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Abstract: As an essential task in remote sensing, disparity estimation of high-resolution stereo images
is still confronted with intractable problems due to extremely complex scenes and dynamically
changing disparities. Especially in areas containing texture-less regions, repetitive patterns, disparity
discontinuities, and occlusions, stereo matching is difficult. Recently, convolutional neural networks
have provided a new paradigm for disparity estimation, but it is difficult for current models to
consider both accuracy and speed. This paper proposes a novel end-to-end network to overcome the
aforementioned obstacles. The proposed network learns stereo matching at dual scales, in which the
low one captures coarse-grained information while the high one captures fine-grained information,
helpful for matching structures of different scales. Moreiver, we construct cost volumes from negative
to positive values to make the network work well for both negative and nonnegative disparities
since the disparity varies dramatically in remote sensing stereo images. A 3D encoder-decoder
module formed by factorized 3D convolutions is introduced to adaptively learn cost aggregation,
which is of high efficiency and able to alleviate the edge-fattening issue at disparity discontinuities
and approximate the matching of occlusions. Besides, we use a refinement module that brings in
shallow features as guidance to attain high-quality full-resolution disparity maps. The proposed
network is compared with several typical models. Experimental results on a challenging dataset
demonstrate that our network shows powerful learning and generalization abilities. It achieves
convincing performance on both accuracy and efficiency, and improvements of stereo matching in
these challenging areas are noteworthy.

Keywords: high-resolution remote sensing images; disparity estimation; stereo matching; convolu-
tional neural network; dual-scale matching

1. Introduction

Disparity estimation from a pair of high-resolution remote sensing stereo images is
a fundamental yet challenging task. It provides indepth information that is significant
for scene understanding, height calculation, 3D reconstruction, to name a few [1]. As the
data volume and application of remote sensing images grow rapidly, more stringent
requirements are being imposed on the disparity estimation of remote sensing images.

Given a pair of rectified stereo images, the goal of disparity estimation is to match cor-
responding pixels on the left and right images and then compute a disparity map referring
to the horizontal displacements. Disparity estimation has been intensively investigated for
decades. Traditional algorithms [2–5] tackle this problem by adopting the classical four-step
pipeline, including matching cost computation, cost aggregation, disparity calculation,
and disparity refinement [6]. They compute the matching cost within a finite window and
adopt hand-crafted schemes for the subsequent steps. Though significant progress has
been made, they still have the limitation of dealing with texture-less regions, repeating
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textures, and occlusions. The accuracy and speed of traditional methods are unable to meet
the actual application requirements in remote sensing.

Due to the powerful representative capability of convolutional neural networks
(CNNs) and their success in various vision tasks [7–10], learning-based stereo methods
have been employed to overcome the limitation of traditional methods in recent years.
For example, MC-CNN [11] first introduces CNNs to calculate the matching cost by com-
paring image patches and proves the great potential of CNNs. Following it, several
methods [12,13] are proposed to learn more efficient and robust matching cost computation.
Besides, researchers also employ CNNs for cost aggregation [14,15] and disparity refine-
ment [16,17]. These methods outperform traditional algorithms by applying CNNs to learn
individual steps of the four-step pipeline [18]. However, hand-designed schemes are still
required. Moreover, they are usually time-consuming, for multiple forward passes have to
be conducted to calculate the matching cost of all potential disparities, and post-processing
is required to refine the disparity [19]. This makes them not suitable for large-volume
remote sensing images.

More recently, end-to-end networks have achieved unprecedented progress by in-
tegrating all steps into a whole network and directly predicting disparity maps from
stereo pairs, driving disparity estimation towards a new paradigm. The milestone work is
DispNet-C [20], which achieves comparable accuracy with MC-CNN but runs much faster
on GPUs. It utilizes an encoder-decoder architecture that extracts unary features from an
image pair by 2D CNNs, correlates the features with a correlation layer [21] then restores
the original resolution by consecutive deconvolutions. Another groundbreaking work is
GC-Net [22], which outperforms MC-CNN markedly but runs slower than DispNet-C.
Instead of simply correlating features, GC-Net correlates features at all disparity levels
by concatenating the left and right features to build a 4D cost volume and aggregates the
cost by 3D CNNs. Besides, a differentiable soft argmin operation is proposed to regress
continuous disparity values with sub-pixel accuracy. Following the two creative works,
many studies [19,23–30] are conducted and attain further progress, dominating commonly
used benchmarks such as KITTI [31,32], Middlebury [33], SceneFlow [20,34], etc.

Since end-to-end networks show superior performance in such public benchmarks, it
is natural to consider employing them for remote sensing images. Ref. [35] first explores
applying MT-CNN, DispNet-C, and GC-Net to a remote sensing dataset. As expected,
GC-Net outperforms traditional algorithms and achieves the best accuracy among the
three. However, the improvement is limited and the speed is unsatisfactory. We notice
that compared with natural images, remote sensing images are more complicated despite
the growing resolution, making the stereo matching more difficult. Firstly, there exist
numerous regions with texture-less or repetitive patterns and complex structures. Secondly,
disparities in remote sensing stereo images contain both negative and nonnegative values
owing to significantly different viewing angles [36]. Thirdly, disparity discontinuities and
occlusions are severe in certain areas because of large buildings and other tall objects.
Moreover, the large size and huge amount of remote sensing images demand stereo
matching algorithms with high efficiency and good generalization. To overcome these
obstacles and further promote the performance of end-to-end networks, in this paper, we
propose a brand-new CNN named dual-scale matching network (called DSM-Net for short)
that mainly focuses on the following improvements.

