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Abstract: In this paper, we propose a deep learning framework, namely AFGL-Net to achieve
building façade parsing, i.e., obtaining the semantics of small components of building façade, such
as windows and doors. To this end, we present an autoencoder embedding position and direction
encoding for local feature encoding. The autoencoder enhances the local feature aggregation and
augments the representation of skeleton features of windows and doors. We also integrate the
Transformer into AFGL-Net to infer the geometric shapes and structural arrangements of façade
components and capture the global contextual features. These global features can help recognize
inapparent windows/doors from the façade points corrupted with noise, outliers, occlusions, and
irregularities. The attention-based feature fusion mechanism is finally employed to obtain more
informative features by simultaneously considering local geometric details and the global contexts.
The proposed AFGL-Net is comprehensively evaluated on Dublin and RueMonge2014 benchmarks,
achieving 67.02% and 59.80% mIoU, respectively. We also demonstrate the superiority of the proposed
AFGL-Net by comparing with the state-of-the-art methods and various ablation studies.

Keywords: façade parsing; semantic segmentation; MLP; autoencoder; global transformer; attentive
feature fusion; Dublin dataset; RueMonge2014 dataset

1. Introduction

Buildings and architectures represent the most fundamental and important element of
cities. Consequently, 3D models of buildings have been widely used in many modern day
applications such as indoor and/or outdoor navigation [1,2], building energy modeling [3],
3D visualization and generalization [4], and building abstraction [5], among others. The
ability of Light Detection and Ranging (LiDAR) technique to capture complex structures of
building rooftop and façade components, e.g., windows, doors, and balconies led to an
intensive use of point clouds for creating photo realistic 3D urban scenes. Reconstruction of
building models is an active area of research among photogrammetry, computer graphics,
computer vision, and remote sensing communities [6]. However, turning the point clouds
to semantically rich, geometrically accurate and topologically correct building models for
a better understanding and analysis remains an open challenge [7]. Compared with the
recognition of rooftop superstructures and ornaments, parsing building façade components
such as windows, doors, and balconies is extremely challenging because of the complexities
of façade components (diverse windows/doors, irregular arrangements, etc.) and the low
quality of point clouds generally caused by outliers, irregularities, and missing data due to
occlusions and/or self-occlusions.

Recently, deep learning has shown amazing results for point cloud semantic segmen-
tation. However, because the point cloud is scattered, unordered, and unorganized, it
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should be transformed into regular data representation before employing the existing
convolutional neural networks. Based on the data representation, the deep learning ap-
proaches are roughly divided into three categories: multiview-based methods (MVCNN [8],
DeePr3SS [9], SnapNet [10] etc.), volumetric-based methods (VoxNet [11], SparseCon-
vNet [12], Oct-Net [13], Kd-Net [14] etc.), and point-based methods such as the pioneering
work PointNet [15] and its successor PointNet++ [16]. To use standard CNN, the point
clouds are usually projected into multi-view, volumetric, or other regular representations.
However, these conversions will alter the structure of the point clouds, causing problems
such as precision loss, high computational cost, and/or large memory consumption. By
contrast, the point-based methods try to directly use the operations such as multilayer
perceptron (MLP) and convolution to derive pointwise features from unstructured 3D
point clouds. Semantic parsing of LiDAR scans has been an active area of research for
the last two decades. Many algorithms have been proposed for semantic parsing in the
context of building modeling and scene understanding. We review three classes of deep
learning techniques, i.e., pointwise MLP methods, point convolution methods, and graph
convolution methods for semantic parsing in the subsequent paragraphs.

1.1. Pointwise MLP Methods

This type of method usually uses the shared MLP as the basic unit to extract pointwise
features and uses a symmetric function to counter disorder after extracting the features
of individual point. The most representative work is PointNet [15] and its successor
PointNet++ [16]. PointNet [15] applies deep learning on the disordered point clouds by
using a symmetric function to achieve permutation invariance. More specifically, it uses
the shared MLP to obtain pointwise features and uses the max-pooling layer to aggregate
the global features of all points. PointNet++ [16] as an extension work of the PointNet [15],
uses an autoencoder to explore the structures of point clouds hierarchically. To enhance the
description of the shape features, Jiang et al. [17], inspired by the two-dimensional shape
descriptor SIFT [18], propose a module called PointSIFT. The PointSIFT encodes features
in different directions, followed by embedding this module into PointNet++. Based on
PointNet++, PointWeb [19] constructs a fully connected web to capture local context and
uses an Adaptive Feature Adjustment (AFA) module to enhance the derived features.
PointWeb obtains the relationship between all the point pairs in the local neighborhood
point set and achieves the information exchange and feature optimization between the
local point pairs. To obtain more distinguished features, SO-Net [20] adopts multi-scale
and multi-resolution strategies to aggregate hierarchical features on both individual points
and Self-Organizing Map (SOM) nodes. Chiang et al. [21] and Geng et al. [22] propose the
multi-scale feature aggregation methods, which upsample the features of the encoder and
decoder at different scales to the size of the input points. After that, they obtain the global
structure of the point clouds by the feature aggregation. Hu et al. [23] propose an efficient
and lightweight neural network architecture called RandLA-Net, which adopts a random
point sampling strategy for processing point clouds at a large scale and employs a novel
local feature aggregation module to preserve the geometric details. Although this type
of method can obtain the pointwise features using the shared MLPs and global features
using symmetrical pooling functions, they cannot capture the mutual interactions between
neighborhood points.

