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Abstract: The ECOSTRESS multi-channel thermal radiometer on the Space Station has an unprece-
dented spatial resolution of 70 m and a return time of hours to 5 days. It resolves details of oceano-
graphic features not detectable in imagery from MODIS or VIIRS, and has open-ocean coverage,
unlike Landsat. We calibrated two years of ECOSTRESS sea surface temperature observations with L2
data from VIIRS-N20 (2019–2020) worldwide but especially focused on important upwelling systems
currently undergoing climate change forcing. Unlike operational SST products from VIIRS-N20,
the ECOSTRESS surface temperature algorithm does not use a regression approach to determine
temperature, but solves a set of simultaneous equations based on first principles for both surface
temperature and emissivity. We compared ECOSTRESS ocean temperatures to well-calibrated clear
sky satellite measurements from VIIRS-N20. Data comparisons were constrained to those within
90 min of one another using co-located clear sky VIIRS and ECOSTRESS pixels. ECOSTRESS ocean
temperatures have a consistent 1.01 ◦C negative bias relative to VIIRS-N20, although deviation in
brightness temperatures within the 10.49 and 12.01 µm bands were much smaller. As an alternative,
we compared the performance of NOAA, NASA, and U.S. Navy operational split-window SST
regression algorithms taking into consideration the statistical limitations imposed by intrinsic SST
spatial autocorrelation and applying corrections on brightness temperatures. We conclude that stan-
dard bias-correction methods using already validated and well-known algorithms can be applied to
ECOSTRESS SST data, yielding highly accurate products of ultra-high spatial resolution for studies of
biological and physical oceanography in a time when these are needed to properly evaluate regional
and even local impacts of climate change.

Keywords: SST; upwelling; ECOSTRESS; VIIRS; spatial autocorrelation; regression algorithm

1. Introduction

The pace at which the global ocean is warming due to the anthropogenic greenhouse
effect is 0.13 ◦C per decade [1–3]. Sea surface temperature (SST) rise due to atmospheric
warming has been pervasive across all oceans [4] even though it is estimated that a third of
global CO2 emissions from 1994 to 2007 has been sequestered by them [5]. Such warming
has resulted in an increase in sea level height and global wave energy [6–8].

In this context, satellites have been a fundamental tool to obtain SST measurements
worldwide, thus, allowing the estimation of SST temporal trends at regional to global
scales. The first generation of thermal infrared instruments on satellites were developed as
early as the 1970s, followed by infrared radiometers with a better resolution and sensitivity
on polar orbiting spacecrafts [9,10]. Among these, the Advanced Very High Resolution
Radiometer (AVHRR) increased the resolution to 1 km [11]. On the NOAA satellites,
AVHRR instruments have been replaced by the Visible Infrared Imaging Radiometer Suite
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(VIIRS) since 2011. VIIRS instruments introduced several technical improvements that
allowed the study of submesoscale SST features for the first time [12].

However, the ability of satellite products to resolve fine scale structures close to coasts
has been limited. Especially in coastal upwelling regions, thermal inversions due to cold
coastal waters have caused positive biases in SST measurements from NOAA satellites
since the early 1980s [13,14]. As this error is not constant across different temperature
ranges, it can severely affect our estimations of long-term trends in SST at these regions.
To account for these errors, new products have been developed to characterize coastal
SST temporal variability in coastal regions worldwide, such as the Reynolds 0.25 v.2 from
NOAA [15], although still with a coarse spatial resolution of 0.25◦. Proper quantification of
SST trends in upwelling systems is crucial for understanding how the upwelling process
interacts with global warming, which has been strongly debated and may severely affect
a wide range of fisheries in these productive systems [16–18]. First, it was hypothesized
that the intensification of sea-land thermal breezes due to land warming would lead to
stronger upwelling events, and therefore cooling of the coastal ocean [19]. Nevertheless, it
has been shown that enhanced thermal stratification can effectively compensate upwelling
intensification [20,21]. Most likely, these opposing dynamics may drive warming or cool-
ing in different regions within each upwelling system, thus, increasing fine scale spatial
heterogeneities [22,23].

Thus, researchers need satellite products with great coverage and increased spatial
resolution that can reveal contrasting SST long-term trends at upwelling systems and other
oceanic and coastal areas. The ECOsystem Spaceborne Thermal Radiometer Experiment
on Space Station (ECOSTRESS) with the Prototype HyspIRI Thermal Infrared Radiome-
ter (PHyTIR) with a pixel size of 70 × 70 m can be potentially used for long-term SST
monitoring of different regions of interest. The orbit of the International Space Station pro-
vides good coverage from the tropics to 52◦ approximately with a mean revisit interval of
4–5 days, depending on latitude. Three spectral bands have been available since May 2019:
8.78, 10.49, and 12.09 µm. The temperature emissivity separation (TES) algorithm used to
derive surface temperatures on land and sea from brightness temperature measurements
and other parameters is described in detail in [24]. It has been validated mainly on land
surfaces [25] and in relatively small inland water bodies such as Lake Tahoe [26], and at
sea off the coasts of Florida [27], but not on a global scale.

