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Abstract: The literature review indicates that a scaling effect does exist in downscaling land surface
temperature (DLST) processes, and no substantial methods were specially developed for addressing
it. In this research, the main aim is to develop a new method to reduce the scaling effect on DLST
maps at high resolutions. A thermal component-based thermal spectral unmixing (TSU) model
was modified and a multiple regression (REG) model was adopted to create DLST maps at high
resolutions. A combined variance of red and NIR bands at a very high resolution with a difference
image between upscaled LST and DLST was used to develop a new method. With two case data
sets, LSTs at coarse resolutions were downscaled by using the modified TSU model and the REG
model to create DLST results. The new method with a correction term expression (a linear model
created by using a semi-empirical approach) was used to improve the DLST maps in the two case
study areas. The experimental results indicate that the new method could reduce the root mean
square error and the mean absolute error >30% and >33%, respectively, and thus demonstrate that
the proposed method was effective and significant, especially reducing the scaling effect on DLST
results at very high resolutions. The novel significance for the new method is directly reducing the
scaling effect on DLST maps at high resolutions.

Keywords: thermal component; spectral cluster; correction term; thermal spectral unmixing model

1. Introduction

Many existing studies have proved that a scaling effect exists in downscaling the land
surface temperature (DLST) processes, especially downscaling LST to high resolutions
(e.g., [1,2]). In this research, the scaling effect is defined as the error in the downscaled
LST at a target (high) resolution, which may be understood as a difference between DLST
and true LST at high resolutions [2,3]. Given the fact that the error is caused by the LST-
scaling factors relationship at the native resolution [3] and the spatial heterogeneity of
landscapes in a study area [4,5], usually, the scaling effect (error) may increase with the
refinement of the spatial resolution in downscaling LST processes. In practice, a basic
assumption that relationships between LST and scaling factors are scale-invariant across
different resolutions is debated and problematic [6,7]. In fact, the relationships between
LST and scaling factors are spatially variable in various environments, as demonstrated by
many investigators (e.g., [1,2,8–10]). For example, such a scale effect for an association of
vegetation index with LST at different spatial resolutions was demonstrated by [8]. They
proved that the relationship changed significantly across different resolutions due to the
various heterogeneity of different spatial extents. Zhou et al. [2] demonstrated that the
scaling effect relied on the values of biophysical descriptors (e.g., the phenology) and
the scaling factors, and on the varying distribution probability of the LST across spatial
resolutions. Ghosh and Joshi [9] also confirmed the spatial scaling effect, which depends
on the characteristics of surface materials and cover types, and on regression models
selected. In our latest work [1], our findings irrefutably demonstrate that the scaling effect
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in downscaling LST to higher resolutions is great and significant. In short, the scaling effect
in downscaling LST processes does exist at high resolutions.

To improve downscaling LST from a relatively coarse resolution to a relatively high
resolution, many researchers have developed various advanced DLST techniques and
methods to compensate the scaling effect in DLST processes at higher resolutions. Generally,
such methods and techniques may be classified into three categories: regression-based,
machine-learning-based, and thermal spectral unmixing-based. The regression-based
methods include linear and non-linear multivariate regression models (e.g., [1,3,8,9,11–16]).
Usually, regression relationships between LST and scaling factors (predictors) within a
scene are determined empirically at a coarse (thermal band) resolution and then applied
to the fine (optical band) resolution to produce sharpened thermal band imagery. This
category of methods is relatively easy to implement, and DLST results are satisfactorily
accurate. However, the main limitations of this category are that regression correlations
between LST and scaling factors might be insufficient for some regions [2] and significantly
site specific [10].

The machine learning-based methods may include various artificial neural networks, sup-
port vector machines, random forest models, and partial least square models (e.g., [1,9,17–20]).
They usually perform better compared to the regression-based methods and result in a high
accuracy by fitting nonlinear relationships between LST and independent variables [21].
There are many advantages of different machine learning methods, e.g., nondeterministic
reasoning with complex causality due to its self-learning, self-organization, error toler-
ance, and excellent nonlinear approximation ability of artificial neural networks; rapid
processing of high-dimensional data with support vector machines; and insensitivity to
multicollinearity of independent variables of random forest [21]. However, the major limi-
tations of the most machine learning-based methods may include intensive computational
resources, complex structure of algorithms, and a black box model, etc.

There are only a few thermal spectral unmixing (TSU)-based DLST methods in the
existing literature (e.g., [22–26]). The TSU-based DLST methods can be described as follows:
thermal component temperatures inside a pixel are decomposed based on multi-temporal,
spatial, spectral, or angular observations [27]. The thermal component temperatures or
radiances at an initial high resolution, created by solving the TSU model from coarse reso-
lution thermal (or LST) data, can then be aggregated into different high resolution DLST
maps. For example, Deng and Wu [23] proposed a VHR spectral unmixing and thermal
mixing (VHR-SUTM) approach to downscale LST at a high resolution. The VHR-SUTM
method consists of two key steps: (1) spectral unmixing with IKONOS data to obtain
fractions of land cover types that respond to unique thermal characteristics, and (2) thermal
unmixing with lower resolution LST data and corresponding land cover fractions to esti-
mate per-pixel VHR LST values. Their unmixed results indicate that the resampled VHR
LST estimates were highly consistent with the corresponding resolution of retrieved LSTs.
Wang et al. [26] introduced the thermal component-based spectral unmixing technique to
produce thermal component radiance. Their results indicate that downscaled LST could
differentiate temperatures over major land types and capture both seasonal and diurnal
LST dynamics. The technique is used for directly solving a system of linear spectral mixture
models encoding the thermal component-LST (or thermal radiance) relationship at a coarse
resolution, and then the solution is applied to a finer resolution to obtain high-resolution
LST results. Thus, it is less time-consuming, even with a large downscaling factor of 30, and
significantly outperforms classic downscaling techniques [26]. Given the advantages (easy
to use and high accurate DLST results) of the TSU technique with thermal components
extracted from high-resolution optical data and potential applications, we proposed to
explore its potential by modifying the technique by directly using spectral clusters repre-
senting thermal components and fitting a thermal component-LST relationship to improve
the DLST process in this study as well.

Compared to traditional DLST methods, such as DisTrad and TsHARP, all these
advanced methods and techniques do improve LST downscaled accuracy and may reduce
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the scaling effect on DLST results to a certain extent. However, there still exists a certain
degree of scaling effect in DLST processes, especially at high resolutions. After a relatively
extensive literature review, limited by our knowledge, no techniques and methods are
found for directly reducing the scaling effect on DLSTs results. Therefore, it is obvious
for us that developing a new method to directly reduce the spatial scaling effect on DLST
results, created by various advanced downscaling methods, is a direction to improve
DLSTs at high resolutions. In addition, a DLST product at a high resolution with a lower
(reduced) spatial scaling effect (error) is always beneficial to many application areas, such
as high-resolution soil-moisture mapping [28,29].