• Our network learns stereo matching at both low and high scales, helpful for dis-
parity estimation in large areas with texture-less and repeating patterns, as well as
maintenance of main structures and details.

• We construct cost volumes from negative to positive values [36], making our network
able to regress both negative and nonnegative disparities for remote sensing images.

• A 3D encoder-decoder module built by factorized 3D convolutions [37] is developed
for cost aggregation, which can improve the stereo matching at disparity discontinu-
ities and occlusions. Compared with standard 3D CNNs, the computational cost is
markedly reduced.
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• We employ a refinement module that ensures the network outputs high-quality full-
resolution disparity maps.

On this basis, DSM-Net has a powerful capability to handle intractable situations. We
evaluate it on a large-scale challenging remote sensing stereo dataset, the experimental re-
sults indicate that the proposed network achieves compelling disparity estimation accuracy
while running at a decent rate.

2. Related Work

There exists a large body of literature on disparity estimation, we hereby review
some typical end-to-end stereo matching networks, as they are dominating the disparity
estimation domain and have enlightened our work. These networks can be broadly
categorized into two distinct classes, 2D architectures and 3D architectures [18].

2D architectures. These architectures usually deploy an encoder-decoder design and
adopt the general flow: the encoder extracts deep features from the input stereo pair, then
a correlation layer encodes similarity into feature channels by computing the inner product
of the left and right feature vectors along spatial and disparity dimensions, forming a 3D
cost volume [21], which is finally parsed to disparity map by the decoder. The pioneering
network is DispNet-C [20]. Following it, CRL [23] proposes a two-stage network that
combines a DispNet-C model with a second sub-network for cascade learning of the
disparity residual. iResNet [19] produces an initial disparity estimation, then iteratively
refines it using multiple feature correlation and reconstruction error. MADNet [24] applies
a coarse-to-fine strategy, starting from a coarser level of features to predict an initial
disparity map then up-sampling it to a finer level with the assistance of warping operations.
AANet [25] learns stereo matching on three scales, with an adaptive aggregation module
for interaction among the different scales. Our network shares a similar idea with AANet,
but we regress disparity maps from low scale to high scale in a coarse-to-fine manner, while
AANet regresses that of three scales in parallel. These architectures run efficiently thanks
to the efficiency of 2D convolution operations on modern GPUs. However, their accuracy
is inferior to 3D architectures.

3D architectures. These architectures follow a similar flow to the former category.
Differently, they encode similarity by computing the difference of left and right feature
vectors [27,29] or directly concatenating them [22,26,28] to form a 4D cost volume, then the
4D tensor is processed by 3D convolutions. GC-Net [22] is the first attempt. Following this
new design, PSMNet [26] utilizes spatial pyramid pooling layers (SPP) [38] in its feature
extractor to integrate features with multiple scales and deploys a stack of 3D hourglass
modules to learn cost volume regularizing. ECA [28] introduces an explicit cost aggregation
module to improve the 3D optimization by using a 3D encoder-decoder module. Stereo-
DRNet [29] applies 3D dilated convolutions inside its stacked encoder-decoders to further
improve the effectiveness and add a refinement sub-network for enhancing the disparity
map. Due to that real geometric context [22] can be explicitly learned by 3D convolutions,
3D architectures achieve better accuracy than 2D architectures in most cases. However, 3D
convolutions require higher computational effort owing to more parameters and floating-
point operations (FLOPs). To make the model runs in real-time, StereoNet [27] constructs a
low-resolution cost volume to produce a coarse prediction then hierarchically guide it to
the original resolution with the (resized) left image. MABNet [30] proposes a multibranch
adjustable bottleneck module that is less demanding on parameters to replace standard 3D
convolutions, making the model lightweight. However, their accuracy decreases compared
to the heavy models. We also explore how to make the model lightweight. In our network,
we replace conventional 3D convolutions with efficient factorized 3D convolutions to
reduce the computational burden.

Inspired by these methods and aimed at remote sensing images, we build DSM-Net,
which belongs to the latter category and achieves high accuracy while maintaining a
satisfactory speed.
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3. Dual-Scale Matching Network

We first provide an overview of the proposed network, then introduce the components
in detail, followed by the loss function used to train our network.