A multisensor intercomparison is one of the methodologies recommended by the
Committee of Earth Observation Satellites Working Group on Calibration and Validation to
validate surface temperature datasets [25]. Although this method does not provide absolute
calibrations, it is useful to infer instrument biases and to compare different algorithm
outputs. In this study, we validate and calibrate a large and representative ECOSTRESS
SST dataset with a satellite product widely used in oceanographic studies, the VIIRS-N20
with 750 m spatial resolution. This product was chosen for this global comparison because
of its small and stable bias and because it has been providing good quality SST data since
it was launched in November 2017 [28]. It has seven bands from 3.6 to 12.5 µm [29] and
VIIRS instruments have shown a small uncertainty in SST measurements of 0.1 K [30,31].
In addition, the black body in these instruments goes through a periodic warm-up/cool-
down procedure to check calibration coefficients [31]. Currently, VIIRS imagery is being
used to build a multisensor product for the Australian Bureau of Meteorology [32] and
constitutes an important source for the Operational Sea Surface Temperature and Sea Ice
Analysis (OSTIA [33]). Thus, using VIIRS-N20 as a reference product, our main aims were
(1) to identify ECOSTRESS SST biases across a wide range of temperatures in the main
upwelling systems of the world and other regions of interest, (2) to infer the nature of these
biases, and (3) to propose the use of other algorithms commonly used in other satellite SST
products and select the best combination of parameters to derive SST from ECOSTRESS
input data.
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2. Materials and Methods
2.1. Data Acquisition and Processing

A total of 35 ECOSTRESS swath (L2) images from February 2019 to July 2020 in seven
different coastal regions were selected to be compared with quasi-simultaneous VIIRS-N20
swath (L2) images taken within 90 min before/after the corresponding ECOSTRESS image
(Table S1). These seven regions were California, Chile, Bay of Biscay/English Channel,
Eastern Mediterranean, South Africa, Gulf of Arabia, and Okhotsk Sea (Figure 1). They
were selected based on the availability of ECOSTRESS imagery and in order to span the
worldwide range of SST from 0 to 35 ◦C. Four different files were retrieved from the
ECOSTRESS archive (https://ecostress.jpl.nasa.gov/data/, accessed on 7 December 2021)
for each image: CLD (cloud mask) [34], LSTE (land-sea temperature) [35], RAD (radi-
ance) [36], and GEO (geolocation) [37]. The VIIRS files [38,39] were retrieved from the
NASA Physical Oceanography Distributed Active Archive Center (PODAAC).
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Figure 1. Worldwide map showing the mean sea surface temperatures from 20 March 2012 to
20 June 2019 retrieved from the VIIRS sensor on the SNNP satellite with a spatial resolution of 4 km.
The red squares show the 7 regions where ECOSTRESS-VIIRS comparisons were performed.

The ECOSTRESS cloud mask and the VIIRS quality layer were used to eliminate pixels
with erroneous data from the comparisons. Thus, only ECOSTRESS cloud-free pixels and
VIIRS-N20 L5 pixels were used in these analyses. To check the reliability of the VIIRS-N20
data used for the comparisons, daily values of VIIRS-N20 SST bias with respect to the
drifter and tropical moorings dataset from NOAA were inspected for the whole study
period (https://www.star.nesdis.noaa.gov/socd/sst/squam/polar/viirs/, accessed on
7 December 2021). As detailed below, no outliers greater than 0.15 or less than −0.05 ◦C
were found.

SSTs, brightness temperatures at 10.49 and 12.09 µm (hereafter BT11 and BT12), and
zenith angle (hereafter ZA) for ECOSTRESS pixels were obtained for a total of 2,282,366 in-
dividual ECOSTRESS-VIIRS pixel matchups from the 35 images. In addition, for each of
these comparisons, daily SST L4 analysis data from the GHRSST group and the Canadian
Meteorological Center (CMC) with a spatial resolution of 0.1◦ [40] were retrieved from
PODAAC. This dataset is commonly used as a “first guess” temperature to be incorporated
into SST regression algorithms [41].

The VIIRS files were reprojected to UTM using SeaDAS v7.5.3 (https://seadas.gsfc.
nasa.gov/, accessed on 7 December 2021), and the ECOSTRESS files were reprojected to
UTM using ECOSTRESS_swath2grid.py [42]. Then, nearest neighbor matching of VIIRS
pixels to the ECOSTRESS grid was applied by using the spatstat v1.64 package in R [43].

2.2. Spatial Autocorrelation and Brightness Temperature Corrections

Four different datasets were used to characterize ECOSTRESS SST bias with respect
to VIIRS-N20 (Table 1). First, the whole dataset with 2,282,368 pixels was used. Second,
the mean bias in brightness temperatures (BT) with respect to VIIRS-N20 was corrected by