According to the theory of temperature field, most current DLST processing methods
and techniques are based on relatively steady-state two-dimensional temperature field
and assume that the temperature field is continuous and smooth within a homogenous
landscape (e.g., a water body or grassland), but over very heterogenous landscapes (e.g.,
an urban environment), the temperature field should be discrete and rough. However,
for some spatiotemporal DLST methods, an unsteady-state three- (or four- in mountain
areas) dimensional temperature field should be considered because the field depends on
the temperatures on the two or three spatial coordinates and time. Therefore, in this study,
the temperature field should be discrete and rough over heterogenous urban environments.
Accordingly, developing a method to reduce the scaling effect on DLST results should
consider the discrete and rough temperature field, induced by heterogenous landscapes.

In fact, some studies demonstrate that the scaling effect on DLST maps is related to the
degree of heterogeneity of surface features/materials within pixels at specific resolutions.
This issue was proved by Garrigues et al. [4,5] by quantifying the intra-pixel heterogeneity
for mapping normalized difference vegetation index and leaf area index with moderate
resolution remote sensing data and non-linear estimation processes. Garrigues et al. [30]
also used a geostatistical linear model to quantify the landscape spatial heterogeneity with
high-resolution red and NIR band images. Hu and Islam [31] demonstrated that the spatial
heterogeneity of surface emittance, flux exchange and air temperature at a pixel level
would introduce scaling-up errors of sensible heat flux in modeling remote sensing data.
To study the effects of the spatial heterogeneity at a pixel level on scaling-up land surface
parameters (e.g., leaf area index and evapotranspiration/soil moisture), Hu and Islam [32]
proposed concepts of lumped model and distributed model in addressing the effects.
According to [32], a lumped model representation assumes spatial homogeneity within a
pixel, takes pixel-scale average parameters as the input and produces pixel-level output.
A distributed model accounts for the spatial heterogeneity of parameters by dividing the
pixel into a number of subpixels, and then the outputs from subpixels are aggregated by
a suitable kernel to obtain the pixel-level output. They further used a small perturbation
approach and added second-order correction terms to lumped model estimation to obtain
distributed model output. In this study, we would develop a new method to address the
effect of heterogeneity of surface features/materials within pixels at a specific resolution in
DLST processes by introducing a correction term (CT) to reduce the scaling effect on DLST
results. Note that the new method with a simulated CT is expected to correct the scaling
effect on DLST results created by any advanced DLST methods. For this case, we referred
to the basic concept and idea of the correction terms and their application in [32].

Therefore, the main aim of this study is to develop a new method to improve DLST
results by reducing the spatial scaling effect on the DLST results by using the CT with
a combined variance extracted from red and NIR high-resolution band images. The
adoption of the red and NIR bands to construct the correction term was based on the
literature review (e.g., [9,30,33]) and on the statistical results of the standard deviation
(SD) of VNIR bands of the hyperspectral imagery used in this work (SDs of NIR and
red bands were the largest and second largest among all VNIR bands). A modified
thermal spectral unmixing (TSU) model with spectral clusters, which respond to thermal
components, and a multiple regression (REG) model were utilized in downscaling LST
processes. ASTER 90 m LST product and upscaled 100 m LST were downscaled to LSTs
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at finer resolutions. High-resolution DLSTs were validated with LSTs upscaled from the
native 2 m pixel size. Overall, in this research, two specific objectives are pursued: (1) to
test the performance of a modified TSU model with multi-spectral clusters to directly
downscale LST to different high resolutions; (2) to develop and assess a new method with
a CT to reduce the scaling effect on DLST results at high resolutions. The expected novel
significances for this study include (1) directly downscaling LST with the modified TSU
model and spectral clusters to obtain thermal components’ temperatures (different from
the TSU model by Wang et al. [26], which downscales thermal radiance with land use/land
cover types extracted from high-resolution optical data to obtain thermal components’
radiance), and (2) the newly developed method with the CT to significantly improve DLST
results at high resolutions. Relevant issues related to spectral clusters responding thermal
components and thermal physical characteristics, determining mask images and expression
for running the CT, and limitations for the current CT expression are discussed. Some
suggestions in further reducing the scaling effect on DLST results are also provided.

2. Study Areas and Data Sets
2.1. Study Areas

Two case study areas (CASEs I and II) were selected for this research because both
areas have a heterogenous urban environment and available VHR TIR and optical data
required for this research. The CASE I study area, located at approximately 35.3◦ N
and 139.5◦ E, covers 1.1 × 3.1 km2 and is within the City of Yokohama, Japan (Figure 1).
There are over 3.7 million people in the city. The city has typical heterogenous urban
environments including various man-made materials covering buildings, rooves, and road
surfaces. There are also relatively fewer vegetated areas (parks, lawns/turfs), bare soil
areas, and water bodies in the area. Yokohama features a humid subtropical climate with
hot, humid summers and chilly winters with a yearly average temperature of 16.2 ◦C
(April and May average: 16.7 ◦C) and yearly precipitation of 1730.8 mm (April and May
monthly average: 147.9 mm) [34]. The CASE II study area is located at approximately
41.35◦ N and 12.39◦ E and comprises the City of Aprilia, near Rome, Central Italy (Figure 1).
The selected area has 4.7 × 3.5 km2 with a total population of 73 k. The CASE II study
area is covered by typical residential, industrial estates, rural, and vegetated areas. The
city has a Mediterranean climate with hot, dry summers and mild, humid winters with a
yearly average temperature of 19.0 ◦C (March average 13.0 ◦C) and yearly precipitation of
1188.7 mm (March average: 108.9 mm) [35].

2.2. Data Sets

All thermal and optical images used in this study were summarized in Table 1. For
CASE I, ASTER 90 m resolution LST product, Thermal Airborne Broadband Imager (TABI)
2 m resolution retrieved LST data, and Airborne Imaging Spectrometer for different Appli-
cations (AISA) hyperspectral data were collected. The ASTER 90 m LST data were used
to downscale LSTs to finer resolutions while the upscaled LSTs from TABI 2 m retrieved
LST (ULSTs) were used to verify the DLSTs. The AISA data were used to extract spectral
clusters and scaling factors (surface biophysical descriptors) at a high resolution. The
high-resolution red and NIR bands of AISA imagery were also used for extracting the
combined variance for developing the correction term to reduce the scaling effect on DLST
maps. The ASTER sensor has 14 multi-spectral bands from visible to thermal infrared,
including three 15 m VNIR bands, six 30 m SWIR bands and five 90 m TIR bands. It has a
viewing angle of ±8.55◦ [36]. The TABI-320 system acquires thermal images in the spectral
range of 8–12 µm, with a viewing angle of ±24◦ (ITRES Research Limited, Canada). AISA
hyperspectral system can acquire 35-band images at 2 m resolution, but for this study, only
10 bands covering a typical VNIR spectral range were adopted for CASE I.
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Table 1. Summary of LSTs and optical multi/hyperspectral images used in this study.