3.1. Overview

Given a rectified image pair, DSM-Net predicts the disparity map by executing the
flow shown in Figure 1, which consists of five parts. We first extract down-sampled features
at 1/4 and 1/8 resolutions with a shared 2D CNN. Then the dual-scale 4D cost volumes are
created by conducting the difference operations [27,29] at corresponding scales. In the cost
aggregation stage, we first use a 3D encoder-decoder module (roughly displayed in the
figure, details will be introduced in the subsequent section) to aggregate the low-scale cost
volume, then the last but one 4D volume is bilinearly up-sampled and added to the initial
high-scale cost volume, which is aggregated by another 3D encoder-decoder module (same
as the former one). Next, we adopt the soft argmin operations [22] to compute the disparity
maps of 1/4 and 1/8 resolutions. Finally, the disparity refinement module takes as input
the shallow features extracted from the left image and the disparity map regressed at the
high scale, producing the refined disparity of 1/2 resolution, which is directly up-sampled
to full resolution as the final prediction via bilinearity (not included in the figure).

Figure 1. Overview of DSM-Net, which consists of five components, including feature extraction, cost volume creation, cost
aggregation, disparity calculation, and disparity refinement.

3.2. Components
3.2.1. Feature Extraction

The first step is to find meaningful features that can effectually represent image
patches. Remote sensing images contain objects of different scales, therefore, deep features
are extracted at both the low and high scales. The low scale can capture coarse-grained
information from low-resolution features using a larger receptive field, while the high
scale can capture fine-grained information from high-resolution features with richer details.
A 2D CNN with shared weights (also known as a Siamese network [39]) between the
input image pair is used. The architecture is shown in Table 1. We first decimate the
input resolution down to 1/4 of the original input size, then apply two branches to extract
features of two scales respectively. Basic residual blocks [40] are used to boost the 2D CNN.
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Table 1. The architecture of the shared 2D CNN. Construction of residual blocks is designated in
brackets with the number of stacked blocks, “s” denotes the stride of convolution. Each convolution
layer is followed by a batch normalization [41] layer and a ReLU activation layer, except conv1_3
and conv2_3.

Name Setting Output

Input H ×W × 3
conv0_1 5 × 5 × 32, s = 2 H

2 ×
W
2 × 32

conv0_2 5 × 5 × 32, s = 2 H
4 ×

W
4 × 32

conv0_3
[

3× 3× 32
3× 3× 32

]
× 6 H

4 ×
W
4 × 32

Low scale High scale
conv2_1 3 × 3 × 32, s = 2 H

8 ×
W
8 × 32 conv1_1 3 × 3 × 32 H

4 ×
W
4 × 32

conv2_2
[

3× 3× 32
3× 3× 32

]
× 4

H
8 ×

W
8 × 32 conv1_2

[
3× 3× 32
3× 3× 32

]
× 4

H
4 ×

W
4 × 32

conv2_3 3×3×16 H
8 ×

W
8 × 16 conv1_3 3×3×16 H

4 ×
W
4 × 16

3.2.2. Cost Volume Creation

At this point, the dual-scale 4D cost volumes are created by taking the difference
of the feature vector of a pixel and the feature vectors of the matching candidates at
corresponding scales. Typical CNN-based methods would form a cost volume that only
contains nonnegative values. However, remote sensing images may be collected at different
times, and the viewing angles could be significantly different, thus both negative and
nonnegative disparities appear in remote sensing stereo images even though they have
been rectified. To make our network predict nonnegative as well as negative disparities,
we build cost volumes covering the range [−Dmax, Dmax). Because the input images are
rectified, disparity exists only in the horizontal direction. We can simply employ a shift
operation to form a cost volume. The left feature is awaiting to be subtracted, and the right
feature slides on the left feature horizontally, as depicted in Figure 2. After packing the
subtraction results, we get a 4D volume with a shape of D× H×W ×C, where H×W ×C
denotes the shape of left and right features and D denotes the disparity range.

Figure 2. The operation for the cost volume creation. The right feature shifts from−Dmax to Dmax− 1,
making the resulting cost volume covering the range [−Dmax, Dmax).

3.2.3. Cost Aggregation

Cost aggregation can rectify the mismatching cost value computed from the local
feature with large view guidance and ensure a high-quality disparity map with smoothness
and continuity. 3D convolutions are effective to conduct cost aggregation along spatial and
disparity dimensions as well as learn geometric context [22] but are also time-consuming.
To reduce the computational burden, we factorize a standard k× k× k 3D convolution
into two stacked subcomponents, namely disparity-wise convolution, and spatial-wise
convolution. The former has a kernel of k× 1× 1 and the latter has a kernel of 1× k× k.
The stacked subcomponents play the same role as a standard 3D convolution but are much
more efficient. Suppose that both the input and output have a shape of D× H ×W × C,
the number of parameters in a standard 3D convolution (with a kernel size of 3× 3× 3 and
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stride of 1) is C×C× 3× 3× 3 = 27C2, and the FLOPs is 2× 3× 3× 3×H×W×C×C =
54HWC2. However, these in a factorized 3D convolution are only C× C× 3× 1× 1 + C×
C× 3× 3× 1 = 12C2 and 2× 3× 1× 1×H×W×C×C+ 2× 1× 3× 3×H×W×C×C =
24HWC2, respectively. Both the parameters and FLOPs are dramatically decreased.