1.2. Point Convolution Methods

This type of method tries to define a suitable convolution operation across the whole
neighborhood area of the sampling points for processing the disordered point clouds. A
series of publications along this line demonstrates the effectiveness of point convolution.
For example, Hua et al. [24] use a 3D convolution kernel to perform convolution on the
point cloud to obtain the high-level features of each point, which is simple, robust, but less
efficient. Tatarchenko et al. [25] project the local neighborhood point set of each point onto
the tangent plane, and then implement convolution on the tangent plane. It can handle
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large-scale point clouds, but cannot fully explore the 3D geometric structure of the point
clouds. Zhang et al. [26] propose an effective convolution operator called ShellConv, which
uses the statistics from concentric spherical shells to define local representative features.
PointCNN [27] uses X -Conv operator to transform the input point clouds into a latent
space potentially in canonical order and then implements a typical convolution on the
transformed features. KPConv [28] operates on point clouds and assigns different levels
of weights to the neighbor points using a small set of kernel points. This method has two
work modes including rigid KPConv and deformable KPConv to adapt the kernel points
to different complexity of local geometry. A-CNN [29] proposes a circular convolution in a
specified circular structure and direction to capture the local geometric structure. Although
promising results are obtained by this type of method, it should be noted that how to
design a reasonable, continuous and discrete convolution operator that progressively
assigns the weights to neighborhood points is a challenging step. In addition, it should be
observed that the constructed convolution operators using the neighborhood points only
reflect the geometric relationships between the center point and its neighbors and ignore
the interactions between neighbor points, thereby resulting in insufficient descriptions of
local shapes.

1.3. Graph Convolution Methods

Graph convolution methods tend to capture the dependency relationships and un-
derlying connectivity patterns from the unorganized point clouds through representations
of complex and diverse graphs. The graph structure is generally regarded as a good so-
lution/representation to encode the object relationships of natural scenes. For example,
DGCNN [30] embeds the EdgeConv module into the PointNet to achieve semantic seg-
mentation. EdgeConv establishes a local map and then learns the relationships between
the center point and their neighbors. This method clusters similar features in the feature
space and the obtained results are promising especially for the tasks of classification and
segmentation. RGCNN [31] uses the graph Laplacian matrix to adaptively capture the
dynamic graph structure to describe the relationships between the features of different
layers. This method is robust to noise and varying density of the point clouds. GACNet [32]
proposes a graph attention convolution, which focuses on the most relevant part of the
learned features by assigning appropriate attention weights to adjacent points. SPG [33]
constructs a new data structure, i.e., a superpoint graph and implements a graph con-
volution on the superpoint graph to learn the contextual relationships between object
parts. SPG can handle large-scale outdoor point clouds with millions of points. Although
deep graph tries to leverage the geometry structure of the point clouds to achieve a better
shape representation, it usually suffers from shallow learning from the unreasonable graph
structures. Therefore, how to build a deep architecture to adaptively explore the deeper
structure patterns from the reasonable graph in an open challenge [34].

1.4. Contributions

Unlike point and graph convolution methods, pointwise MLP-based methods do not
require any convolution kernels and predefined graphs, it is more flexible and capable
of describing local geometry shapes in details. Because of these, we embed MLPs into
our autoencoder to encode pointwise features. However, MLPs cannot capture the local
geometry of point clouds and the mutual interactions of neighbor points. To alleviate this
deficiency, we leverage the Transformer [35] to aggregate global context façade structures.
We further use the attentive feature fusion strategy to deeply fuse local and global features
to form more augmented features. Given that our work is built on the previous works, we
explicitly state our original contributions as follows:

• AFGL-Net Deep Neural Network: We present AFGL-Net a deep neural network for
building façade parsing. AFGL-Net uses an attentive-based feature fusion mechanism
to aggregate local and global features, derived by an autoencoder and a Transformer
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module respectively, thereby learning enhanced and informative features to assist in
solving class imbalance problem that typically occurs on building façades.

• Local Spatial Encoder: Based on the classic encoder-decoder neural network archi-
tecture, we propose an enhanced local spatial encoder by combining local position
encoding and local direction encoding. The enhanced LSE encoder can easily recog-
nize the façade component contours, e.g., window frames.

• Transformer Module: We introduce the existing Transformer module into our AFGL-
Net to enhance the global/contextual feature representation. By employing these
global features, AFGL-Net can perceive the small unnoticeable windows/doors by
context inference from imperfect façade point clouds usually corrupted by density
irregularity, outliers, and occlusions.

The remainder of this paper is structured as follows. Section 2 describes the detailed
methodology including local feature encoding, global Transform feature extraction, and
attentive feature fusion. In Section 3, the experimental dataset, the performance evaluation
results of façade parsing accuracy based on Dublin [36] and RueMonge2014 [37] datasets
are presented, analyzed, and discussed. Finally, Section 4 concludes the paper along with a
few suggestions for future research topics.

2. Methodology

We propose an attentive fusion global and local deep feature network, namely AFGL-
Net for building façade parsing. The framework consists of three parts: an autoencoder
(Section 2.1.1) to aggregate the local features of 3D façade points using the local spatial
encoding (Section 2.1.2), a Transformer (Section 2.2) to employ the global features by
referring contextual components of building façades and a self-attention based feature
fusion (Section 2.3) to blend the local and global features to form more discriminative
façade features, representing the global façade structure and local details of 3D shape more
effectively. As shown in Figure 1, AFGL-Net adopts the parallel network architecture
including an autoencoder and a global-based Transformer perception module to extract
local and global features. More specifically, the original features, such as the coordinates
and normal vectors of building façade points are fed to the fully connected layer to map
to intermediate features in high-dimensional feature space. These intermediate features
are fed into the autoencoder and Transformer to extract the local and global pointwise
features. After that, we use an attentional feature fusion module to fuse the local and global
features to obtain more augmented fused features. We finally input these fused features
into two fully-connected layers and one dropout layer to obtain the semantic label of each
3D façade point.

2.1. Local Feature Aggregation
2.1.1. Autoencoder

As shown in the red dashed box in Figure 1, the autoencoder uses the classical U-
Net [38] as a backbone which consists of an encoder and a decoder with skip connection.
The input point set is first provided into a fully-connected layer to improve the dimensions
of the raw features of each point. In each encoding layer, the input points are randomly
subsampled and input features are progressively increased using the random sampling
strategy and local spatial encoding (see Section 2.1.2), respectively. In each decoding layer,
we use nearest neighbor interpolation to align the sampled points of the corresponding
layer of the encoder, and the local features generated by the encoder are concatenated
with the corresponding upsampling features through skip connection. After that, the local
spatial feature encoding is implemented again to encode the skip concatenated features.
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Figure 1. The pipeline of the proposed AFGL-Net. The numbers such as 8, 32 and 64 denote the feature channels.