https://ecostress.jpl.nasa.gov/data/
https://www.star.nesdis.noaa.gov/socd/sst/squam/polar/viirs/
https://seadas.gsfc.nasa.gov/
https://seadas.gsfc.nasa.gov/
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calculating the mean differences between VIIRS-N20 and ECOSTRESS BT11 and BT12 and
adding those differentials to the raw ECOSTRESS BT yielding a brightness temperature
corrected dataset. VIIRS brightness temperature measurements were considered to be
a reference for this correction because of their stability and reduced bias [31]. Third,
autocorrelation functions (ACFs) were applied to discard all spatially autocorrelated data,
as temperatures from neighboring pixels were not truly independent, due to continuity
of the water environment. Because data from neighboring pixels are not independent,
new observations do not add full degrees of freedom [44] and this has to be considered in
the data analysis. Thus, e-folding distances were calculated on the X and Y axes for each
of the 35 VIIRS-N20 images with the following procedure: Pearson´s R autocorrelation
functions were calculated along both axes of the reprojected images with the acf function
in the R package stats 3.6.2 [45]. Then, for each pixel row/column in the image, the
distances at which inter-pixel SST Pearson´s R correlation coefficients decreased by a factor
of e were considered to be the e-folding distances at which SST measurements become
decorrelated. Finally, these distances were averaged across all pixel rows/columns to
obtain image-specific mean e-folding distances for both axes. Similar procedures have
been used to account for temporal autocorrelation in SST anomalies [46,47]. Spatial grids
with these distances were specifically built for each image to select independent SST
measurements, thus, reducing the dataset from 2,282,368 to 406 observations after correction
for autocorrelation. Finally, both the BT and spatial autocorrelation corrections were applied
to produce the fourth dataset. In addition, we also split the whole dataset into day and
night comparisons to examine potential differences in mean bias as a function of daylight.

2.3. Algorithm Selection

To assess the adequacy of the ECOSTRESS input data to obtain reliable SSTs, ECOSTRESS
brightness temperatures, zenith angles, and CMC “first guess” temperatures were used as
input predictors of VIIRS-N20 SST data using 5 different algorithms: NAVO, NRL, NLSST,
MC, and VIIRS [39].

SST = a0 + a1 BT11 + a2 ∆TFG + a3 ∆T + a4 ∆T SΘ (NAVO) (1)
SST = a0 + a1 BT11 + a2 ∆T + a3 ∆T SΘ + a4FG (NRL) (2)
SST = a0 + a1 BT11 + a2 ∆T+ a3 ∆TFG + a4 BT11 SΘ + a5 ∆T SΘ + a6 ZA (NLSST) (3)
SST = a0 + a1 BT11 + a2 ∆T +a3 ∆T SΘ (MC) (4)
SST = a0 + a1 BT11 + a2 ∆TFG + a3 SΘ+ a4 ZA + a5 ZA2 (VIIRS) (5)

In this way, we calculated new ECOSTRESS SST estimates using VIIRS-N20 SST
data as references with published regression algorithms and not with the ECOSTRESS
TES algorithm. Depending on the algorithms, more complex parameters were required
and derived from ECOSTRESS input variables: ∆T (BT11–BT12), SΘ (sec (ZA)–1), ZA2
(the square of the zenith angle), ∆TFG (∆T × FG), and ∆T SΘ (∆T × SΘ). The statistical
significance of all these parameters was evaluated through analysis of variance with a type
III sum of squares so that coefficient estimates were all calculated last (after accounting for
all other variables). These coefficient estimates were also compared with those obtained
from other published studies performed with VIIRS instruments [48] and from those
obtained at the Community Satellite Processing Package (https://cimss.ssec.wisc.edu/
cspp/acspo_v1.2.shtml, accessed on 7 December 2021) and the Long Wave SST algorithm
webpage (https://oceancolor.gsfc.nasa.gov/atbd/sst/#sec_2, accessed on 7 December
2021). In addition, the Bayesian information criteria (BIC) was calculated to rank the
performance of each algorithm by favoring increments in the goodness of fit (R2) and
penalizing model complexity (the number of parameters in the model). In addition, BIC
accounts for the number of observations (N) in the analysis, as the degrees of freedom
are k = ln (N), instead of k = ln (2)), as in the Akaike information criterion (AIC, MASS
package [45]). In addition, a backward removal parameter procedure based on BIC and
starting with a model containing all the parameters was applied for each of the 4 datasets.

https://cimss.ssec.wisc.edu/cspp/acspo_v1.2.shtml
https://cimss.ssec.wisc.edu/cspp/acspo_v1.2.shtml
https://oceancolor.gsfc.nasa.gov/atbd/sst/#sec_2
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A maximum of 100 steps were given to the step function in R (MASS package [45]) to
determine to the model with the best performance.

Table 1. Main parameters for 4 different SST algorithms obtained from published studies on VIIRS instruments, and from
our analyses with ECOSTRESS input data taking into consideration the whole dataset (ALL DATASET), a reduced dataset
after a correction based on the e-folding autocorrelation distance (CORRECTED ACF), a full dataset with a correction of
the mean bias of brightness temperatures (CORRECTED BT) and with a reduced dataset after applying both corrections
(CORRECTED ACF BT). Numbers in bold show coefficient values for significant parameters.