To further increase the efficiency and make the aggregation module has a larger view,
we adopt an encoder-decoder with skip connection design, which is similar to the explicit
cost aggregation module in ECA [28], as illustrated in Figure 1 and Table 2. For one
thing, the computational burden can be further reduced by subsampling and up-sampling
operations. For another, the module acquires a larger receptive field due to down-sampled
cost volume. Besides, skip summations from encoder to decoder help the module learn
sufficient and multilevel geometric context. Moreover, to establish a connection between
the dual scales during aggregation, we up-sample the last but one 4D volume in the low
scale and add it to the initial high-scale cost volume. Because of the lower resolution,
the disparity search range is smaller and the aggregation is easier at the low scale, which
should be carried out first. We believe the coarse-to-fine manner makes the low scale
servers as prior knowledge and provides beneficial guidance for the high scale.

Table 2. The architecture of the 3D encoder-decoder module for cost aggregation, each convolution
layer is followed by a batch normalization layer and a leaky ReLU activation layer (α = 0.3),
except conv14 and conv15. Factorized 3D convolutions are designated in brackets, “s” denotes the
stride of convolution, and “Trans” denotes the transpose convolution [42]. Note that we use two
independent modules with the same structure to separately aggregate the cost volumes, the output
of conv14 at the low scale is up-sampled and added to the initial high-scale cost volume before the
high-scale aggregation. For an input image of size H ×W and evaluating a range of D candidate
disparities, the cost volume is of size D

2k × H
2k × W

2k for k subsampling operations.

Name Setting Low Scale High Scale

Cost volume D
8 ×

H
8 ×

W
8 × 16 D

4 ×
H
4 ×

W
4 × 16

conv1 3× 3× 3× 16 D
8 ×

H
8 ×

W
8 × 16 D

4 ×
H
4 ×

W
4 × 16

conv2
[

3× 1× 1× 16
1× 3× 3× 16

]
D
8 ×

H
8 ×

W
8 × 16 D

4 ×
H
4 ×

W
4 × 16

conv3
[

3× 1× 1× 16
1× 3× 3× 16

]
D
8 ×

H
8 ×

W
8 × 16 D

4 ×
H
4 ×

W
4 × 16

conv4 3× 3× 3× 32, s = 2 D
16 ×

H
16 ×

W
16 × 32 D

8 ×
H
8 ×

W
8 × 32

conv5
[

3× 1× 1× 32
1× 3× 3× 32

]
D
16 ×

H
16 ×

W
16 × 32 D

8 ×
H
8 ×

W
8 × 32

conv6
[

3× 1× 1× 32
1× 3× 3× 32

]
D
16 ×

H
16 ×

W
16 × 32 D

8 ×
H
8 ×

W
8 × 32

conv7 3× 3× 3× 64, s = 2 D
32 ×

H
32 ×

W
32 × 64 D

16 ×
H
16 ×

W
16 × 64

conv8
[

3× 1× 1× 64
1× 3× 3× 64

]
D
32 ×

H
32 ×

W
32 × 64 D

16 ×
H
16 ×

W
16 × 64

conv9
[

3× 1× 1× 64
1× 3× 3× 64

]
D
32 ×

H
32 ×

W
32 × 64 D

16 ×
H
16 ×

W
16 × 64

conv10 Trans 3× 3× 3× 32, s = 2

add conv6
D
16 ×

H
16 ×

W
16 × 32 D

8 ×
H
8 ×

W
8 × 32

conv11
[

3× 1× 1× 32
1× 3× 3× 32

]
D
16 ×

H
16 ×

W
16 × 32 D

8 ×
H
8 ×

W
8 × 32

conv12 Trans 3× 3× 3× 16, s = 2

add conv3
D
8 ×

H
8 ×

W
8 × 16 D

4 ×
H
4 ×

W
4 × 16

conv13
[

3× 1× 1× 16
1× 3× 3× 16

]
D
8 ×

H
8 ×

W
8 × 16 D

4 ×
H
4 ×

W
4 × 16

conv14 3× 3× 3× 16 D
8 ×

H
8 ×

W
8 × 16 D

4 ×
H
4 ×

W
4 × 16

conv15 1× 1× 1× 1 D
8 ×

H
8 ×

W
8 × 1 D

4 ×
H
4 ×

W
4 × 1
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3.2.4. Disparity Calculation

We adopt the differentiable soft argmin operation as proposed in GC-Net [22] to
transform the aggregated cost volumes into continuous disparity maps, which can retain
a sub-pixel accuracy. The matching cost value is first converted to probability value via
a softmax function across the disparity dimension, then the final disparity is obtained by
taking the sum of each disparity weighted by its probability. The mathematical equation is
given by:

d̂(h, w) =
Dmax−1

∑
−Dmax

d× σ(−c(d, h, w)) (1)

where d̂ and d refer to the predicted disparity and disparity candidate, σ and c refer to the
softmax function and matching cost (for each disparity candidate), respectively.