2.1.2. Local Spatial Encoding

Local spatial encoding (LSE) aims to extract local features. It is mainly composed of
local position encoding (LPE), local direction encoding (LDE) and local feature aggregation
(LFA). Figure 2 illustrates the LSE module encoding process:

The overview of the local spatial encoding is described as follows:

• Each building façade point pi contains three types of features: positions, normal
vectors and the intermediate features fi. We search K nearest neighbors of pi through
KNN algorithm [39]. After that, pi and its K nearest neighbors are provided as input
to achieve encoding of point pi.

• More specifically, we put pi and its K nearest neighbor points into LPE and LDE to
achieve local position encoding and local direction encoding of point pi. For local
position encoding of point pi, we put positions of pi and its K nearest neighbor points
into LPE, and obtain a triple (N, K, 10), where N is the number of the processed façade
points at the current sampling scale. K is the number of the nearest neighbor points
of pi, and a value of 10 is the dimension of the position feature. This position feature
is composed of the x-y-z coordinates of pi, pi’s neighbor point coordinates pk

i , the
relative point coordinates between pi and pk

i , and the Euclidean distance between pi
and pk

i . For local direction encoding of point pi, we need to put positions and normal
vectors of pi and its K nearest neighbors into LDE, and obtain a triple (N, K, 3), where
N is the number of the processed façade points at the current sampling scale. K is the
number of nearest neighbor points of pi, and the value of 3 is the dimension of the
direction feature. The direction feature fully considers the discrepancy between pi’s
normal ni and pk

i ’s normal nk
i .

• After positional and directional encoding of point pi, we simply concatenate encoded
position and direction features together, and input them into the shared MLP to
obtain the fused features, i.e., (N, K, d), where d is the dimension of the fused feature
channels (see hyperparameter B in Section 3.3). We concatenate the d dimensional
fused feature and another d dimensional intermediate features fi of inputs to form a
new triple (N, K, 2d). Through attentive pooling, we finally generate the informative
features, denoted by a tuple (N, 2d).



Remote Sens. 2021, 13, 5039 6 of 25

Figure 2. Local spatial encoding.

(1) Local Position Encoding

The local position encoding is proposed in RandLA-Net [23]. Given the façade
point set P = {p1, · · ·, pi, · · · , pN}, we can retrieve K nearest neighbor point set Pi =
{p1

i , · · · , pk
i , · · ·, pK

i } of pi using the KNN algorithm [39]. Any point pi arbitrarily selected
from a point set P is imposed with positional encoding according to the equation below:

lk
i =

(
pi©pk

i ©
(

pi − pk
i

)
©
∥∥∥pi − pk

i

∥∥∥) (1)

where lk
i denotes pi’s relative positional encoding with regard to pk

i . Point pi denotes the
i-th input façade point. pk

i is the k-th neighbor point of pi. ‖.‖ calculates the Euclidean
distance between pi and pk

i . The symbol “©” stands for concatenation operation.
We can clearly see that Equation (1) concatenates pi’s position, pk

i ’s position, the
relative positional between pi and pk

i , and the Euclidean distance between pi and pk
i

together to represent the spatial encoding of pi with regard to its neighbor point pk
i . The

positional encoding lk
i is an augmented feature, which facilitates AFGL-Net learning

complex geometric details from building façades.

(2) Local Direction Encoding

Because normal vectors of windows and doors’ edges and frames have an obvious
discrepancy with façade points from flat regions, we implement the local direction encoding
to represent the structures of the façade windows and doors more effectively. Inspired by
the feature PFH [40,41], we first retrieve K nearest neighbor façade points of current point
pi using KNN algorithm. After this, we carry out the directional encoding of pi with regard
to its neighbor point pk

i .
More specifically, in Figure 3, given a current point pi and its normal ni, as well as

pk
i and its normal nk

i , we define a local U-V-W coordinate system centered at pi subject to
restrictions in Equation (2) [40].
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Figure 3. The position and normal relationships between center point pi and its neighbor point pk
i .


u = nk

i

v = u× (pi−pk
i )

‖pi−pk
i ‖2

w = u× v

(2)

where
∥∥∥pi − pk

i

∥∥∥
2

denotes the Euclidean distance between two points with “×” being the
symbol of cross product. Based on the predefined local U-V-W coordinate system, the
discrepancies between ni and nk

i can be represented by three angles, i.e., α, θ and φ, which
are defined in Equation (3) [40]:

α = v · nk
i

φ = u · (pi−pk
i )

‖pi−pk
i ‖2

θ = arctan
(

w · nk
i , u · nk

i

) (3)

where the symbol “·” is a dot product, and U-V-W is defined in Equation (2). It should
be noted that the current three angles have capability to fully represent the geometric
relationships between pi and pk

i , which generally requires 12 parameters, i.e., two pairs
of positions and two pairs of normal vectors. The three angles fully consider various
interactions between ni and nk

i , thereby enhancing the representations of façade shapes.
Based on the above analysis, the directional encoding pi with regard to its neighbor

point pk
i is given in Equation (4):

dk
i = (αk

i ©φk
i ©θk

i ) (4)

Although we obtain the inspirations of directional encoding from the construction of
the hand-crafted PFH feature [41], we only consider the interactions between the current
point pi and its neighbor point set, deliberately ignoring the interactions between neighbor
points. In this way, we make the direction encoding more reasonable and computationally
efficient.