Algorithm Variables
Published

Coefficient Values
(Ranges When Available)

All
Dataset

Corrected
ACF

Corrected
BT

Corrected
ACF BT

NAVO Intercept −269.4435 to −268.1847 2.9864 3.1315 2.972 3.3266

BT11 0.9863 to 0.9910 0.9909 0.9710 0.9732 0.9575

∆T 0.3772 to 0.4586 −0.4285 −0.6557 −0.4623 −0.5379

∆TFG 0.722 to 0.765 0.0296 0.0461 0.03051 0.0404

∆TSΘ −0.2485 to −0.2201 −0.2256 1.1759 0.186 0.9034

NRL Intercept −205 to −5 21.9000 2.4551 1.8797 2.4337

BT11 0.021 to 0.752 0.9300 1.0186 0.9348 1.0186

∆T 0.018 to 1.9 0.1700 0.1973 0.1627 0.2080

∆TSΘ 0.005 to 0.853 −0.1800 1.0539 0.1811 0.9045

FG 0.259 to 0.911 0.0800 0.0009 0.0891 0.0006

MC Intercept 1.75 2.4980 2.4578 2.1660 2.4355

BT11 1.009 1.0290 1.0195 1.0210 1.0193

∆T 2.475 0.1780 0.1974 0.1585 0.2081

∆TSΘ 1.282 −0.3100 1.0536 0.1206 0.9044

NLSST Intercept 0.985192 2.8289 3.1843 2.6930 3.3984

BT11 0.019775 0.9741 0.9622 0.9546 0.9475

BT11SΘ 0.456758 0.3054 0.1569 0.3344 0.1564

∆T 0.067732 −0.1726 −0.5877 −0.2173 −0.5039

∆TFG 0.705117 0.0306 0.0466 0.0314 0.0416

∆TSΘ −4.714369 −5.1816 −0.3961 −4.6510 −0.2481

ZA 5.623045 0.5628 −0.1656 0.9899 −0.1626

VIIRS Intercept 63.6091 to 7.7597 −87.0400 6.4098 −87.5900 5.7413

BT11 21.7769 to 3.2434 1.0080 0.9953 1.0000 0.9870

∆TFG 0.5460 to 0.4679 0.0112 0.0191 0.0117 0.0187

SΘ 0.7086 to 0.4124 89.5400 −3.6364 89.8300 −2.9009

ZA 0.6568 to 0.3256 1.9620 −1.7518 1.9770 −1.7160

ZA2 0.0003 to −5.17 × 10−5 −51.8700 6.1414 −52.0500 5.6632

3. Results
3.1. Bias Estimates

The VIIRS-N20 daily SST bias with respect to the drifter and tropical moorings dataset
from NOAA ranged from −0.05 to 0.15 ◦C with a mean of 0.015 ◦C (Figure 2). Overall,
ECOSTRESS had a −1.01 ◦C SST bias with respect to VIIRS-N20 for the whole dataset.
For the reduced dataset after the ACF correction, there was a −1.02 ◦C SST bias. This
deviation can be observed at individual ECOSTRESS-VIIRS comparisons (Figure 3), but
it is especially evident when SSTs from both VIIRS-N20 and ECOSTRESS are correlated
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(Figure 4). The fit is excellent for the whole dataset (R2 = 0.99 and RSE = 0.66) and also
for the reduced dataset after the ACF correction (R2 = 0.99 and RSE = 0.51). However, the
regression line is always below the 1:1 line (Figure 4A) and, when the bias is plotted as
a function of VIIRS SST, it is uniformly distributed along the whole temperature range
(Figure 4B). Note, however, that very low unrealistic ECOSTRESS SST values are present,
probably due to cloud contamination. Similarly, a relatively uniform bias across brightness
temperatures was detected for both BT12 and BT11, although for the former a slight trend
towards a larger cold bias at warmer brightness temperatures was apparent (Figure 5).
These biases were smaller than those observed for SST: −0.33 for BT12 and 0.23 for BT11
(−0.58 and −0.09, respectively, when the ACF correction was applied). The mean SST bias
and bias distribution across the whole temperature range did not change between day
(−1.006 ◦C) and night (−1.03 ◦C) scenes (Figure 6).

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 19 
 

 

the reduced dataset after the ACF correction, there was a −1.02 °C SST bias. This deviation 

can be observed at individual ECOSTRESS-VIIRS comparisons (Figure 3), but it is espe-

cially evident when SSTs from both VIIRS-N20 and ECOSTRESS are correlated (Figure 4). 

The fit is excellent for the whole dataset (R2 = 0.99 and RSE = 0.66) and also for the reduced 

dataset after the ACF correction (R2 = 0.99 and RSE = 0.51). However, the regression line is 

always below the 1:1 line (Figure 4A) and, when the bias is plotted as a function of VIIRS 

SST, it is uniformly distributed along the whole temperature range (Figure 4B). Note, how-

ever, that very low unrealistic ECOSTRESS SST values are present, probably due to cloud 

contamination. Similarly, a relatively uniform bias across brightness temperatures was 

detected for both BT12 and BT11, although for the former a slight trend towards a larger 

cold bias at warmer brightness temperatures was apparent (Figure 5). These biases were 

smaller than those observed for SST: −0.33 for BT12 and 0.23 for BT11 (−0.58 and −0.09, 

respectively, when the ACF correction was applied). The mean SST bias and bias distri-

bution across the whole temperature range did not change between day (−1.006 °C) and 

night (−1.03 °C) scenes (Figure 6). 

 

Figure 2. Daily VIIRS-N20 SST bias for the period 2019–2020 with respect to the drifters and tropi-

cal mooring NOAA dataset. 