LST Products or
Optical Data

Acquisition
(Date and Time)

DLST or ULST or Optical Data
(Bands, Wavelengths)

Spectral Clusters and
Scaling Factors

CASE I data set

ASTER 90 m LST 04/25/2004, around
10:30 a.m. local time

DLST: 62 m, 54 m, 46 m, 38 m,
30 m, 22 m, 14 m, 10 m, 6 m, 2 m

6 scaling factors and 10 spectral
clusters calculated from the
AISA selected 10 VNIR bands

TABI 2 m LST 05/26/2004,
15:00–16:00 p.m. local time

ULST: 62 m, 54 m, 46 m, 38 m,
30 m, 22 m, 14 m, 10 m, 6 m -

AISA 2 m optical data 01/30/2003, 05/14/2003 selected 10 VNIR bands
6 scaling factors and 10 spectral
clusters calculated for ASTER
LST downscaling

CASE II data set

Thermal retrieved 2 m LST 03/19/2015, around
12:00 p.m. UTC

ULST: 100 m, 62 m, 54 m, 46 m,
38 m, 30 m, 22 m, 14 m, 10 m, 6 m -

VNIR 0.5 m optical data 03/19/2015, around
12:00 p.m. UTC

three VNIR bands: green
(0.53–0.57 µm), red (0.65–0.69 µm),
& NIR (0.76–0.83 µm)

6 scaling factors and 10 spectral
clusters calculated for upscaled
100 m LST downscaling

Data for CASE II study area consist of a FLIR A40-M thermal camera acquiring TIR
data (7.5–13.0 µm) at a 2 m resolution, and a Duncan Hasselblad multispectral cam-
era acquiring VNIR data at a 0.5 m resolution in three bands (green: 0.53–0.57 µm,
red: 0.65–0.69 µm, and NIR: 0.76–0.83 µm) [13]. Both thermal and optical image data
were collected over the CASE II study area by a Sky Arrow 650 ERA research aircraft
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on 19 March 2015, around 12:00 UTC. The VHR airborne image data were managed by
Terrasystem Srl (www.terrasystem.it (accessed on 1 November 2021)). In situ LST mea-
surements were also taken during the flight time in the study area, which were used for
retrieving LST from the TIR data. The high-resolution three-band images were used to
extract spectral clusters and scaling factors in the downscaling LST processing.

3. Methodology

After multi-sensor thermal and optical remote sensing data were collected from
the two case study areas, the proposed analysis method for reducing the scaling effect
on DLST maps consists of three major components, which are summarized in Figure 2.
The preprocessing component covers the following tasks: converting multispectral and
hyperspectral optical data to at-sensor radiance, checking existing LST products, retrieving
2 m resolution LSTs from thermal data, converting physical units of all LST data as ◦C × 100,
and extracting spectral clusters and scaling factors from the ten AISA VNIR bands for CASE
I and the three VNIR bands for CASE II. The downscaling LST (DLST) component includes
(i) downscaling the 90 m ASTER LST product for CASE I with ten spectral clusters and
six scaling factors extracted from the AISA data, and (ii) downscaling the upscaled 100 m
retrieved LST, aggregated from the 2 m LST data, for CASE II with ten spectral clusters and
six scaling factors extracted from the three VNIR bands. A modified TSU model and a REG
model were used to downscale LSTs with CASEs I and II data sets. Corresponding 90 m and
100 m resolution fraction (proportional) images of spectral clusters and scaling factors were
produced. The reducing scaling effect component includes (i) computation of the combined
variance (SD) of red and NIR bands at a high resolution in different moving window sizes,
(ii) determination of the correction term’s expression by a semi-empirical approach, and
(iii) reduction of the scaling effect on DLST maps by running the CT expression for both
study areas.
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3.1. Data Preprocessing

The LSTs at 2 m resolution were retrieved from the airborne TIR data acquired in both
study areas [37–39]. Physical units of all LST data were converted into ◦C × 100. All air-
borne optical image data were converted into at-sensor radiance (W·m−2 sr−1 µm−1 × 10)
before extracting their spectral clusters and scaling factors at high resolutions. For CASE I
data, the multi-sensor’s data acquisition date is different (see Table 1), which might result
in different LST over the same land use/land cover types. To make both ASTER and TABI
TIR data comparable and verifiable each other, the TABI 2 m LST was normalized to the
ASTER 90 m LST by using a normalization approach introduced in [1]. To do so, the TABI
2 m LST was first aggregated to 90 m resolution (ULST) with a resampling Pixel Aggregate
tool, which averaged all 2 m resolution pixel values within a 90 m resolution pixel and
then exported the averaged value to the pixel, and then a pixel-based LST difference was
calculated by subtracting the TABI 90 m ULST from the ASTER 90 m LST. Next, the pixel-
based difference was downscaled to 2 m resolution with a bilinear interpolation resampling
method [16] and, finally, each pixel value in the TABI 2 m LST image was modified by
adding the downscaled 2 m LST difference to it.

3.2. Downscaling Land Surface Temperature (DLST)
3.2.1. A Modified Thermal Spectral Unmixing (TSU) Model

By referring to the basic concept of thermal spectral unmixing (TSU) model [26] for
downscaling both ASTER 90 m LST (CASE I) and upscaled 100 m LST data (CASE II) to
finer resolutions, we modified the TSU model to unmix a native (low) resolution LST to
infer/retrieve high-resolution thermal component temperatures, using high-resolution
spectral clusters as an input. Here, fractions (i.e., FL in Equation (1) below) of spectral
clusters at a low resolution can be calculated through a statistical computation of all spectral
clusters from all pixels at 2 m resolution within each pixel at a low resolution (e.g., there
are 2025 2-m pixels each with a unique spectral cluster within a 90 m low resolution pixel).
The algorithm of the modified TSU model is described as follows. Instead of using thermal
radiance in the TSU model as in [26], we directly used LST at a low resolution expressed as
the thermal component temperature change weighted by their fractions of spectral clusters
F at a low resolution:

LSTL(1×n) = TCV(1×m)·FL(m×n) + ε (1)

with min ||LST − TCV·F|| subject to F ≥ 0. (2)

where LSTL(1×n) represents the LSTs of n low-resolution pixels (i.e., ASTER 90 m LST and
upscaled 100 m LST), TCV(1×m) is the temperatures of m thermal component components
represented by m spectral clusters at a high resolution, FL(m×n) represents the fractions of
spectral clusters (thermal components) at a low resolution, and residual ε represents the
variance of LST unexplained by the spectral clusters. Per Equation (1), if we know LSTL
and FL, it is easy to solve the thermal component vector via a least-square estimation (LSE)
of the model [40]. In fact, in this study, we know ASTER 90 m LST and upscaled 100 m LST
and the corresponding low-resolution fractions of m spectral clusters calculated from the
high-resolution spectral clusters data (see Section 3.2.2). Consequently, TCV(1×m) can be
obtained via the following LSE of the model [37]:

TCV(1×m) = LSTL(1×n)·F′L(n×m)·(FL(m×n)·F′L(n×m))
−1 (3)

After obtaining TCV(1×m), we can map very-high-resolution LSTs for both case data
sets (2 m resolution) based on their spectral cluster maps (here, thermal components and
their temperatures can be assigned to the corresponding spectral clusters) created with
an ISODATA unsupervised algorithm. Then, different high-resolution LST maps can be
created by aggregating the 2 m LST maps created with thermal component temperatures.