3.2.5. Disparity Refinement

The output disparity maps are 1/8 and 1/4 resolution of the original image. If directly
up-sampled to full resolution, mosaics would occur on the full-resolution disparity map.
To attain high-quality full-resolution prediction as well as bring in more fine details and
motivated by the refinement strategy in StereoNet [27], we utilize a refinement module that
blends in high-frequency information as guidance. Our refinement module (depicted in
Figure 3) first extracts shallow features that are robust to noise and luminance change [23]
from the input left image, then concatenates them with the disparity map estimated by
the high scale up-sampled to 1/2 resolution (in StereoNet, the resized input left image
is directly concatenated with the low-resolution disparity map). The concatenation is
processed by a stack of 2D convolution layers, producing a residual (also known as a
delta disparity) that is next added to the up-sampled disparity map. Finally, the summed
disparity map (regarded as refined disparity map) is directly up-sampled to full resolution
as the ultimate prediction.

Figure 3. The architecture of the refinement module. Dilated convolutions [43] are used within the
module, “dilation” denotes the dilation rate, “s” denotes the convolution stride. Each convolution
layer is followed by a batch normalization layer and a leaky ReLU activation layer (α = 0.3), except the
1*1*3 and 3*3*1 layer.

3.3. Loss Function

We train the proposed DSM-Net in a fully supervised manner using ground-truth-
labeled stereo data, adopting the smooth L1 loss function that is robust and lowly sensitive
to outliers [44]. The supervised loss is defined as:

L =
1
N

N

∑
i=1

smoothL1

(
di − d̂i

)
(2)
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in which:

smooth L1(x) =
{

0.5x2, if |x| < 1
|x| − 0.5, otherwise

(3)

where N is the valid number of labeled pixels, d and d̂ represent the ground-truth and
predicted disparities. The supervision is conducted on the three disparity maps output
by the low scale, high scale, and refinement module. Thus, the final loss function is the
weighted summation of the three ones (note that the predicted disparity map is always
bilinearly up-sampled to match the ground-truth resolution before loss computation):

Ltotal = λ1Llow + λ2Lhigh + λ3Lrefine (4)

where λ1, λ2, and λ3 are the loss weights.

4. Experiments

In this section, we first give a brief introduction to the dataset for approach evaluation
and the metrics for quantitative assessment. Then, the implementation details of our
network and several state-of-the-art methods used for comparison are described. Finally,
we display the experimental results and analyze them.

4.1. Dataset and Metrics

We evaluate the performance of our method on the challenging US3D track-2 dataset
of the 2019 Data Fusion Contest [45,46]. This dataset contains high-resolution multi-view
images collected by WorldView-3 between 2014 and 2016 over Jacksonville and Omaha in
America, covering various landscapes such as residential buildings, skyscrapers, rivers,
woods, etc. Stereo pairs in this dataset are rectified in size 1024 × 1024 and geograph-
ically non-overlapped. Jacksonville and Omaha have 2139 and 2153 RGB image pairs
with ground-truth disparity labels, respectively. We use image pairs from Jacksonville
to train and test our model, while all image pairs from Omaha are used to evaluate the
generalization ability of the proposed network. Table 3 shows the usage of the dataset.

Table 3. The usage of the dataset in our experiments. “JAX” represents Jacksonville and “OMA”
represents Omaha (the same below).

Stereo Pair Mode Training/Validation/Testing Usage

JAX RGB 1500/139/500 Training, validation, and testing
OMA RGB -/-/2153 Testing

Stereo performance is assessed in terms of both accuracy and efficiency. For accuracy
assessment, we use the average endpoint error (known as EPE, the average absolute
distance between estimated and ground-truth disparities) and the fraction of erroneous
pixels (known as D1, a pixel is regarded erroneous if its predicted disparity has an absolute
error larger than 3 pixels) as quantitative metrics. Note that only valid pixels are used to
calculate the two metrics. For efficiency assessment, we compute the time required for a
network to inference a disparity map from a pair of stereo images of size 1024× 1024.

4.2. Implementation Details

Our model is end-to-end trained with the Adam optimizer (β1 = 0.9, β2 = 0.999).
We normalize the image intensity into [−1, 1] for data preprocessing. To maintain the
integrity of objects on those images, we directly feed the normalized image pairs with size
1024× 1024 into the network without cropping or resizing during training and testing
phases, and no data augmentation is adopted. We train our models from scratch and the
total epoch is set to 100. The initial learning rate is set to 0.001 and drops to a tenth every
25 epochs as the training goes on. The loss weights λ1, λ2, and λ3 are respectively set to 0.8,
1.0, and 0.6, and the disparity range is set to [−64, 64). We use an RTX 3090 GPU to accelerate
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the training, the batch size is set to 4. It takes about 16.5 hours to finish the training. All
experiments are implemented on Ubuntu 20.04 OS with TensorFlow [47] environment.