Figure 2. Daily VIIRS-N20 SST bias for the period 2019–2020 with respect to the drifters and tropical
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3.2. Spatial Autocorrelation Distances and Algorithm Selection

A wide range of e-folding distances was obtained along the horizontal and vertical
axes within the sections of the VIIRS images that overlapped with ECOSTRESS images.
Specifically, they span from 8 to 114 km in the horizontal axis, and from 27 to 125 km in
the vertical axis (Table S1). A total of 406 independent data points were extracted using
grids built with these e-folding distances (Figure 7). The coefficients obtained for each
of the algorithm parameters using these spatially autocorrelation corrected data points
barely overlapped with published values (Table 1), but this was also true for the coefficients
obtained with the full dataset as well as the dataset corrected for brightness temperature
bias. In some cases, such as the parameter BT11 for NAVO, only the estimated coefficient
for the full dataset was within the range of published coefficient values. On the one hand,
in 12 out of the 16 estimations with ranges, none of the estimations for any of the four
datasets were within the published range, for example, ∆T for NAVO. On the other hand,
only 18 out of the 108 coefficient estimates were non-significant, all of them in the reduced
ACF corrected dataset or in the reduced ACF and BT corrected dataset. The reason that
the coefficients do not always match the published values is that the spectral responses
of the ECOSTRESS channels are not identical to the spectral responses of the instruments
for which they were developed. When algorithms were applied to the whole VIIRS-
N20 dataset, the NLSST algorithm was selected as the best fit according to BIC scores,
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irrespective of the biases in BT11 and BT12 being corrected or not. However, when the
reduced ACF corrected dataset was analyzed, then, the NAVO algorithm was selected
as the best fit (Table 2 and Figure 8). Nevertheless, R2 always exceeded 99% of the total
variability explained, regardless of the specific algorithm that was applied (Table 2 and
Figure 8). The results of the algorithm selection process by backward BIC show that the
model containing all nine of the parameters from all the algorithms was selected as the
best for the whole dataset, a more complicated model than any of these (Model 1, Table 3).
However, an equally good model with only 5 parameters was obtained for the reduced
ACF corrected dataset regardless of the BT correction: FG, BT11, ∆T, ∆TFG, and BT11SΘ
(Model 2, Table 3). Neither of these last two models corresponds to the regression models
typically used [39].
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Table 2. Bayesian information criterion (BIC), R2, and RSE for all the algorithms used to fit VIIRS-N20 SST with ECOSTRESS
input data taking into consideration the whole dataset (ALL DATASET), a reduced dataset after a correction based on the
e-folding autocorrelation distance (CORRECTED_ACF), the whole dataset with a correction of the mean bias of brightness
temperatures (CORRECTED_BT), and a reduced dataset after applying both corrections (CORRECTED_ACF_BT). Numbers
in bold show the best fit for each dataset.

ALL DATASET CORRECTED_ACF CORRECTED_BT CORRECTED_ACF_BT

BIC R2 RSE BIC R2 RSE BIC R2 RSE BIC R2 RSE

NAVO 4,619,031 0.9903 0.6684 524.679 0.996 0.4528 4,601,196 0.9904 0.6658 531.0998 0.9959 0.4565

NRL 4,615,638 0.9904 0.6679 584.327 0.9954 0.4884 4,615,226 0.9904 0.6678 582.7101 0.9954 0.4874

MC 4,694,935 0.99 0.6796 578.353 0.9954 0.4878 4,695,826 0.99 0.6798 576.734 0.9954 0.4868

NLSST 4,509,200 0.9908 0.6524 532.667 0.996 0.4517 4,503,904 0.9908 0.6517 539.7204 0.996 0.4558

VIIRS 4,618,481 0.9902 0.6741 548.429 0.9958 0.4638 4,608,488 0.9904 0.6668 549.8548 0.9958 0.4646



Remote Sens. 2021, 13, 5021 10 of 17

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 19 
 

 

ΔTFG 12,273,036 17,278 41,454 4,502,568 

ΔTSΘ 12,273,036 34,816 83,532 4,543,521 

BT11 12,273,036 3,483,731 8,358,400 7,968,110 

ACF_BT CORRECTED        

Whole model (Model 2)    77.74 526.3848 

BT11SΘ 1388 1.63 8.1218 528.5548 

FG 1388 2.76 13.7922 534.1548 

ΔT 1388 6.68 33.3154 552.8448 

ΔTFG 1388 14.46 72.1838 587.6148 

BT11 1388 640.55 3197.008 1396.4548 

 

Figure 7. Spatial autocorrelation analyses on VIIRS-N20 image overlapping with a collocated quasi-simultaneous ECOS-

TRESS image on 24 September 2019: (A) ACF contour plots in the Y axis, with a contour line indicating e-folding distance 

(EFD) and showing mean EFD for this axis; (B) same for X axis; (C) VIIRS-N20 section overlapping with the quasi-simul-

taneous ECOSTRESS image. 