To test the power and stability of the performance of correction term (CT, introduced in
Section 3.3 below), the REG model was also used to downscale the ASTER 90 m LST and the
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upscaled 100 m LST to different high-resolution DLSTs with corresponding 90 m (CASE I)
and 100 m (CASE II) resolution six scaling factors (created by aggregating the 2 m resolution
scaling factor maps). The six scaling factors include four fraction images: vegetated area,
bare soil, impervious area, and water body/shadow area, and two normalized difference
vegetation indices: (NIR − red)/(NIR + red) and (NIR − green)/(NIR + green). The
procedure of DLST with the REG model was introduced in detail in [1].

In this study, after calculating fractions of the spectral clusters at coarse resolutions
(90 m for downscaling ASTER LST and 100 m for downscaling the 100 m upscaled LST),
thermal components’ temperatures at 2 m resolution were obtained by solving the modified
TSU model (Equation (1)). For running the REG model, the corresponding 90 m and
100 m resolution six scaling factors were also calculated for computing the LST estimate
parameters. Then, for both case studies, the 2 m high-resolution DLST maps obtained by
solving the TSU model were upscaled to 6 m, 10 m, . . . , 62 m with a resampling Pixel
Aggregation Tool. Additionally, the 2 m, 6 m, . . . , 62 m DLST maps were produced by
using the LST estimate parameters created by running the REG model. Finally, all these
DLST maps at different resolutions were modified by running a post-processing approach
(see Section 3.2.4).

3.2.2. Extraction of Spectral Clusters from High Resolution Optical Data

In this study, spectral clusters, substituting for thermal components, were used to
solve the modified TSU model (Equation (1)). For CASE I study area, we chose ten VNIR
bands as input to the ISODATA algorithm to create three (10, 15, and 20) spectral-cluster
maps to select the number of spectral clusters leading to a better LST map at a very high
resolution. Likewise, the 10, 15, and 20 spectral-cluster maps were also created by the
ISODATA algorithm using the three VNIR bands available for the CASE II study area.

3.2.3. Thermal Components and Spectral Clusters

Thermal components may be represented by spectral clusters because the spectral clus-
ters can be intrinsically linked to thermal physical characteristics of thermal components
(Table 2). By referring to [22,23,41,42], the extracted spectral clusters could be associated
with, and described by, corresponding surface materials and cover types that are further
described by thermal physical characteristics. Table 2 lists the 10 spectral clusters resulted
from CASE I data, with the corresponding surface cover materials/types and their thermal
physical characteristics. Essentially, based on the above association of the extracted spectral
clusters, corresponding thermal component temperatures at a high resolution are expected
by solving the modified TSU model (Equation (1)).

3.2.4. Modification of Initial LSTs

In this research, the initial DLST maps were created from ASTER 90 m LST and up-
scaled 100 m LST by solving the modified TSU model and the REG model. To improve the
initial DLSTs quality at different high resolutions, we adopted a post-processing approach
suggested by [1,16] to modify the DLST maps with the residual error.

3.2.5. Validation of Downscaled LSTs

Once the DLST maps were improved by reducing the residual error, upscaled LSTs
(ULSTs) from the 2 m LSTs for both study areas were used as reference to verify DLSTs at
different high resolutions. ULST maps were also used to verify the DLST results corrected
by the correction term, introduced below.

3.3. Correction Term (CT)

As literature reviewed in the Introduction section shows, the scaling effect in DLST
processes is associated with the degree of heterogeneity of surface features/materials within
pixels at specific resolutions [4,5]. Understanding this issue in different urban landscapes
is especially important to study urban thermal environments, where mixed pixels are
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frequently dominant in moderate- (even high-) resolution remote sensing imagery [33,43].
Such a certain degree of heterogeneity within pixels at different resolutions may be denoted
by the variances of red and NIR bands extracted from finer-resolution images [31,32]. In a
very heterogeneous urban environment, the variances of the red and NIR radiance would
be large, while their co-variance would be small [32]. By referring to the concept of the
correction terms and their application in [32], in this research, we used a combined variance
of red and NIR bands extracted from the high-resolution images (used as a subpixel
level) to construct the CT to reduce the LST differences (i.e., the scaling effect) between
the referenced (or upscaled) LSTs and the estimated DLSTs at different high resolutions.
The final corrected DLST is obtained by adding the CT to the DLST (i.e., lumped model
estimation in [32]).

Table 2. Mean temperature from the 2 m TABI retrieved LST, thermal component temperature, surface cover materi-
als/types and thermal physical characteristics of spectral clusters extracted from AISA optical data by an ISODATA
unsupervised algorithm.

Spectral
Cluster

1 Mean T/SD from
2 m LST (◦C)

2 Thermal
Component T (◦C)

Surface Cover Materials and Types 3 Thermal Characteristics

SC1 32.17/5.07 31.38
shaded areas, very low albedo
residential areas, dark soil,
water bodies

low—mid thermal radiance,
more latent heat exchange

SC2 32.92/5.09 35.99
low albedo impervious areas (most
residential areas and dark
road surfaces)

mild—high thermal radiance,
more sensible heat exchange

SC3 34.32/4.93 37.23 light gray road surface and other
mild albedo impervious surfaces

high thermal radiance with
sensible heat exchange

SC4 29.92/4.49 25.04 vegetated areas (turf, lawn & shrub) low thermal radiance with latent
heat exchange

SC5 34.30/4.93 35.74 mild albedo impervious areas (most
parking lots, roofs)

mild—high thermal radiance,
more sensible heat exchange

SC6 33.79/5.01 28.83 low albedo impervious areas (most
parking lots, roofs)

mild thermal radiance, less
sensible heat exchange

SC7 29.83/4.34 30.19 bright vegetated area (tree canopy) low thermal radiance with latent
heat exchange

SC8 31.51/4.47 25.90 spare vegetated areas (turf & lawn
or wet bare soil)

low thermal radiance, more
latent heat exchange

SC9 32.26/5.67 28.71 playground, gray bare soil. low—mild thermal radiance, less
sensible heat exchange

SC10 29.81/6.70 33.66 bright roofs mid thermal radiance with
sensible heat exchange

Note: 1. Mean temperature / standard deviation calculated from the 2 m TABI retrieved LST for each spectral cluster. 2. Thermal component
temperature, created by solving the modified TSU model, for each spectral cluster. 3. Referring to [22,23,41,42].