(3) Local Feature Aggregation

After obtaining the local positional encoding lk
i and directional encoding dk

i of pi and
pk

i , they are concatenated with the corresponding intermediate feature f k
i to obtain the

fused feature f̂ k
i as below:

f̂ k
i = f k

i ©MLP(lk
i ©dk

i ) (5)
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After this, we further sum the K weighted neighbor features of pi using attentive
pooling strategy [23] to aggregate the useful information. The final aggregated feature of
pi is given below:

f̄i = MLP(
K

∑
k=1

(δ( f̂ k
i ) · f̂ k

i )) (6)

where f̄i denotes the local aggregated feature of pi. δ is the softmax function, and the
symbol “·” denotes the dot product.

Inspired by the idea of dilated residual block [23], in practice, we stack two LSEs with
a skip link concatenation to increase the receptive field of each point, as shown in Figure 4.

Figure 4. Residual concatenation of local spatial encoding.

2.1.3. Relationship with Prior Works

Autoencoder in AFGL-Net is inspired from RandLA-Net [23] and PFH [40]. On the
contrary to RandLA-Net’s decoder where the upsampled point set is directly fed into the
shared MLP, we replace MLPs with LSEs in the multi-level decoding process, as evident
in the red dashed box in Figure 1. In this way, the receptive field of the upsampled points
is increased accompanied by an increase in the depth of the encoder-decoder network.
Unlike RandLA-Net which has local position encoding, AFGL-Net has both LPE (Local
Position Encoding) and LDE (Local Direction Encoding) modules. Therefore, it can capture
geometric irregularity of building façades and enhance contour feature representation of
windows and doors. We borrow the concept of the hand-crafted feature detector PFH dur-
ing the encoding of LDE. On the contrary to PFH, AFGL-Net only considers the interactions
between the current point and its K nearest neighbor point set, intentionally omitting the
direction interactions between neighbor points, thereby improving the encoding efficiency.

2.2. Global Transformer

Transformer adopts the mechanism of self-attention and differentially weights the
significance of each part of the input point features. To obtain the global contextual features
between windows and doors, we introduce the Transformer [35] (see the green dashed
box in Figure 1) into AFGL-Net to describe pi at the global level. The process is as follows:
we feed each point pi into three independent fully connected layers of the Transformer to
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acquire pointwise feature vectors qi, ki and vi, which are input into Equation (7) to calculate
the global features of pi.

f̃i = MLP(
K

∑
k=1

δ(γ(qi − ki + lk
i ))·

K

∑
k=1

(vi+lk
i )) (7)

where γ denotes the two consecutive fully connected layers. δ denotes the normalized
function softmax, and the symbol “·” represents dot product. lk

i denotes the local position
encoding for pi defined in Equation (1). Note that we use lk

i as the positional encoding in
Equation (7), instead of coordinate difference as originally defined by the Transformer. We
further encode pi through two consecutive Transformer layers according to Equation (7),
and then combine the output with the corresponding intermediate features by residual
connection to obtain the final global features f̃i. By stacking multiple Transformer encoding
modules, the receptive field of the façade points can be progressively increased, therefore
the façade components’ position and their arrangements can be accurately perceived.
Section 3.5 proves the effectiveness of the residual connection strategy and the connection
of several Transformer layers in tandem.

2.3. Attention Mechanism

The attentive mechanism can fuse local features and global features to obtain more
discriminate features of building façades. The fusion is illustrated in the blue dashed box
in Figure 1 and the process is as follows:

• Local and global feature generation: Given the input point set (N, din), we can learn
local geometric features (N, dlocal) from autoencoder (see Section 2.1.1) and the global
features (N, dglobal) (see Section 2.2) from two consecutive Transformers through a
residual connection.

• Attention matrix construction: The local and global features (N, dlocal) and
(N, dglobal) are respectively mapped onto the size (N, 64) by the shared MLP. Af-
ter this, these two outputs are summed up to obtain the attention matrix, followed by
the normalization using softmax function.

• Feature fusion via attention mechanism: We implement dot product between the
normalized attention matrix and local feature matrix (N, dlocal) to compute attention
scores. Afterwards, the output vector is nonlinearly mapped to obtain the fused
feature with attention scores. The whole fusion process is defined as below:

fi = MLP(δ( f̃i + f̄i) · f̄i)) (8)

where fi denotes the output of the attention feature. f̄i and f̃i are local and global
features. pi is the 3D façade point, δ is the normalized function softmax, and the
symbol “·” denotes the dot product.

3. Performance Evaluation

In this section, we use the annotated dataset of Dublin [36] and RueMonge2014 [37] to
evaluate the performance of façade parsing using the proposed AFGL-Net. The labeling
accuracy, effectiveness, and robustness of AFGL-Net framework are fully verified by
various experiments.

3.1. Dataset Description

(1) The annotated Dublin façade point clouds

The Dublin urban dataset, acquired in 2015 by Laefer et al. [42], contains 41 air flights
(see the orange and green flights in Figure 5) covering an area of about 5.6 km2. The air
platform carries the TopEye System S/N 443 LiDAR sensor and the Phase One camera.
The flight altitude is about 300 m and the mean density of the point clouds is around 250
to 348 points/m2. Due to the low flying height, Dublin dataset captures abundant points
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of building façades. In 2019, Zolanvarid et al. [36] select some regions (see red boxes in
Figure 5) having higher density, larger image coverage, and abundant rooftop shapes for
semantic point cloud labeling. These annotated point clouds are expected to be fed into
the deep learning network to train the convolutional neural networks. To further explore
Dublin benchmark and train our the neural network sufficiently, we manually annotate
semantic labeling for another B2 block, as shown in Figure 5, which extends the scope of
the areas annotated by Zolanvarid et al. [36]. These annotated Dublin points are used to
train and predict semantic labels of the point clouds by the proposed AFGL-Net. Note
that we have removed the roof point cloud and hence, only remaining ∼36 million façade
points are used in our experiments to facilitate the recognition of façades, windows, doors,
and other components. The statistics of the component class from B1 to B7 is listed in
Table 1. It is clearly shown that the class ratio of “Window & Door” is far lower than the
class ratio of the wall, causing a typically imbalanced parsing problem when there is an
unequal distribution of classes in the training dataset. The imbalance parsing problem
poses a great challenge to the proposed AFGL-Net.