Figure 7. Spatial autocorrelation analyses on VIIRS-N20 image overlapping with a collocated quasi-
simultaneous ECOSTRESS image on 24 September 2019: (A) ACF contour plots in the Y axis, with a
contour line indicating e-folding distance (EFD) and showing mean EFD for this axis; (B) same for X
axis; (C) VIIRS-N20 section overlapping with the quasi-simultaneous ECOSTRESS image.
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tected using smaller datasets. In fact, greater negative biases than those we reported were 
found at Lake Tahoe and Salton Sea for BT11 and BT12 measured by in situ radiometers 
(−0.87 and −0.86 °C, respectively, [26]). Nevertheless, SST biases for these water bodies 
were smaller than those we observed: −1.01 °C as compared with −0.91 and −0.63 °C at 
Lake Tahoe and Salton Sea, respectively [25]. On the one hand, in contrast with our obser-
vations, the SST negative biases increased at lower temperatures at these sites. On the 
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ibrations were performed with in situ radiometers on land surfaces [25]. At sea, SST com-
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Figure 8. Correlations of observed VIIRS SST against predicted SST data inferred from ECOSTRESS input data using
different algorithms. Note, only the best results according to BIC are shown for each dataset: (A) NLSST for the whole
dataset; (B) NAVO for the reduced dataset corrected by autocorrelation functions; (C) NLSST for the whole dataset with
corrected brightness temperatures; (D) NAVO for the reduced dataset corrected by autocorrelation function with corrected
brightness temperatures. Red line is the 1:1 line. Colors indicate the number of observations.
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Table 3. Best models (Models 1 and 2) from the backward BIC model selection performed on each of the 4 datasets. None
of these 2 models is identical to the traditional SST regression algorithms. Significant F values are shown in bold. BIC
values are the ones obtained when removing the corresponding parameter from the whole model. Within each model,
parameters are ordered following ascending BIC values, that is, from worse to better performance of each parameter within
its corresponding model.

ALL DATASET Df Sum of Sq F Value BIC

Whole model (Model 1) 155,937.8

∆T 12,273,036 12 29.989 155,993.8

ZA 12,273,036 1464 3512.8 156,068.8

ZA2 12,273,036 2609 6259.3 156,154.8

SΘ 12,273,036 2938 7049.8 156,180.8

∆TFG 12,273,036 17,728 41454 156,778.8

BT11SΘ 12,273,036 8910 21377 156,802.8

FG 12,273,036 14,496 7049.8 157,565.8

∆TSΘ 12,273,036 34,816 83532 159,294.8

BT11 12,273,036 3,483,731 8,358,400 273,827.8

ACF CORRECTED

Whole model (Model 2) 526.3848

FG 1388 1.34 6.7039 527.1348

BT11SΘ 1388 1.63 8.1236 528.5548

∆T 1388 6.67 33.2962 552.8248

∆TFG 1388 14.46 72.1608 587.5948

BT11 1388 640.85 3198.5076 1396.6148

BT CORRECTED

Whole model (Model 1) 4,461,493

∆T 12,273,036 12 29.989 4,461,517

ZA 12,273,036 1464 3512.8 4,464,997

ZA2 12,273,036 2609 6259.3 4,467,738

SΘ 12,273,036 3198 7672.1 4,469,146

FG 12,273,036 7648 18,350 4,479,763

BT11SΘ 12,273,036 8910 21,377 4482,764

∆TFG 12,273,036 17,278 41,454 4,502,568

∆TSΘ 12,273,036 34,816 83,532 4,543,521

BT11 12,273,036 3,483,731 8,358,400 7,968,110

ACF_BT CORRECTED

Whole model (Model 2) 77.74 526.3848

BT11SΘ 1388 1.63 8.1218 528.5548

FG 1388 2.76 13.7922 534.1548

∆T 1388 6.68 33.3154 552.8448

∆TFG 1388 14.46 72.1838 587.6148

BT11 1388 640.55 3197.008 1396.4548
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4. Discussion
4.1. Bias Magnitude and Nature

The comparisons performed between ECOSTRESS and VIIRS-N20 imagery world-
wide indicate that ECOSTRESS presents a mean bias of −1.01 ◦C that is uniform across the
whole SST range from 0 to 35 ◦C (Figures 3 and 4). Regardless of corrections for spatial auto-
correlation, the −1 ◦C bias in SST remained. Additionally, there is a bias in the ECOSTRESS
BT11 and the BT12 measurements (Figure 5), as previously discussed by [25,26], though
our estimates of the bias differ from theirs as discussed below. Application of standard
regression algorithms resulted in unbiased SST estimates from ECOSTRESS input data
with VIIRS SST datasets as a reference. Using the regression algorithms NAVO and NLSST
yielded particularly successful results; thus, by replacing the ECOSTRESS TES algorithm
with one of the standard regression algorithms the systematic −1 ◦C bias in SST was
eliminated (Figure 8).