To determine the CT expression, we first calculated the combined standard devia-
tion (SD) of red and NIR bands from the high-resolution optical data sets of CASEs I
and II by a moving window with different sizes for different resolution DLST results.
Then, different difference LST (DiffLST) maps between ULSTs and DLSTs were created at
different resolutions:

DiffLST = ULST − DLST (4)

where ULST represents the upscaled LST map (i.e., the referenced LST map) from the 2 m
LST, and DLST is the downscaled LST from the ASTER 90 m or the upscaled 100 m LST.
Pixel values in a DiffLST image consist of two slightly equal (symmetric) parts: negative
and positive pixel value parts, which might be covered by two masks: the negative mask
and the positive mask. After a careful look at the DiffLST images, it was observed that
most negative pixels are covered by low albedo surface materials and types including
vegetated areas, water bodies, shadow/shaded areas, and dark/wet surfaces (e.g., roofs
and road surfaces, etc.). Those negative pixels potentially have a high level of latent heat
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exchange, whilst most positive pixels, covered by mid-to-high albedo impervious surfaces,
potentially have a high level of sensible heat exchange. Figure 3 presents the scatter plots
in the feature space of DiffLST and combined SD of red and NIR bands at 62 m, 30 m, 14 m,
and 6 m resolutions, created from CASE I data. Per the scatter plots, a general pattern
across the different resolutions could be observed, which is in a triangle shape with the
greatest absolute value of DiffLST toward the least combined SD of red and NIR bands,
and the least absolute value (close to 0) toward the greatest combined SD value (Figure 3).
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Figure 3. Scatter plots in a two-dimension feature space of the difference (DiffLST) between ULSTs
and DLSTs (created by the modified TSU model) and the combined SD of red and NIR bands. Plots
(a–d) were created with 62 m, 30 m, 14 m, and 6 m resolution map data with CASE I data set. The
remaining 54 m, 46 m, 38 m, 22 m, and 10 m plots (Figure S1, see all figures and tables with S * in
Supplementary Materials section) have a similar triangle-shape pattern as Figure 3.

Therefore, based on the distribution of the scatter points and relationships observed
between DiffLST (Y) and the combined SD (X) of red and NIR bands, for both negative and
positive parts, a linear model might be fitted as follows:

Y = A·X + B (5)

where A and B represent the slope and intercept of the linear model. Their optimal values
were determined by a semi-empirical approach via an iteration procedure. With CASE I
data, the CT expression (◦C × 100) was fitted as:

Y = −0.25·X + 320 (6)

which could be applied to partially reduce the scaling effect on DLST results at least for
CASE I data. Specifically, for negative pixel values of DiffLST (negative mask), the corrected
DLST is obtained by subtracting the pixel-based Y values with input pixel-based X values
from the corresponding pixel-based DLST map. Similarly, for positive pixel values of
DiffLST (positive mask), the corrected DLST is obtained by adding the pixel-based Y values
with input pixel-based X values to the corresponding pixel-based DLST map. For CASE II
data, a similar pattern of the scatter plots in the feature space of DiffLST and combined SD
of red and NIR bands at different resolutions was observed (Figure S4). Therefore, the same
CT expression fitted from CASE I data might be directly used for CASE II DLSTs’ correction.
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Once the CT expression (Equation (6)) was fitted, we tested its sensitivity by changing
its slope value from 0.20 to 0.30 with a step = 0.02 and its intercept value from 240 to 400
with a step = 20 for CASE I DLST maps. CTs computed with different combinations of
slope and intercept values were added (or subtracted) to (or from) the DLSTs at 6 m and
14 m resolutions considering the corresponding positive mask (or negative mask). Then,
these corrected DLSTs at 6 m and 14 m resolutions were used to calculate the mean absolute
error (MAE) (Equation (8) below) by comparing the corresponding ULST reference maps.
The accuracy was obtained by calculating {(MAE without CT) − (MAE with CT)}/(MAE
without CT)·100 (%). The test results were presented in Figure 4. Per the figure, the
accuracy could be improved from 34% to 47% for the 6 m resolution DLST and from 30%
to 44% for the 14 m resolution. This sensitive test reveals that the applications of the CT
expression could result in a DLST accuracy improved at least 30%; thus, the compensation
of the scaling effect in DLST processes is effective and significant. In this study, we also
used the root mean square error (RMSE, Equation (7)) to indicate the power of the CT in
reducing the scaling effects.
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Figure 4. Sensitivity tests of the correction term (Y = slope · X + intercept) by changing its slope and
intercept values for CASE I. The improved accuracy of the DLST with CT compared with the DLST
without CT is reported for 6 m (a) and 14 m (b) resolutions.
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In practice, how to determine the negative and positive pixel value masks from DiffLST
images is a key step to execute the CT to reduce the scaling effect on DLST results. This is
because true high-resolution LST maps are not known, so the DiffLST images are actually
not available for creating both negative/positive masks for running the CT expression.
In this case, we proposed a field temperature measurement approach to help create the
negative and positive masks, which is introduced as follows. After obtaining the thermal
component temperatures or LST estimate parameters, a high-resolution DLST (i.e., DLST
at 2 m resolution for both study areas) was created. The variation of LST over the high-
resolution DLST map should spatially match the spectral cluster map (i.e., each spectral
cluster has a corresponding unique thermal component temperature). We can then bring
the high-resolution DLST map and spectral cluster map to the field for taking in situ LST
measurements with an instrument for each spectral cluster (thermal component). The in
situ measurement approach could be referred to either [44] or [45]. A random sampling
or systematic sampling method may be adopted to select 5–10 patches/pixels for each
spectral cluster to take their in situ LST measurements. It is necessary to normalize the in
situ LST measurements to the original coarse-resolution LST before creating an in situ LST
map by assigning these normalized in situ measurements to the corresponding spectral
clusters. Now, a DiffLST image at a high-resolution (2 m resolution for this study) may
be obtained by subtracting the DLST map from the in situ measurement LST map. Once
the DiffLST image at the high-resolution is obtained, other different resolution DiffLST
images can be created by upscaling the DiffLST with a pixel aggregation method. In this
way, the corresponding resolution masks (negative and positive) can be obtained. Since
the very-high-resolution retrieved LST map is available in this study, we simply used the
2 m LST map as the in situ LST measured map to calculate a DiffLST image at the initial
2 m resolution, then other DiffLST images at different resolutions (i.e., 62 m, 54 m, . . . , 6 m)
were created by aggregating the 2 m DiffLST image.

3.4. Assessment of DLST Results

Hereafter, the “DLST” maps refer to those without correction with CT expression but
modified with a post-processing approach (see Section 3.2.4), while the “corrected DLST”
maps refer to those corrected with the CT expression (Equation (6)). To assess the DLST
results, a comparison with the corresponding ULST maps (i.e., LST reference maps) was
performed. Specifically, we compared and assessed the DLST results created without CT
with those with CT correction. These evaluations were conducted in graphics (DLST maps,
histograms, and scatter plots) and tabular statistics (descriptive statistics, RMSE and MAE).
The RMSE and MAE were expressed as follows:

RMSE =

√√√√ n

∑
i=1

(
LSTi − ˆLSTi

)2/n (7)

MAE =
n

∑
i=1

∣∣LSTi − ˆLSTi
∣∣/n (8)

where, LSTi and ˆLSTi are the reference LST and the estimated LST corrected with or without
CT correction, respectively, and n is the number of samples (pixels).

