that the Yanzi
landslide was located in very-high-susceptibility regions of both LSM generated by the
LR-SU model and the RF model. Field investigation indicated that the landslide revival was
probably owing to the excavation for road construction and the related human engineering
activities.

Figure 6. The Yanzi ancient Landslides located at Badong County: (a) general view of the Yanzi landslide, the yellow
rectangles indicating the position of the tower before and after relocation. (b–d) Crack L1 on the foundation platform of the
transmission tower; (e) cracks in one leg of the transmission tower.

In July 2020, tower No. 152 of the Panlong line suffered severe threat from a small-size
landslide occurred in Yunyang County (Figure 7). The field investigation revealed that
the landslide was triggered by slope cutting for road construction (Figure 7) and short
periods of intense rainfall. Comparative analyses indicated that the landslide was located
in very-low-susceptibility regions of LSM by the LR-SU model, but it fell within a series of
grids with moderate to high susceptibility levels in LSM generated by the RF model.
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Figure 7. Landslide that occurred at Yunyang County in July 2020: (a) general view of the landslide which posed threat to
the tower No. 152. (b) The aerial image of the landslide, where the landslide boundary is marked with yellow line.

As a matter of fact, landslides do not happen on a single cell. For this reason, although
the prediction ability of the RF model was significantly better than that of the LR model,
sometimes, the LSM in SU form may perform better in result exhibition and practical
application.

5. Discussion
5.1. Conditioning Factors

The contribution of landslide conditioning factors may largely vary in different models
owing to the difference of models’ mechanism. Consequently, the methods which allow
preliminary ranking of the factors’ contribution become popular for it may alleviate a lot of
repetitive work from trial and error. The result of factors contribution analysis showed that
terrain factors and environmental factors are taking the leading role, probably because the
main type of geohazards in this study is colluvial landslide, which is different from the most
prominent and focused reservoir landslides in the TGRA [40]. This result is generally in
agreement with general rainfall triggered shallow landslide scenarios observed elsewhere.
Besides, factors in different mapping unit may vary significantly in classification and spatial
distribution, such as distance from rivers and slope, which showed a high importance in
SU form, while much less importance in raster form. This is probably because the slope
unit is assumed to have homogeneous attribute, and the sample sizes were much smaller
comparing to that in raster form. Thus, the conversion from the original data source to
other unit form also require specific rules and standard of classification.

5.2. Scale Effects and Problem of Suitable Mapping Unit

The scale effects of the employed mapping unit, particularly their type, size, and res-
olution, directly impact the precision and accuracy of LSMs [20,24]. The feature within
a single unit is assumed to be homogenous, which evidently influences the form and
categorization of landslide conditioning factors, further leading to the difference in factors
contribution; see Table 4.

Despite their operational advantage and low computational burden over grid-cells,
the slope terrain unit has clear physical meaning, and they can avoid the shortcomings
of low geomorphological representativeness of grid-based susceptibility mapping which
differentiate susceptibility conditions within the same slope [43]. It also allows for easy
orientation to hazard exposed elements and comparison of their susceptibility levels (e.g.,
transmission towers), which is interesting for decision-makers, such as the local authorities
or power managements, whereas the homogeneity inside the terrain units may lead to the
overestimation of the susceptibility level, especially for some units with large size.
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From previous studies, a pixel-based mapping unit is applicable to medium to large-
scale area, while a slope-based mapping unit is more applicable to small-scale area. When it
comes to larger scale, such as a province or nation, SU is rarely used for it brings more
efforts in units delineation. In this case, in order to focus on landslides along the power
transmission lines, the study region was customized as a long narrow belt, covering a wide
range but medium area. Combining with the machine-learning techniques, pixel-based
mapping unit provided LSMs with higher accuracy, while SU-based mapping unit gave
clearer results with better display effect, which are a better fit for the future applications,
such as risk assessment and early warning analysis. Consequently, considering the scale
effect and finding the most suitable mapping unit and its best fit resolution for landslide
susceptibility is another challenge in the future, especially when facing the different needs
of different target audience.

5.3. Model Comparison and Performance Evaluation

Comparing to the evaluation of the predictive performances of the susceptibility mod-
els, the overall performance of LSM remains a more difficult task with higher uncertainty.
From past literature, a broad set of metrics, which considered the specific advantages
and limitations of different models, were employed in model evaluation [73], while the
standard, such as Susceptibility Quality Level (SQL), used to comprehensively evaluate
the quality of LSM, are not widely used.