Figure 5. The distribution of the annotated dataset in Dublin urban area. The point clouds within the
red boxes are annotated by Zolanvarid et al. [36], while the point clouds within the black box are
manually labeled by us. The orange and green lines are the 41 air flights.

Table 1. Class proportions of Dublin façade dataset.

Building Façade Window & Door Wall

#Pts 5,375,755 30,749,496
Percentage 14.88% 85.12%

Note that “Percentage” is calculated by dividing the number of points per component to the number of all
annotated façade points.

To facilitate the following training and testing, we divide the annotated façade point
clouds into seven blocks, i.e., B1~B7 shown in Figure 5. The statistics for the components of
the façade from B1 to B7 is given in Figure 6.
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Figure 6. The statistics for the components from block B1 to B7.

(2) The annotated RueMonge2014 façade points

RueMonge2014 [37] dataset covers 700 meters along Rue Monge street in Paris. Us-
ing 428 high-resolution multi-view images of building façades, the geometric shapes of
building façades represented by the triangular meshes are obtained using SFM/MVS al-
gorithms. The dense 3D point clouds of the façades are also simultaneously generated
by employing the geometric relationships between the images and the triangular meshes,
Riemenschneider et al. [37] select the most suitable images for semantic labeling, and then
transfer the semantic labels to the corresponding 3D point clouds. The annotated point
clouds include seven classes: wall, shop, door, window, balcony, roof, and sky. Each point
has 10-dimensional features, i.e., position, color, normal and relative height. The annotated
point clouds of this dataset are divided into two equal-sized parts for training and testing
the tasks such as mesh labeling and point cloud labeling. The statistics of the training and
testing points for each class are listed in Figure 7.

Figure 7. The statistics of the training and testing points for each class.
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3.2. Evaluation Metrics

In this section, the performance of AFGL-Net is evaluated by three evaluation metrics: IoU,
mIoU, and OA. The definitions of metrics mIoU and OA are shown in Equations (9) and (10).
In these equations, k is the number of classes in the dataset, and pii denotes the number of
ground truth point clouds with class label i that are correctly predicted into the same class i;
Parameters pij and pji denotes the number of points that have class label i/j but incorrectly
predicted as class j/i. Using the intersection and union between the prediction set and
ground truth, IoU denotes the ratio of intersection to the union, while mIoU denotes the
mean IoU scores over all classes. OA denotes the overall accuracy of all classes.

mIoU =
k

∑
i=1

IoUi (9)

s.t. IoUi =
pii

k
∑

j=1
pij +

k
∑

j=1
pji − pii

OA =

k
∑

i=1
pii

k
∑

i=1

k
∑

j=1
pij

(10)

3.3. Hyperparameter Setting

To fully exploit the potentials of the proposed AFGL-Net, we need to find the optimal
hyperparameters. We mainly consider the following 6 hyperparameters: the number of
façade point N, the number of adjacent points K of each point pi, the number of autoencoder
layers A and the corresponding feature dimension B, the number of Transformer layers C
and the corresponding feature dimension D.

For Dublin dataset, we give 4 options, i.e., Schemes 1 to 4 for each hyperparameter
(Table 2). We change only one hyperparameter at a time, with the rest retaining baseline
setting in Scheme 2. In this way, we can obtain 24 hyperparameter combinations (Figure 8)
based on 6 hyperparameters. It should be noted that for obtaining an optimal hyperparam-
eter combination, blocks B1~B3 are used as the testing data, and the rest of the blocks are
set as the training data. Figure 8 shows the performance comparisons between the baseline
setting, i.e., Scheme 2 and other 18 hyperparameter combinations.

Similarly, for searching an optimal hyperparameter combination for RueMonge2014,
we set 3 optional values for each hyperparameter (see Table 3), thereby obtaining 18 dif-
ferent combinations (Figure 9). To compare the the performance of these combinations
with baseline, i.e., Scheme 2 in Table 3, we use the default training and testing dataset in
RueMonge2014 [37]. The mIoU differences of AFGL-Net between the baseline setting and
other hyperparamter combinations for these two datasets are listed in Figures 8 and 9.

Table 2. The hyperparameter combinations for Dublin dataset.

Hyperparameters Scheme 1 Scheme 2 (Baseline Parameter) Scheme 3 Scheme 4

N 4096 8192 16,384 32,768
K 8 16 24 32
A 3 4 5 6
B (8-32-64-128) (16-64-128-256) (32-128-256-512) (64-256-512-1024)
C 1 2 3 4
D (4-16) (8-32) (16-64) (32-128)
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Figure 8. The mIoU differences between the baseline setting and other 18 combinations of hyperpa-
rameters for Dublin dataset. Note that the point above/below the green line represents the mIoU
values of the corresponding hyperparameter setting is higher/lower than the mIoU obtained under
the baseline parameter setting.

Table 3. The hyperparameter combinations for RueMonge2014 dataset.

Hyperparameters Scheme 1 Scheme 2 ( Baseline Parameter) Scheme 3

N 1024 2048 4096
K 8 16 24
A 3 4 5
B (8-32-64-128) (16-64-128-256) (32-128-256-512)
C 1 2 3
D (4-16) (8-32) (16-64)

Figure 9. The mIoU differences between the baseline setting and other 12 combinations of hyperpa-
rameters for RueMonge2014 dataset. Note that the point above/below the green line represents the
mIoU values of the corresponding hyperparameter setting is higher/lower than the mIoU obtained
under the baseline parameter setting.