4. Results and Analysis
4.1. DLST Maps at Different High Resolutions

Figure 5a1–d1 presents the corrected DLST maps with CT at 62 m, 30 m, 14 m, and 6 m
resolutions for CASE I; for comparison purposes, Figure 5a2–d2 shows the corresponding
ULST maps (reference LSTs), aggregated from the TABI 2 m LST map. By checking and
comparing the corrected DLST results and the corresponding LST references, it is clearly
observed that the spatial distribution patterns and locations of LSTs were well consistent.
For example, in both LST maps, the low left corner area is a relatively high-temperature
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zone, covered by a high density of buildings and the transportation network, whilst the
upper-middle area is a low-temperature area with a large park. Figure S2 also clearly
shows such patterns. Particularly, it is evident for those DLST maps at a resolution better
than 30 m. The consistency of the LST spatial pattern between corrected DLST and ULST
maps was also found for CASE II (maps not reported here): relatively low-temperature
areas in the upper right, lower, and lower right zones due to the presence of grass, turf, and
greenness; relatively high-temperature areas distributed in the left-middle zones where
impervious surfaces are dominant.
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Figure 5. Corrected DLST maps downscaled from ASTER 90 m LST with AISA data-derived spectral
clusters, by applying the modified TSU model. (a1–d1) are 62 m, 30 m, 14 m, and 6 m DLST maps,
and (a2–d2) are the corresponding ULST maps (reference LSTs) upscaled from the TABI 2 m LST
map. The remaining 54 m, 46 m, 38 m, 22 m, and 10 m LST maps are reported in Figure S2.

Table 3 presents the basic descriptive statistics (Min, Max, Mean, and SD values) of
the DLST results, and they are generally reasonable. Both corrected DLST maps created
from CASEs I and II had a similar change tendency of the descriptive statistics across
different resolutions. In addition, Table 3 also shows that the data distributions were
asymmetrical: for CASE I, the data distributions were biased to the right side (maximum),
while for CASE II, they were slightly biased to the left side (minimum). Both unsymmetrical
phenomena can be illustrated by Figure 1: the CASE I study area presents more impervious
surfaces/built up areas than greenness and water body areas, while the CASE II study area
shows slightly more greenness and rural areas than impervious surfaces/built up areas.

4.2. Accuracy of DLST Maps

Figure 6 shows the histograms of three types of LST maps (at 62 m, 54 m, . . . , 6 m
resolutions) created with CASE I data: the DLST maps, the corrected DLST maps, and the
corresponding LST reference maps (ULST). By checking the LST changes across different
resolutions and comparing shapes and proximity of the two DLST map histograms to the
ULST map histogram in the same plots, we could easily observe the following three points.
(1) The histogram curves of both DLST and corrected DLST maps at lower resolutions
(lower than 30 m) were closer to the corresponding LST reference maps, suggesting that
the scaling effect on the DLST maps is less than those at finer resolutions (better than 30 m).
(2) With the improvement of the resolutions (from 62 m to 2 m), the minimum and maxi-
mum pixel values for the three LST maps (shown along the X-axis) decrease and increase,
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respectively (also see Table 3), indicating that the proportion of pure pixels, covered by in-
dividual surface materials/cover types (thermal components), increases. (3) The histogram
curves of the corrected DLST maps were closer to the corresponding LST reference maps,
especially at resolutions better than 30 m. This means that the CT significantly reduced the
scaling effect on DLST maps, especially for the very-high resolutions.

Scatter plots in Figure 7 present the correlations (R2) and consistencies between the
DLST maps with and without CT and the corresponding LST reference maps. Per the
scatter plots, besides the first two points we observed from Figure 6 (i.e., less scaling effect
on DLST maps at lower resolutions and smaller minimum and greater maximum values for
the DLST maps at higher resolutions), compared to the plots of Figure 7a1–d1, the scatter
points in Figure 7a2–d2 were closer to the 1:1 scale line, demonstrating that the corrected
DLST maps had a more proximate distribution to, and spatial patterns as, the thermal
information shown in the corresponding ULST maps. By comparing the R2 values of DLST
and corrected DLSTs for corresponding resolutions, the increase in R2 after correction with
CT was significant (R2 value for corrected DLSTs increased of 0.18 for 62 m to 0.46 for
6 m with respect to the DLST maps). The results suggested that using CT to reduce the
scaling effect on DLST maps is workable and effective. The same scatter plots at different
resolutions for CASE II also demonstrate the effectiveness of using CT to improve DLST
maps (Figure S5).

Table 3. Basic descriptive statistics (◦C) of DLSTs corrected with correction term (CT), downscaled from ASTER 90 m LST
product and 100 m upscaled LST data by solving the modified TSU model (CASE I) with AISA 10 spectral clusters created
by ISODATA and REG model (CASE II) with 6 scaling factors.

DLST (LST) Min Max Mean SD

CASE I with ASTER 90 m LST and AISA optical data (DLST by using the modified TC-based TSU model)

ASTER 90 m LST 23.05 36.95 32.65 2.04
62 m DLST 22.16 38.19 32.69 2.31
54 m DLST 23.53 37.66 32.71 2.45
46 m DLST 22.95 38.72 32.70 2.51
38 m DLST 22.22 39.24 32.68 2.65
30 m DLST 21.92 39.38 32.70 2.73
22 m DLST 21.34 40.66 32.68 2.93
14 m DLST 20.76 40.87 32.67 3.15
10 m DLST 19.31 41.83 32.64 3.33
6 m DLST 18.49 43.05 32.60 3.58

2 m DLST * 19.20 41.55 32.66 4.35
TABI 2 m retrieved LST 11.54 52.78 32.67 5.19

CASE II with high resolution thermal retrieved LST and optical data (DLST by using the REG model)

Upscaled 100 m retrieved LST 9.82 30.82 20.74 2.50
62 m DLST 12.89 31.27 20.77 2.62
54 m DLST 11.69 31.64 20.78 2.75
46 m DLST 12.99 31.47 20.78 2.79
38 m DLST 12.91 32.09 20.80 2.86
30 m DLST 11.62 32.80 20.81 3.00
22 m DLST 11.37 32.72 20.82 3.13
14 m DLST 10.42 33.65 20.82 3.36
10 m DLST 8.95 35.18 20.83 3.50
6 m DLST 5.50 35.40 20.83 3.67

2 m DLST * 1.64 34.39 20.73 3.59
2 m retrieved LST 0.00 50.00 20.75 4.88

Note: * without CT correction because the initial very high resolution optical data is 2 m (aggregating 0.5 m to 2 m for CASE II data) so that
no red/NIR SD data are available at 2 m.
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Figure 6. Histograms of 62 m, 54 m, 46 m, 38 m, 30 m, 22 m, 14 m, 10 m, and 6 m DLST maps
without CT (in dashed line, (a–i)) and with CT (corrected DLST, in dotted line, (a–i)), downscaled
from ASTER 90 m LST with AISA data (CASE I, using the modified TSU model), and histograms of
the corresponding ULSTs (in solid line, (a–i)) aggregated from the TABI 2 m LST.
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Figure 7. Scatter plots (CASE I) between DLST results (a1–d1) and corrected DLST results (a2–d2)
with the CT expression (Equation (6)), and corresponding ULST aggregated from the TABI 2 m LST.
The DLST results were created from ASTER 90 m LST with AISA data derived 10 spectral clusters
and by using the modified TSU model. The remaining 54 m, 46 m, 38 m, 22 m, and 10 m LST scatter
plots (Figure S3) had the similar differences between DLST and corrected DLSTs as Figure 7.