ECOSTRESS biases in SST and brightness temperatures have been previously detected
using smaller datasets. In fact, greater negative biases than those we reported were
found at Lake Tahoe and Salton Sea for BT11 and BT12 measured by in situ radiometers
(−0.87 and −0.86 ◦C, respectively, [26]). Nevertheless, SST biases for these water bodies
were smaller than those we observed: −1.01 ◦C as compared with −0.91 and −0.63 ◦C
at Lake Tahoe and Salton Sea, respectively [25]. On the one hand, in contrast with our
observations, the SST negative biases increased at lower temperatures at these sites. On
the other hand, the surface temperature biases and trends were markedly reduced when
calibrations were performed with in situ radiometers on land surfaces [25]. At sea, SST
comparisons were performed between ECOSTRESS and a variety of buoys within Florida
Bay [27]. There, an overall bias of −0.83 ◦C was observed, although it ranged from −1.2 ◦C
at night to −0.58 ◦C during the day. In this study, buoys were measuring temperatures
between 0.5 to 2 m below the surface, which corresponded to slightly colder water masses
with respect to the skin temperatures measured by ECOSTRESS. However, such thermal
differences have been shown to be typically smaller than 0.5 ◦C [49], and do not account
for the whole bias observed. Furthermore, the bias was only 0.11 ◦C when these same
buoy measurements were compared with MODIS SST imagery rather than ECOSTRESS
SST, both measuring skin temperatures [27]. Our results are largely in agreement with
these ECOSTRESS-buoys comparisons and the slight differences in bias magnitude and
day/night bias contrasts between both studies could be due to the limited number of
observations (85) and shorter thermal range (15–35 ◦C) obtained off Florida.

In addition to ECOSTRESS with its −1 ◦C bias, negative biases in SST satellite
retrievals have been observed with some infrared radiometers. The lack of a 3.7 µm
band increases the probability of getting significant biases in SST measurements [50,51].
ECOSTRESS lacks a 3.7 µm band, although a proper characterization of the water vapor
absorption vertical profiles in wet atmospheres usually corrects this type of bias even when
the 3.7 µm band is lacking [50]. For ECOSTRESS, such characterization is given by the
TES algorithm, which retrieves emissivity at each band and SST values from radiance
measurements through an iterative process that accounts for atmospheric correction [52].
However, the range of emissivity retrieved by TES algorithms, called the minimum maxi-
mum difference (MMD) is usually much broader than that characteristic of ocean surfaces,
vegetation, and other graybodies, thus, increasing the probability of getting a large bias.
The emissivity of seawater, for example, is typically 0.990 at 10.49 µm; the TES algorithm
yields calculated values as low as 0.93 with a mean of 0.98. In these cases, we used the split
window deterministic algorithms based on linear regressions inferred from SST measure-
ments, which may have resulted in better, unbiased SST estimates even when brightness
temperatures were already biased (Table 2 and Figure 8).

An alternative procedure to using these split window deterministic algorithms may
be an iterative radiance-based validation method [25] using the RTTOV model, which
uses water vapor profiles from numerical weather predictions or reanalyses for full scale
retrievals independently of the radiances [53,54]. For ECOSTRESS, this approach was used



Remote Sens. 2021, 13, 5021 13 of 17

to calculate theoretical sensor differentials between RTTOV simulations of BT11 and BT12
values which were in turn compared with those between BT11 and BT12 real measurements
from the ECOSTRESS instrument [25]. If these differentials are essentially the same (<0.3 K),
then, the validation is accepted [25]. However, if instrumental brightness temperatures are
already biased, as is true for ECOSTRESS (Figure 5) and such biases are not the same for
the two bands (−0.33 for BT12 and 0.23 for BT11; −0.58 and −0.09, respectively, when the
ACF correction was applied), then, this radiance-based validation method may not correct
the SST bias.

Most of the coefficient values estimated for each regression algorithm with the four
different datasets (Table 1) were not within the published ranges obtained in other studies.
This lack of match could be due to the different nature of the calibrations performed in those
studies, as those were direct temperature comparisons between MODIS/VIIRS instruments
and in situ measurements from ships, buoys, and drifters ([48], https://oceancolor.gsfc.
nasa.gov/atbd/sst/#sec_2, accessed on 7 December 2021). Those comparisons are quite
different from our ECOSTRESS-VIIRS-N20 multisensor intercomparison approach. After
performing the spatial autocorrelation correction, coefficient estimates for some parameters
were not significantly different from zero (Table 1). This was probably caused by the large
reduction in the number of observations and degrees of freedom in the regression analyses
following the spatial autocorrelation correction (Table 3). Note, however, that the R2 values
remained in excess of 0.99 in all cases (Table 2). Thus, despite this large reduction in the
size of the available dataset, the goodness of fit of the calibration with VIIRS data and the
estimation of the bias were not affected.

4.2. Biological and Oceanographic Implications of SST Bias

Many thermal properties have dramatic shifts over small temperature ranges; organ-
ism physiological performance curves and probabilities of mortality often are asymmetric
with sharp clines near thermal limits. A 1 ◦C, cold bias could potentially impact the ac-
curacy and sign of the predictions on the biological fitness of marine organisms based on
ECOSTRESS data. For instance, mass mortality of mussels is known to have occurred along
the northeastern Atlantic shores at temperatures of 32 ◦C [55,56]. Laboratory experiments
showed a drop from 80% to 10% in survival rates between 30 and 32 ◦C, which emphasizes
the importance of precise SST measurements in order to properly forecast high mortality
events. Similarly, cumulative mortality curves as a function of time in different commer-
cial clam species change dramatically between 32 and 36 ◦C [57]. Moreover, dispersal
parameters for coastal invertebrate larvae and other propagules are severely affected by
their metabolic rates which are, in turn, determined by temperature [58]. For example,
planktonic larval duration (PLD) is known to exponentially decrease with SST, so a 1 ◦C
cold bias can be translated to an artificial PLD overestimation of many days which may
lead to erroneous calculations of dispersal distances [59,60].