To fully take into account a tradeoff between accuracy and the memory consumption
of GPU, in Dublin dataset we set the hyperparameters of AFGL-Net as: N3 = 16,384,
K2 = 16, A2 = 4, B2 = (16-64-128-256), C2 = 2, D2 = (8-32). For RueMonge2014 dataset,
the hyperparameters are set as: N2 = 2048, K3 = 24, A1 = 3, B2 = (16-64-128), C2 = 2,
D1 = (4-16). In the training process, AFGL-Net’s training epoch is set to 100 for both Dublin
and RueMonge2014 datasets. The learning rate is set to 0.01. The batch_size is set to 4 and
the batch_number is set to 500, therefore the number of point blocks per epoch is set to
2000 (batch_size× batch_number). Each block in Dublin dataset has 16,384 points, while
the number is 2048 for RueMonge2014 dataset. The proposed AFGL-Net was trained and
tested on deep learning server with a 3.00 GHz Intel Core i9-10980XE CPU, 64GB main
memory and Intel Nvidia 24G GPU. More precisely, we implement the AFGL-Net based on
Tensorflow 1.15 framework in Python language and Nvidia GTX 3090 24GB GPU powered
by CUDA 11.1.
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3.4. Training Size Determination

To strike a balance between the semantic labeling precision and the efficiency of the
proposed AFGL-Net, we strive to learn the geometric shapes of façades features effectively
by using the least training data. To this end, we progressively increase the number of the
training datasets to train multiple versions of AFGL-Net. By testing AFGL-Net on the same
dataset, we can evaluate the semantic labeling accuracy of these versions and determine
the most appropriate volume of training data.

Training datasets taking from 12.88% to 80.74% of the entire annotated Dublin dataset
are selected to verify how much training volume do we really need. The statistics is shown
in Table 4. Based on this table, we draw a red polyline shown in Figure 10, which reflects
the relationship between the training volume and corresponding mIoU performance. We
can see that when the training volume increases, mIoU has basically an increasing trend.
However, we should be aware that there exists an elbow point where the training set takes
up to 35.27% and achieves 68.44% mIoU. After that, the polyline is saturated and mIoU
only has a small increase, i.e., less than 0.3%, which implies that the training volume of
35.27% can make a good balance between the façade parsing and the training efficiency.

Table 4. The network performance on Dublin B2 block under 6 scales of training set.

Training Set Window & Door IoU (%) Wall IoU (%) mIoU (%) OA (%)

B5 (12.88%) 32.37 80.39 56.38 82.08
B1 (23.11%) 42.34 88.25 65.29 89.19
B4 ∼B7 (35.27%) 47.46 89.42 68.44 90.30
B3∼B7 (57.63%) 48.49 88.86 68.67 89.92
B1; B3∼B4; B6∼B7 (67.86%) 48.57 88.91 68.74 89.96
B1; B3∼B7 (80.74%) 48.55 88.88 68.72 89.94

Figure 10. The mIoU performance under different sizes of training set. The red polyline denotes the
mIoU performance regarding Dublin B2 block. The blue polyline denotes the mIoU performance of
the RueMonge2014 test set.

For the RueMonge2014 dataset, the original size of the training set account for 50% of
the total. To obtain the best volume for training, we use five scales of volume of training
data taking up to 11%, 22%, 30%, 42%, and 50% of RueMonge2014 to train AFGL-Net.
Meanwhile, the rest 50% of RueMonge2014 dataset is used as the test set. The relation
between semantic accuracy and the scale of the training data is illustrated by the blue
polyline in Figure 10. It can be found that with an increase of the training set size, the
semantic accuracy is monotonically increasing and mIoU reaches the maximum value
of 59.80% when the training set account for the maximum of 50% of RueMonge2014
dataset. The trend of a blue polyline indicates that it does not reach a saturated condition
soon. This is probably because AFGL-Net is not sufficiently trained even though all the
training dataset of RueMonge2014 is used. As the largest training set account for 50% of
RueMonge2014, we still use this volume of training dataset to train our network and carry
out robustness experiment (see Section 3.7).
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3.5. Ablation Study

We verify the effectiveness of the modules embedded in the proposed AFGL-Net
through six group ablation experiments: (a) solely using the proposed autoencoder to
verify the effect of the local encoding, (b) replacing LSE with the shared MLP in the decoder
to verify the effect of the LSE in the decoder, (c) removing LDE from the proposed autoen-
coder to demonstrate the effect of the LDE, (d) only using GTA to prove its effectiveness
for learning global features from the contaminated façade point clouds, (e) retaining an
autoencoder and a GTA, and fusing their derived local and global features through simple
feature concatenation, and (f) adopting a strategy of AFF, instead of directly fusing features.
Note that the configuration in the group (f) is the proposed AFGL-Net. During the ablation
study, we used blocks B1~B3 as the testing set, and the rest of the annotated blocks are used
as the training set. The hyperparameters are chosen based on the strategy in Section 3.3.

From the comparison results in Figure 11a–d, we can see that the autoencoder can
learn the local geometric features of the façade more accurately, while GTA focuses on
the global features and contextual semantic components. In Table 5, IoU of “Window &
Door” and mIoU in group (a) are increased by 19.63% and 14.13% compared with group
(d), which proves the significant role of the autoencoder. The mIoU in groups (b) and (c) are
smaller than that of the group (a), which demonstrates the effectiveness of LDE and LSE
embedding in the decoder. Essentially, LSE has the capability to recognize façade’s doors
and windows, thereby resulting in the segmented façade components with more regular
geometry, as evident in the blue ovals in Figure 11a,b. LDE has the capability to recognize
the contours of the windows and doors, thereby making the descriptions of boundaries
and frames of the windows and doors accurate, as demonstrated by the purple ovals in
Figure 11a–c.

However, it should be noted that some windows and doors in façade are not promi-
nent (see green ovals in Figure 11) because of the complexity of façade point clouds, i.e.,
corrupted by noise, outliers, missing data, and irregularities. In this case, autoencoder
based on the local features is extremely hard to recognize these weak components. Fortu-
nately, GTA can recognize these weak components to a certain extent by context inference
and global learning façade components’ position and arrangement. However, GTA often
results in high commission error, i.e., mistakenly classify wall points into windows and/or
doors. Fortunately, AFF can balance weights between local and global attention through
the attention mechanism to suppress the side effects of the commission error produced
by GTA. By comparing the parsing results between Figure 11e,f, it is obvious that after
AFF feature aggregation, façade parsing results are more homogeneous with only a fewer
commission errors.