Table 4 summarizes the RMSE and MAE values for DLST (W/out CT in the table)
and corrected DLST maps, as well as the accuracy improvement after DLST maps were
corrected with the same CT expression (Equation (6)), for CASEs I and II. Per the table, it
is apparent that after correction, the RMSE and MAE values were significantly reduced
at different resolutions (i.e., the accuracy was significantly increased). The average RMSE
value across 6 m to 62 m resolutions was reduced by 35% and the average MAE value
by 37% in the CASE I study area. For CASE II data, when considering the DLST maps
estimated with the REG model (Table 4) or the modified TSU model (Table S1), the average
RMSE value across 6 m to 62 m resolutions was reduced by 33% (or 30% in Table S1) and
the average MAE value by 41% (or 33% in Table S1).
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Table 4. Summary of RMSE and MAE values improved with correction term (CT) to correct DLSTs for CASEs I and II data
sets. All bold numbers mean “Average”.

DLST

RMSE (◦C) MAE(◦C)

Note
W/out CT With CT Improved

with CT (%) W/out CT With CT Improved
with CT (%)

CASE I with ASTER 90 m LST and AISA optical data (DLST by using the TC-based TSU model)

62 m DLST 1.55 1.07 30.97 1.17 0.85 27.35 compared to ULST of TABI 2m LST
54 m DLST 1.67 1.14 31.74 1.28 0.89 30.47 compared to ULST of TABI 2m LST
46 m DLST 1.85 1.22 34.05 1.41 0.94 33.33 compared to ULST of TABI 2m LST
38 m DLST 2.04 1.32 35.29 1.57 1.00 36.31 compared to ULST of TABI 2m LST
30 m DLST 2.30 1.48 35.65 1.77 1.11 37.29 compared to ULST of TABI 2m LST
22 m DLST 2.67 1.69 36.70 2.05 1.23 40.00 compared to ULST of TABI 2m LST
14 m DLST 3.24 2.05 36.73 2.52 1.46 42.06 compared to ULST of TABI 2m LST
10 m DLST 3.69 2.33 36.86 2.90 1.64 43.45 compared to ULST of TABI 2m LST
6 m DLST 4.4 2.78 36.82 3.49 1.95 44.13 compared to ULST of TABI 2m LST
Average 34.98 37.15

CASE II with high resolution thermal retrieved LST and optical data (DLST by using the REG model)

62 m DLST 1.97 1.33 32.49 1.32 0.84 36.36 compared to ULST of retrieved 2m LST
54 m DLST 2.02 1.33 34.16 1.34 0.81 39.55 compared to ULST of retrieved 2m LST
46 m DLST 2.16 1.42 34.26 1.45 0.86 40.69 compared to ULST of retrieved 2m LST
38 m DLST 2.36 1.57 33.47 1.58 0.92 41.77 compared to ULST of retrieved 2m LST
30 m DLST 2.50 1.61 35.60 1.67 0.95 43.11 compared to ULST of retrieved 2m LST
22 m DLST 2.77 1.86 32.85 1.84 1.06 42.39 compared to ULST of retrieved 2m LST
14 m DLST 3.13 2.11 32.59 2.09 1.19 43.06 compared to ULST of retrieved 2m LST
10 m DLST 3.39 2.29 32.45 2.28 1.30 42.98 compared to ULST of retrieved 2m LST
6 m DLST 3.73 2.52 32.44 2.52 1.43 43.25 compared to ULST of retrieved 2m LST
Average 33.37 41.46

5. Discussion
5.1. The Performance of the Modified TSU Model

In this research, the modified TSU model was effective in downscaling LSTs from a
coarse resolution to different high resolutions (before considering the correction with CT
expression). Unlike using thermal radiance in the thermal component unmixing-based
techniques in [26], directly using LST at a low resolution in the TSU model (expressed
as thermal component temperature change weighted by spectral cluster fractions) is less
time consuming, and it is easy to obtain different high-resolution DLST maps. For both
case data sets, we tested and compared three different numbers (10, 15, and 20) of spectral
clusters used for solving the modified TSU model, and the DLST results were similar, but
the 10 spectral clusters consumed less time for the model solving. The modified TSU model
with the CASE I data led to slightly better DLST results (relatively lower RMSE and MAE
values) compared with our previous results [1] created by artificial neural networks and
REG with AISA data derived scaling factors, especially for very-high resolutions. The
accurate and reliable DLST maps produced with the modified TSU model were also better
than, or comparable to, those in existing literature (e.g., [12,46,47]). However, the scaling
effect on the DLST maps at high resolutions (better than 30 m) was still significant.

Directly using multiple spectral clusters created with high-resolution optical data and
ISODATA algorithm to solve the modified TSU model for obtaining thermal component
temperatures was proved to be workable. The multiple spectral clusters might be used to
represent thermal components to unmix the model. For this case, it may be expected that
the modified TSU model with extracted spectral clusters from optical data can also be used
for downscaling a coarse-resolution LST (e.g., AVHRR and MODIS data) to a moderate
resolution LST (e.g., similar to Landsat and ASTER data), although we did not test it in
this study. In fact, the different spectral clusters could be described by different surface
materials and cover types (see Table 2), and different thermal components may consist
of different hot and cold components. The hot components represent objects that have
a relatively high thermal radiance, such as impervious areas (roofs and roads), and the
cold components are objects that have a relatively low thermal radiance, such as vegetated
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areas and water bodies [42]. Research results indicate there exist associations of LSTs
with different urban biophysical descriptors (impervious surface, vegetation, and soil) and
with thermal feature fractions (hot and cold components) [42]. Deng and Wu [23] selected
five categories of land cover types to explain the thermal responses of urban land cover
types. Therefore, the thermal components may be denoted by spectral clusters and surface
materials/cover types, such as impervious surfaces, vegetated areas, water bodies, etc.,
which may be relatively easy to be extracted and mapped by using traditional classification
methods and optical data. However, from Table 2, although the thermal component
temperatures among the 10 spectral clusters were mostly different (here, one thermal
component has only one temperature), the mean temperatures/SDs calculated from the
2 m TABI LST for the 10 spectral clusters were obviously overlaid if their distributions
(SDs) were considered. This implies that although the spectral clusters representing thermal
components are workable, they are not perfect in solving the modified TSU model.

5.2. Corection Term (CT)

In this study, to develop an appropriate correction term (an association of correcting
DLST with input SD of red and NIR bands), we tested a linear regression model, non-linear
polynomial forms (second and third order), and artificial neural network models, and found
that the corrected DLST results were all not ideal (i.e., reducing DiffLST not significant).
Therefore, we adopted a semi-empirical approach (a linear model) and determined its slope
and intercept through running an iteration procedure by changing slope and intercept
values. We finally found that the CT expression of Equation (6) was effective in reducing
the spatial scaling effect on DLSTs created by using both models (the modified TSU model
and the REG model) with both case data sets.