Several state-of-the-art methods, including DenseMapNet [48], StereoNet [27], PSM-
Net [26], and Bidir-EPNet [36] are used for comparisons. DensMapNet is a tiny 2D archi-
tecture and it is the official baseline [45], the others are 3D architectures. StereoNet is a
lightweight model that runs in real-time on the KITTI dataset [32] while attains competitive
accuracy, PSMNet achieves state-of-the-art accuracy on the same dataset. Bidir-EPNet,
which achieves eminent performance on the US3D track-2 dataset, is a recently published
work designed for stereo matching of high-resolution remote sensing images. We replicate
these methods based on open-source code (except Bidir-EPNet whose code hasn’t yet been
open-source). For fair comparisons, we build cost volumes covering the same disparity
range as ours so that these networks are also able to regress both negative and nonnegative
disparities. All of them are trained on the training set of JAX image pairs, using the same
development environments as our network.

4.3. Results and Analyses
4.3.1. Overall Result

Table 4 showcases the quantitative accuracy of our model and the other four models
on both the JAX testing set and the whole OMA set, as well as the average time required for
processing a stereo pair (testing is conducted on a single GTX 1080Ti GPU, the same below).
The proposed DSM-Net achieves the best results. It outperforms the official baseline by
leaps and bounds on accuracy. Though DenseMapNet runs much faster than the other three
3D architectures, the accuracy is sharply sacrificed. Compared to the real-time StereoNet,
DSM-Net surpasses it on accuracy by a noteworthy margin, while the efficiency is also
slightly higher. PSMNet gives close accuracy to ours; however, it takes more than twice as
long to finish the prediction of a stereo pair as ours. Therefore, our method has the best
comprehensive stereo performance. Moreover, DSM-Net achieves the best accuracy on the
OMA set, which indicates the superior generalization ability of our method.

Table 4. Quantitative results of different methods on the JAX testing set and the whole OMA set.
The best results are bold.

Model
JAX OMA

Time (ms)
EPE (Pixel) D1 (%) EPE (Pixel) D1 (%)

DenseMapNet 1.7405 14.19 1.8581 14.88 81
StereoNet 1.4356 10.00 1.5804 10.37 187
PSMNet 1.2968 8.06 1.4937 8.74 436

Bidir-EPNet 1.2764 8.03 1.4899 8.96 -
DSM-Net 1.2776 7.94 1.4757 8.73 168

We also randomly select several image pairs from the JAX testing set and OMA set
and list the disparity maps predicted by these models in Figure 4 (results of Bidir-EPNet are
not listed since it hasn’t yet been open-source). It can be seen that our network outputs the
disparity maps of the highest quality for these three images. For one thing, in regions with
simple structures such as flat grounds and roads, DSM-Net predicts smooth disparities.
For another, in regions containing objects with complex structures such as woods and small
houses, DSM-Net can maintain their structures. DenseMapNet gives the worst prediction
results. StereoNet performs well in the former category of regions but fails to recover
details of the latter category, while PSMNet does the opposite. The reason is that both
StereoNet and PSMNet only learn stereo matching at one scale, which cannot fit in well
with changeful scenes in remote sensing images. By contrast, dual-scale learning works
well in such challenges. Besides, mosaic occurs in the disparity maps output by PSMNet
while doesn’t appear in that of StereoNet or DSM-Net (please zoom in to see details).
That is because the latter two adopt refinement operations to guide the prediction of the
decimated resolution to be up-sampled to higher resolution, while no refinement is used
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in PSMNet. Passingly, because we build cost volumes covering both non-negative and
negative values for these networks, all of them are no longer limited to merely regress
nonnegative disparities.

Figure 4. Disparity maps output by different networks. The image in the first column is from the
OMA set, and the others are from the JAX testing set. Predictions of DenseMapNet, StereoNet,
PSMNet, and DSM-Net are respectively labeled with yellow, red, green, and blue.
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4.3.2. Result on Challenging Areas

To show how our method improves the disparity estimation on challenging areas
that raise difficulties to the stereo matching of high-resolution remote sensing images,
several stereo pairs containing typical scenes, such as texture-less regions, repetitive pat-
terns, disparity discontinuities, and occlusions, are chosen to meticulously evaluate these
models. Note that DenseMapNet performs far worse and Bidir-EPNet is not open-source,
consequently, we mainly concentrate on the comparison between the other three.

Texture-less Regions. In these regions, intensities of pixels change feebly, making
them difficult to distinguish, which can lead to ambiguous results. We list several examples
of disparity estimation on texture-less regions in Figure 5. The lawn and highways are
texture-less. DSM-Net performs best by outputting disparity maps with less ambiguity
on all scenes. Empirically, the elevation of a piece of flat lawn is the same everywhere,
DSM-Net predicts more consistent disparities than the others. The elevation of a sloping
highway varies continuously, the disparity map output by DSM-Net is continuous, while
discontinuity appears on that of the other two.

Repetitive Patterns. Image patches in these regions have extremely similar appear-
ances, which can cause fuzzy matching. Several examples are depicted in Figure 6. Resi-
dences contained in the images exhibit similar textures and colors. In the disparity maps
predicted by StereoNet and PSMNet, some residences are joined to the boundaries of their
neighboring residences. While in the disparity maps output by our DSM-Net, most of
the residences are discriminated, and the edges are better maintained, thus less confusion
occurs.