In this study, the RF model in raster form showed better performance than the LR
model in all the evaluation index. In addition, we also tried to construct RF models on the
SU. However, the model failed to give a satisfactory result on testing sample, even if all the
samples in the training set are almost correctly classified.

Based on our experience, the samples size in SU form were significantly reduced
comparing to that in raster form. In addition, when solving such problem with small data
volume, low data complexity, and nonlinearity, many complex machine learning models
tend to occur overfitting phenomenon, while the LR model is relatively unlikely to cause
such problem. This is probably the reason why complex machine learning models are rarely
employed in studies of landslide susceptibility assessment based on SU, and most of the
researchers have used simpler model, such as LR, to avoid such problems. Besides, in cases
with massive data samples, using machine learning methods inevitably increases the
computation burden and requires higher computing and storage capacity. Consequently,
we reaffirm that the balance between model predictive ability and computation effort merit
attention in different application scenarios.

Apart from this, we consider that the distribution of the model errors and uncertainties
should be attached with special attention, even associated to the single mapping units.
The landslide near tower No. 152 (Figure 7) provide a significant example showing such
uncertainty. From the field investigation, we found that the landslide was mainly caused
by the slope cutting during the road construction and triggered by a heavy rainfall in July.
To some extent, the change in topography caused by the artificial slope cutting could be
reflected by the distance from roads. However, the rainfall was sporadic incident which is
not taken into the consideration of landslide susceptibility assessment. Besides, comparing
to the raster unit, slope unit had an intrinsic difficulty in extracting the attributes of some
conditioning factors, such as distance to roads and curvatures. Such difficulty is mainly
due to the inherent homogeneity in slope-unit. It also brings uncertainties which are highly
related to the evaluation scale and the size of individual SU, since the slope-unit with
a large area tends to have more heterogeneous information inside. Moreover, much of
the uncertainty are related to the landslide inventories. The information about the type,
size and exact boundaries of landslides could greatly contribute to the LSM, and the
representation of landslides (using points or polygons) could make a big difference in
susceptibility modeling process, such as the sampling strategy, feature extraction method,
and validation approach [33].
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5.4. Challenge and Future Directions

Although LSMs provide indicative information on landslide occurrence, geographical
landslide early warning systems (LEWS) have proven to be more effective tools for hazard
prevention in practical use, especially for the giant, complex power transmission system
which is operating under high load. However, LEWSs are complex systems which involve
their design, implementation, operation, management, and verification [76], and current
LEWSs usually combine landslide susceptibility assessment and analysis of rainfall thresh-
olding and forecasting [77]. For a power transmission network, which is also seriously
affected by geohazards, it is of great importance to attach more attention to the further
application of LEWS.

Besides, extreme climate and weather events often cause great impacts on infrastruc-
ture, such as transport network, or power transmission system [78], such as the wide range
of power failure in Texas, in the United States, in 2021, and the extreme rainstorm in Henan
Province in July 2021. However, a general lack of studies of extreme events and its influence
on geohazard has been noted in the previous literatures [79,80]. From the perspective of
decision-maker, how to enhance the resistance of key facilities to such extreme events and
the generated geohazards remains to be discovered. Three aspects of technologies, includ-
ing the wide application of LEWS, rapid hazard identification, and fast safety protection
technology for power transmission facilities, are highly recommended in application and
required to be further developed in the future.

6. Conclusions

Using different data-driven methods and two different mapping units, we presented
several landslide susceptibility assessment results in an area along power transmission
lines. The LSM results were validated and compared, and it supported the following
conclusions: In this study area, environmental factors, such as altitude, tend to have a
higher contribution to landslide occurrence. In raster form, the RF model performs better
than LR with a training and validation accuracy of 0.927 and 0.915, respectively. However,
the RF model fails to give out a reasonable LSM output in SU form, probably owing to the
insufficient training sample in model construction. However, the LR model in SU form
also presented better performance over its raster form, with the AUC value of 0.882 and
0.879 for training and verifying samples, respectively. In general, LSMs generated by
machine learning methods could be a valuable tool in hazard prevention along power
transmission lines.
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