Table 5. Different groups of ablation experiment results. Note that the autoencoder module is shown in Figure 1 denoted by
the red dash line. LSE is the local spatial encoding module. GTA denotes the global Transformer awareness module, and
AFF represents the attention feature fusion module.

Configurations Window & Door IoU (%) Wall IoU (%) mIoU (%) OA (%)

(a) Autoencoder 45.85 86.12 65.98 87.58
(b) Autoencoder (without LSE in decoder) 43.76 84.47 64.12 86.15
(c) Autoencoder (without LDE in LSE) 44.31 86.48 65.40 87.79
(d) GTA 26.22 77.48 51.85 79.15
(e) Autoencoder + GTA 46.17 85.59 65.88 87.17
(f) Autoencoder + GTA + AFF 46.80 87.12 66.96 88.43
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Figure 11. The comparisons of ablation experiments.
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3.6. Comparison

To evaluate the performance of the proposed AFGL-Net on Dublin dataset, we com-
pare AFGL-Net with the state-of-the-art methods, i.e., pointwise MLP methods (Point-
Net [15], PointNet++ [16] and RandLA-Net [23]), graph convolution method (DGCNN [30])
and point convolution (KPConv [28]). We select annotated blocks B4~B7 as training data,
and the remaining blocks B1~B3 as testing data. The hyperparameters are determined
according to the principle under Section 3.3. The comparisons of semantic façade parsing
results are shown in Table 6, as well as Figures 12 and 13.

It should be noted that PointNet, PointNet++, and DGCNN are limited to process
extremely small-sized point clouds, i.e., 1× 1 m block with around 4 k points. However,
too many small block partition will destroy the completeness of the windows and doors,
thereby weakening the feature learning of the building façades. Meanwhile, as the building
density and building height are varying within the Dublin dataset, the number of the point
clouds within 1× 1 m block varies significantly. These two flaws will directly weaken
the predicted results of PointNet, PointNet++, and DGCNN. To make the comparison
unbiased, we use the KNN algorithm to generate blocks as inputs of PointNet, PointNet++,
and DGCNN to avoid any pre-processing steps such as block partition.

Table 6. The comparison results of Dublin dataset.

Methods Window & Door IoU (%) Wall IoU (%) mIoU (%) OA (%) Training Time (min) Testing Time (min)

PointNet 20.14 78.20 49.17 79.34 86.75 2.23
PointNet++ 33.85 79.76 56.81 81.66 231.72 5.35
RandLA-Net 43.64 84.32 63.98 86.02 161.67 3.93
DGCNN 28.28 79.41 53.85 80.97 170.90 3.83
KPConv 42.79 88.86 65.83 89.72 194.44 6.02
Ours 47.06 86.97 67.02 88.32 253.95 4.42

Figure 12. The semantic labeling results for B1~B3 using the proposed AFGL-Net. Our results are given in the top line,
while the ground truths are provided at the bottom line. The enlarged views for the rectangles denoted by the green, blue
and the purple are provided in Figure 13.
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Figure 13. The comparisons with the state-of-the-art methods based on highlighted regions in three rectangles in Figure 12.
Subfigures from (a–f) represent the zoomed results of the corresponding algorithms. Subfigure (g) is the corresponding
ground truth.
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Based on the quantitative results in Table 6 and the qualitative results in
Figures 12 and 13, the comparison results for building façade parsing of Dublin dataset are
as follows:

Both PointNet and DGCNN tend to incorrectly predict large-sized local areas such
as doors, windows, and/or building façades (see Figure 13a–d, which leads to severe
commission and omission semantic segmentation error. This is probably because neither of
them adopts an autoencoder which can effectively enhance the receptive field of individual
façade point, thereby weakening the ability of feature encoding. As the PointNet++ has the
ability to capture local context by introducing a hierarchical feature leaning autoencoder,
it can capture the rough positions of the most façade components such as windows and
doors. However, it is unable to precisely detect façade component positions as evident
in Figure 13b.

RandLA-Net, KPConv, and AFGL-Net have an obvious advantage, having mIoU from
63.98% to 67.02% and OA from 86.02% to 89.72% than other methods, which substantiate
the ability of local feature encoding by these three methods. More specifically, AFGL-Net’s
IoU for “Window & Door” is improved by 3.42% and 4.27% than that of RandLA-Net and
KPConv (see Table 6) demonstrating the superiority of the proposed AFGL-Net. RandLA-
Net tends to mistakenly predict wall points as the window/door points, thereby leading
to large commission semantic errors, as demonstrated in Figure 13b. In contrast, KPConv
tends to predict the window and door points as a wall class, thereby resulting in large
omission semantic errors, as evident in Figure 13e. AFGL-Net can make a good tradeoff
between commission and omission semantic errors through introducing powerful LSE
encoding and GTA feature representations at the global scale. Because of this, AFGL-Net
can better perceive the geometric shapes of façades and the obtained semantic parsing
results are approaching the ground truth as close as possible.

It is worth noting that our AFGL-Net can effectively recognize a series of small
unnoticeable windows with varying density of point clouds (see regions denoted by the
blue ovals in Figure 13f). This shows that the global Transformer awareness module can
perceive the geometric structures of façades and capture the global contextual features
between windows. In contrast, KPConv and RandLA-Net lack the ability to correctly
detect these small windows due to a lack of global feature perceptron. Although our
result is competing, it extremely requires 253.95 mins to train the model using training
point clouds from regions B4 to B7. The high computational complexity occurs because of
posing sophisticated LSE module to depict complex building façades and introducing the
Transformer module to describe the global features of building façades.

3.7. Robustness

To evaluate the robustness and generalization of our AFGL-Net, we conduct another
comparison experiment using the RueMonge2014 dataset. The used training and testing
sets are shown in Figure 7. The optimal hyperparameters are obtained through the strategy
in Section 3.3. Table 7 shows the quantitative comparison between AFGL-Net and other
state-of-the-art methods including pointwise MLP methods, such as PointNet [15], Point-
Net++ [16] and RandLA-Net [23], graph convolution method, such as DGCNN [30] and
point convolution method such as KPConv [28]. Figure 14 shows the qualitative results of
AFGL-Net, and Figure 15 shows the enlarged details of each method.