DSM-Net performs better on the two types of challenges, we credit this to the dual-
scale learning strategy, which can find stereo correspondences easily based on perceptions
at different scales that capture both coarse-grained and fine-grained information. Mean-
while, important cues such as edges are taken full advantage of, and details are also better
recovered. StereoNet learns matching based on only a low-resolution cost volume, thus
some details and thin structures are lost. PSMNet forms a high-scale cost volume using
features that have integrated multiscale context, however, the features are simply fused
and indiscriminately processed. By contrast, DSM-Net exploits features of different scales
but disposes of them severally, with a proper connection built between them.

Disparity Discontinuities and Occlusions. Disparity discontinuities can lead to the
edge-fattening issue, and in occluded areas, there is no matching. Due to tall objects, such
challenges are ubiquitous in remote sensing images. We demonstrate three examples of
disparity estimation results on areas containing high buildings and other objects, as shown
in Figure 7. There is an occluded shadow behind the building in the first image, StereoNet
gives an obvious wrong disparity prediction that is inconsistent with the surrounding
ground, while PSMNet and DSM-Net give consistent disparities, and disparity map output
by DSM-Net is flatter. In the second image, the disparity maps output by PSMNet and DSM-
Net show smooth transition around the building, especially in the facade, and the edges of
buildings are more explicit in the disparity map output by DSM-Net. Predictions of the
third image also indicate DSM-Net performs best. We argue that the 3D encoder-decoder
module contributes to this improvement. In StereoNet, the cost is simply aggregated by five
stacked 3D convolution layers. In DSM-Net, we aggregate the cost using the deeper module
with subsampling and up-sampling operations. This design makes the module rectify
wrong cost values with information captured from a larger view. Deeper layers make the
cost aggregation module have a more powerful ability to approximate the matching for
occlusions. PSMNet adopts a stacked multiple hourglass module for cost aggregation,
which shares a similar idea to ours, and it can be seen that PSMNet also performs better
than StereoNet.
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Figure 5. Disparity estimation results of different models on texture-less regions. Predictions of
StereoNet, PSMNet, and DSM-Net are respectively labeled with red, green, and blue (subsequent
figures in this section are also labeled in this way). Tile numbers are JAX-122-019-005, JAX-079-006-
007, and OMA-211-026-006, from left to right.



Remote Sens. 2021, 13, 5050 13 of 20

Figure 6. Disparity estimation results of different models on repetitive patterns. Tile numbers are
JAX-280-021-020, JAX-559-022-002, and OMA-132-027-023, from left to right.
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Figure 7. Disparity estimation results of different models on disparity discontinuities and occluded
areas. Tile numbers are JAX-072-011-022, JAX-264-014-007, and OMA-212-007-005, from left to right.

Further, we quantitatively evaluate the results of different models on each individual
of the aforementioned stereo pairs, as listed in Table 5. It can be noticed that our model
achieves the best accuracy on all the stereo pairs. In summary, the proposed DSM-Net can
more effectively deal with multiple challenges encountered by the disparity estimation of
high-resolution remote sensing images.
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Table 5. Quantitative results of different models on individuals of specific stereo pairs from the JAX testing set and OMA
set. The best results are bold.

Tile
EPE (Pixel) D1 (%)

DenseMapNet StereoNet PSMNet DSM-Net DenseMapNet StereoNet PSMNet DSM-Net

JAX-122-019-005 1.5085 1.4992 1.4815 1.2292 7.84 8.17 4.52 3.65
JAX-079-006-007 1.6281 1.3743 1.2158 1.2082 12.42 9.71 8.46 8.16

OMA-211-026-006 1.9534 1.5783 1.5739 1.4830 15.92 10.67 9.23 9.05

JAX-280-021-020 1.3427 1.1412 1.0413 0.9772 10.42 6.75 6.26 5.43
JAX-559-022-002 1.5756 1.5323 1.3536 1.2977 15.03 13.56 10.55 10.14

OMA-132-027-023 1.5421 1.4018 1.3657 1.3054 11.84 9.61 9.21 8.45

JAX-072-011-022 1.6813 1.3914 1.1675 1.0718 17.42 8.22 6.71 5.27
JAX-264-014-007 1.6105 1.3083 1.0688 1.0528 15.54 6.67 4.65 3.81

OMA-212-007-005 1.6740 1.3359 1.2587 1.1720 11.51 7.79 6.90 5.26

5. Discussion

In this section, we conduct thorough ablation studies to verify our network design
choices. Specifically, we train four variants of the proposed DSM-Net to explore how the
dual-scale matching strategy, 3D encoder-decoder module, and refinement influence the
stereo performance. Configurations and comparisons of the variants are listed in Table 6.

Table 6. Configurations and comparisons of the variants. The best results are bold, the checkmark indicates that the network
has this configuration.