The sensitive tests for CASE I (Figure 4) with different combinations of slope and
intercept indicated that the CT expression, Equation (6), was stable. The CT application
could result in at least 30% increased accuracy for the high-resolution DLSTs. Thus, the
CT expression (Equation (6)) was effective and significant. By checking the testing results,
the effectiveness of the CT expression was enhanced with the refinement of the resolution
of the DLST maps (Table 4), which was just matching the increase in the scaling effect in
DLST processes with the increase in the resolution of the DLST maps. The effectiveness of
the CT expression was dependent on the two masks (negative and positive) of the DiffLST
images and on the point distribution patterns in the feature space (DiffLST image and the
combined SD of red and NIR bands). After checking the point patterns in the feature space
of DLST maps created with artificial neural networks and REG models [1] for CASE I data,
we found similar patterns to those shown in Figure 3 across different spatial resolutions.
Such similar distribution patterns (i.e., a triangle shape) were also observed for CASE
II data with both the REG model (Figure S4) and the modified TSU model. Therefore,
Equations (5) and (6) are expected to be generally workable.

Given the fact that the DiffLST images at different higher resolutions are not available
in practice, as pointed out in Section 3.3, how to determine the negative and positive masks
from DiffLST images is a critical issue. Per an application perspective of downscaling coarse
LST data to finer resolutions, a field in situ LST measurement approach may be a solution.
For instance, one of the approaches proposed and used by [44,45] may be suggested. A
random sampling or systematic sampling may be adopted to select 5–10 patches/pixels
for each spectral cluster (thermal component or surface cover type) to take their in situ
LST measurements. Sampled pixels/patches are required > 3 × 3 pixels (6 × 6 m2 at a 2 m
resolution) in which the thermal component/surface cover material/type is homogenous to
ensure that the in situ LST measurement from its central pixel fully represents the thermal
component/surface cover material/type and avoids any boundary effects from different
surfaces. The in situ LST measuring time is required to be as close as possible to the data
acquired by the remote sensing sensors (e.g., within± one hour). In addition, it is necessary
to normalize the in situ LST measurements to the original coarse-resolution LST before
creating an in situ LST map. Once such an in situ LST map is created, different-resolution
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DiffLST images can be produced by upscaling the original resolution DiffLST (2 m in this
study) with a pixel aggregation resampling method. Strictly following the requirement
of taking the in situ LST measurements in the field as discussed above, the quality of the
DiffLST map can be ensured such that both negative and positive masks are reliably created
for running the CT expression. Since the two masks are created based on the negative and
positive relative values (not on the absolute values of DiffLST map), even though the in situ
LST measurements may not be very accurate (e.g., ±1 ◦C error), the effect on both masks’
quality is small and thus might be ignored. Therefore, the field-temperature-measuring
approach may not significantly influence the feasibility of the proposed method.

5.3. Limitations and Significance of This Study

The current CT expression could be used to partially reduce the scaling effect (im-
proved accuracy > 30%). However, there still exists an observable part of error (the scaling
effect), which needs to be considered to further correct. This error is present in the DLST
maps at very high resolutions, and it is mostly associated with those scattered points within
the red dash ellipses in Figures 7(c2,d2), S3(d2,e2) and S5(c2,d2). There may be two direc-
tions to further correct the scaling effect on DLST maps at very high resolutions: (1) also
considering the co-variance of red and NIR bands in the CT expression, not just the com-
bined variance (SD), especially for a relative homogenous research area/environment [32];
(2) considering the CT expression in a non-linear form focusing on a heavier correction of
the scaling effect corresponding to the lower values of the combined SD and/or co-variance
of red and NIR bands.

Overall, the results of improving DLST maps with the proposed method were stable
and significant. Although the two study areas were relatively small compared to a big
city area, they cover typical land surface materials and types reflecting corresponding
thermal physical characteristics in heterogenous urban environments. In addition, many
applications in different areas need high-resolution thermal data, including LST maps
created by using different advanced downscaling methods. For example, studies on
urban heat island and landscapes may need very-high-resolution LST products (e.g., to
2–4 m) [13,16,48]. Therefore, the results and derived conclusions in this study with the
proposed method are significant and novel in reducing the scaling effect on DLST results
and can make a substantial contribution to the relevant literature. The method, coupled
with the modified TSU model, should also be useful in other urban environments.

6. Conclusions

In this research, the main aim is to propose and test a new method to reduce scaling
effect on DLST maps at different high resolutions. To do so, considering two case study
data sets, we first applied a modified TSU model and an REG model to directly downscale
the LSTs at coarse resolutions to DLSTs at finer resolutions. Then, after the modification of
the DLST maps for their residual error, a new method with the CT expression, Equation (6),
was used to reduce the scaling effect. The experimental results indicate that the proposed
method was effective and significant, especially reducing the scaling effect on DLST maps
at very high resolutions. Therefore, the novel significance for the proposed method is
directly reducing this scaling effect at finer resolutions. Specifically, the following three
conclusions could be derived from the result analysis:

• The modified TSU model for unmixing thermal component temperatures at the initial
high resolution was effective and advanced in downscaling LSTs compared to our
previous works and those in existing literature.

• Spectral clusters were intrinsically associated with spectral properties of surface
materials/cover types and thermal physical characteristics of corresponding thermal
components, and were thus workable and reliable for solving the modified TSU model.

• The proposed method with the CT expression (Equation (6)) was workable and the
testing results were reliable and stable for the two data sets; thus, it is effective
and novel.



Remote Sens. 2021, 13, 5044 20 of 22

The proposed method was tested for the first time in this study and could be expected
to improve DLST results created by any advanced downscaling LST methods. However,
how to determine the negative and positive masks from DiffLST images at higher resolu-
tions is a key issue for efficiently using the CT technique. A field in situ LST measurement
approach is recommended for creating the initial DiffLST image (other higher-resolution
DiffLST images can be derived by upscaling the initial DiffLST image). How to further
reduce the scaling effect on DLST maps at very high resolutions: the co-variance of red
and NIR bands, especially for relatively homogeneous areas, and the CT expression in a
non-linear form may be considered in the future research.
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AISA Airborne Imaging Spectrometer for different Applications, sensor
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer, sensor
CT correction term
DisTrad disaggregation of radiometric temperature
DiffLST difference between ULST image (actual) and DLST image (estimated)
TsHARP temperature sharpening
DLST downscaling land surface temperature or disaggregation of land surface temperature (◦C)
LST land surface temperature (◦C)
MAE mean absolute error (◦C)
NIR near-infrared
REG multiple regression (model)
RMSE root mean squire error (◦C)
SD standard deviation
TSU thermal spectral unmixing (model)
TIR thermal infrared (8–14 mm)
TABI Thermal Airborne Broadband Imager, sensor
ULST upscaling land surface temperature (◦C)
VNIR visible-near infrared (0.4–1.0 mm)
AISA Airborne Imaging Spectrometer for different Applications, sensor
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