Table 7. The comparison between AFGL-Net and other state-of-the-art methods.

Methods Wall IoU
(%)

Sky IoU
(%)

Balcony
IoU (%)

Window
IoU (%)

Door
IoU (%)

Shop
IoU (%)

Roof
IoU (%)

mIoU
(%)

OA (%) Training
Time (min)

Testing Time
(min)

PointNet 48.09 45.39 24.41 24.12 12.63 47.52 33.62 33.68 55.33 49.90 0.33
PointNet++ 73.47 63.42 51.44 45.49 16.19 57.94 54.48 51.78 76.81 153.02 0.88
RandLA-Net 74.81 70.67 54.15 48.64 21.57 59.29 60.89 55.72 78.68 69.05 1.31
DGCNN 67.45 64.71 38.89 38.32 18.53 57.60 58.81 49.19 72.19 170.20 0.40
KPConv 74.41 62.74 39.26 40.44 6.34 43.95 58.96 46.59 75.69 225.45 0.97
Ours 77.28 70.07 54.03 53.31 37.01 64.08 62.80 59.80 80.71 77.12 1.50
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Figure 14. Part of semantic results of RueMonge2014 using the proposed AFGL-Net. The enlarged
views of the rectangles are given in Figure 15.
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Figure 15. The comparisons with the state-of-the-art methods based on three highlighted regions in rectangles in Figure 14.
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In Table 7, it can be obviously found that the semantic parsing accuracy for PointNet++,
RandLA-Net, and AFGL-Net is superior to others. The good performance of PointNet++
is due to the dense and homogeneous point clouds of RueMonge2014. Based on these
photogrammetric point clouds, PointNet++ can capture geometric details of building
façades along Rue Monge street. However, it should be noted that PointNet++ only achieves
51.78% mIoU and 76.81% OA in the RueMonge2014 dataset, which are lower than 56.81%
mIoU and 81.66% OA in Dublin dataset. This is possible because of an insufficient training
dataset, as demonstrated in Figure 10. The competing performance regarding RandLA-
Net and AFGL-Net is probably because they not only have strong local spatial encoding
but adopt an attentive pooling strategy to aggregate features of nearest neighbor points
with different attention weights, thereby making the local features more distinguishable.
It is worth noting that our AFGL-Net can sufficiently learn topologies between façade
components and infer the contextual semantic, which is beneficial to counter the potentially
detrimental impact of class imbalance (see the class door in Figure 7). Fortunately, our
method can cope with this situation. As can be seen from Table 7, the IoU of the class door
for AFGL-Net is the maximum of 37.01%, which is much higher than the second largest
value of 21.75% IoU for RandLA-Net.

For PointNet, DGCNN, and KPConv, the semantic accuracy regarding classes such as
windows, doors, and balconies is inferior to other counterparts. The poor performance of
PointNet and DGCNN can be attributed to the insufficient consideration of relevance be-
tween façade components, thereby weakening contextual feature representation. KPConv’s
feature encoding and representation capabilities are significantly subject to insufficient
training data in RueMonge2014 and similarity of the geometric shapes of building façades.

4. Conclusions and Suggestions for Future Research

We present a deep learning framework, namely AFGL-Net for small-sized façade
component parsing. Unlike other mainstream deep learning frameworks that learn se-
mantic information from the relatively balanced classes, the AFGL-Net can effectively
recognize the imbalanced classes such as windows and doors from the large-scale Dublin
benchmark and photogrammetric point clouds, e.g., RueMonge2014. More precisely, in
the Dublin dataset, the proposed AFGL-Net achieves 47.06% IoU for window/door class,
which improves by 3.42% and 4.27% window/door IoU compared with RandLA-Net and
KPConv frameworks. For predicted window/door in RueMonge2014 dataset, we achieve
55.31% and 37.01% IoU for windows and doors, increasing by 4.67% and 15.44% com-
pared with RandLA-Net. The superiority of the proposed AFGL-Net is probably because
of adopting local geometric features and global contextual features. These two kinds of
features are provided as input into the attention-based feature fusion mechanism to obtain
more informative features for façade parsing from contaminated point clouds with varying
point density and a certain degree of missing data.

Although we obtain a high parsing accuracy for building façade, it should be noted
that the proposed framework tends to be encumbered as it is loosely combined by KNN
searching, autoencoder based on a U-Net backbone with 5-logical layers, global Trans-
former, and feature fusion based on an attention mechanism. The complexity of the
composition makes the framework inflexible and computationally inefficient. To further re-
fine this paper, in future work, we plan to explore light-weighted autoencoding and feature
aggregation methods to make a tradeoff between façade parsing accuracy and efficiency
of large-scale point cloud processing. In addition, we notice that there is a lack of public
annotated datasets for small façade component parsing. Although some parts of the Dublin
dataset have been annotated, it has some flaws, such as homogenous geometry shapes,
low level of labeling granularity, and incorrect labeling. RueMonge2014 [37], as an existing
photogrammetric annotated façade point set, has a relatively small size, thereby causing
insufficient learning. In future work, we plan to expand the existing 0.75 km2 annotated
Dublin points to the whole dataset covering 5.6 km2. Meanwhile, we will implement fine-
grained labelings, such as labeling of different façade planes, recognition of other possible



Remote Sens. 2021, 13, 5039 23 of 25

façade components (balcony, air conditioning host), the distinction of rooftop and façade
windows, and maintenance of topology relations between components and their attached
façade/rooftop planes. To alleviate the training using insufficient photogrammetric points,
we plan to acquire and label large-scale urban building façades with varying shapes using
the DJI (https://www.dji.com/cn, accessed on 7 December 2021) Matrice 300 RTK and DJI
Zenmuse P1 photogrammetry camera.
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