The observed bias can also affect the utility of ECOSTRESS to infer climate change-
driven upwelling dynamics between regions where Bakun´s upwelling intensification
occurs and those where surface warming and stratification prevail. Thermal upwelling
indexes, such as the ones used by [61,62] along the coasts of northern and southern Africa,
respectively, will be altered by such a bias. These indexes are based on the horizontal
offshore-onshore temperature contrast divided by the vertical temperature difference
offshore. This denominator would be one degree lower if ECOSTRESS SST data were used,
as it is calculated as offshore SST minus a constant bottom layer temperature characteristic
of the water mass that upwells [62]. Thus, artificially high thermal upwelling indexes
would result with the use of ECOSTRESS SST measurements. In fact, such potential
upwelling overestimation reveals that indexes that incorporate constant parameters, such
as the temperature of a deep-water mass, are more prone to errors produced by biases in
satellite SST estimates.

https://oceancolor.gsfc.nasa.gov/atbd/sst/#sec_2
https://oceancolor.gsfc.nasa.gov/atbd/sst/#sec_2
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4.3. Importance of Spatial Autocorrelation in Algorithm Selection

Our results show the importance of spatial autocorrelation in these calibration analy-
ses. Because the e-folding distances were on the order of many tens of kms (8 to 125 km,
Table S1), the dataset was reduced from 2,282,368 to 406 pixels when the autocorrela-
tion correction was applied. These distances are consistent with the known patch size
in SST derived from Moran´s I correlograms off the coast of Chile (a mean of 40 km ap-
proximately, [63]) and with the SST semivariance variograms performed for the Gulf of
Mexico (75–300 km, [64]). Similarly, Moran’s I z scores revealed SST spatial autocorrelation
distances between 200 and 400 km off the northeastern coast of USA [65], while autocor-
relation functions for SST fitted by normal distributions yielded scales from 80 to 300 km
off Sicily [66]. The differences among all these estimates may be due to spatiotemporal
variability in SST at different regions, to the slightly different methodologies that were
applied, and especially, to differences in the size of the images that were analyzed (565 km
for ECOSTRESS scenes of 400 × 400 km approximately). Regardless of the SST exact
autocorrelation scale, spatial autocorrelation has to be considered in this kind of analysis.
Failure to adjust for spatial autocorrelation reduces the independence of residuals, and
thereby severely hinders hypothesis testing by erroneously inflating the statistical power
to detect pattern. Following correction for spatial autocorrelation, our model selection pro-
cedure based on BIC changed. Although all the algorithms explained more than 99% of the
SST variability, note that when the whole dataset was considered, NLSST, the most complex
used algorithm, was selected as the best fit (Table 2) and the backward BIC model selection
failed to remove any parameters from the initial model containing all the parameters
(Model 1 in Table 3). However, with the reduced dataset after the spatial autocorrelation
correction, a simpler algorithm, NAVO, was selected instead, and the backward BIC model
selection led to the much simpler Model 2 (Tables 2 and 3). Although BIC penalizes model
complexity more heavily when there is a large number of observations, the higher R2 and
lower RSE of the NLSST algorithm as compared with NAVO for the whole dataset clearly
compensated for this effect. This compensation does not occur for the reduced dataset as
differences in R2 are close to zero; therefore, NAVO was chosen as the best fit (Table 2).

5. Conclusions

In summary, ECOSTRESS SST datasets have great potential for studies on temperature
trends, upwelling dynamics, coastal oceanography, and distribution shifts of marine species
given the global coverage and high spatial resolution of the instrument. Furthermore, its
unprecedented small scale detail may reveal coastal oceanographic processes and structures
unknown today [67]. It is true that the 1 ◦C cold bias in SST that we detected may introduce
some level of uncertainty in comparative oceanographic and ecological studies between
ECOSTRESS and other temperature datasets. Nevertheless, it is a uniform bias across a
wide thermal range (from 0 to 35 ◦C), and therefore the thermal contrasts observed in
oceanographic structures in ECOSTRESS imagery (Figure 3) are reliable. In addition, we
show that the observed temperature bias can be corrected with the different regression
algorithms presented in this study that are used on a regular basis to retrieve SST data
for other satellite products. In this way, we avoid SST underestimations that are probably
caused by the use of the TES algorithm. For satellite product users not involved in the
calibration of these datasets, we propose a simpler solution in light of our results, i.e., to
add a constant of 1 ◦C to ECOSTRESS SST. The goodness of fit and error estimates obtained
from our raw VIIRS-ECOSTRESS calibrations are very similar to those derived from the
regression algorithms we tested (see Section 2.1, Table 2 and Figure 8), illustrating that
ECOSTRESS SST data plus 1 ◦C match remarkably well the reference VIIRS data. Thus, it
is possible to easily correct this cold bias at both the user and data manager levels in order
to take advantage of the unique characteristics of ECOSTRESS in future oceanographic and
ecological studies.
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