Model
Scale Cost Aggregation Refinement JAX OMA

Time (ms)
Low High Plain Encoder-Decoder Without With EPE D1 EPE D1

DSM-Net-v1 X X X 1.3788 9.23 1.5327 9.77 78
DSM-Net-v2 X X X 1.3195 8.34 1.4984 8.75 149
DSM-Net-v3 X X X X 1.3554 8.73 1.5078 8.91 469
DSM-Net-v4 X X X X 1.2817 8.03 1.4951 8.98 160

DSM-Net X X X X 1.2776 7.94 1.4757 8.73 168

5.1. Single-Scale vs. Dual-Scale

We train two variants of DSM-Net that learn stereo matching only at one scale. DSM-
Net-v1 only learns the low-scale matching while DSM-Net-v2 only learns the high-scale.
Feature extractors in the variants only extract features of corresponding scales, and re-
finement is conducted on their estimated disparity maps. The dual-scale learning scheme
outperforms its single-scale counterparts. That is because the low scale can capture a wide
range but may lose details and thin structures around small objects, while the high scale
does the opposite, thus learning at both scales is necessary. Estimated disparity maps
in Figure 8 also confirm this. On the large texture-less playground, DSM-Net-v1 gives
better disparity prediction than DSM-Net-v2, while on the building with complex structure,
DSM-Net-v2 performs better. DSM-Net predicts continuous and smooth disparity on the
playground and preserves the fine structure of the building. By the way, though the accu-
racy of DSM-Net-v1 drops a lot, it still outperforms the lightweight StereoNet [27] and runs
extremely fast, which shows a potential to be deployed on resource-constrained devices.
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Figure 8. Disparity maps output by networks with single-scale and dual-scale learning schemes (tile
number: JAX-072-001-006). The outputs of DSM-Net-v1, DSM-Net-v2, and DSM-Net are labeled with
red, green, and blue, respectively.

5.2. Plain Module vs. Encoder-Decoder Module

To verify the effectiveness and efficiency of the 3D encoder-decoder module for cost
aggregation, we train DSM-Net-v3 which uses a plain module consisting of nine simply
stacked standard 3D convolutions (shown in Figure 9) and has a close number of parameters
to the encoder-decoder module.

Figure 9. The plain module for cost aggregation in DSM-Net-v3. In this variant, the 4D volume
output by the eighth convolution layer at the low scale is up-sampled and added to the initial cost
volume at the high scale. Each convolution layer is followed by a batch normalization layer and a
leaky ReLU activation layer (α = 0.3), except for the last two layers.

It can be observed from Table 6 that if the 3D encoder-decoder is replaced with a
plain module, the stereo performance will degrade in terms of both accuracy and efficiency.
Figure 10 indicates that the 3D encoder-decoder can better approximate matching for oc-
cluded areas and address the edge-fattening issue. DSM-Net predicts smooth disparities in
the occluded shadow and unambiguous disparities around high buildings. That is because
the encoder-decoder design learns cost aggregation and geometric context more efficiently.
DSM-Net takes almost a third as long as DSM-Net-v3 to process a stereo pair, though they
have a close number of parameters. This is due to the factorized 3D convolution, which is
much more computationally economical. With factorized 3D convolutions, we can build
deeper and faster networks using a similar number of parameters.
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Figure 10. Disparity maps output by networks with different cost aggregation modules (tile number:
JAX-122-022-002, JAX-156-009-003). The outputs of DSM-Net-v3 and DSM-Net are respectively
labeled with purple and blue.

5.3. Without Refinement vs. With Refinement

The refinement operation can improve the quality of an estimated disparity map. We
train DSM-Net-v4 that removes the refinement module to clarify the importance. Table 6
depicts the accuracy comparison. The refinement operation further improves the accuracy
at the expense of negligible time increases. More significantly, due to the high-frequency
information contained in the shallow features being introduced, the refinement module
can alleviate mosaics in the up-sampled full-resolution disparity maps, as well as bring in
more fine details, as shown in Figure 11.

Figure 11. Disparity maps output by networks without and with refinement operations (tile number:
JAX-068-006-012, JAX-113-004-011). The outputs of DSM-Net-v4 and DSM-Net are respectively
labeled with purple and blue.

6. Conclusions

In this paper, we propose a novel end-to-end CNN architecture named dual-scale
matching network (DSM-Net) for disparity estimation of high-resolution remote sensing
images. Aiming at the difficulties encountered by stereo matching of remote sensing im-
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ages, our network provides corresponding solutions. By learning dual-scale matching,
constructing cost volumes covering both negative and nonnegative disparities, aggregating
cost with a factorized 3D encoder-decoder, and employing a refinement operation, our
network shows a strong ability to estimate disparities, as well as a satisfactory generaliza-
tion ability. Extensive experimental results and comparisons with state-of-the-art methods
demonstrate that our approach can handle multi-type challenges more effectively and
efficiently. In particular, stereo matching in problematic regions is notably ameliorated.
Moreover, thorough ablation studies verify the effectiveness of our network design choices.
By training variants of the proposed network and comparing their results, we demonstrate
how each of the design choices improves the model.

In the future, we are going to further improve the performance, and explore how to
make the network be trained in a semi-supervised or unsupervised way to further expand
its versatility since it is trained in a fully supervised manner and requires large numbers of
ground-truth labels at the present stage.
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