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Abstract: In Synthetic Aperture Radar (SAR) interferometry, one of the most widely used measures
for the quality of the interferometric phase is coherence. However, in favorable conditions coherence
can also be used to detect subtle changes on the ground, which are not visible in the amplitude images.
For such applications, i.e., coherent change detection, it is important to have a good contrast between
the unchanged (high-coherence) parts of the scene and the changed (low-coherence) parts. In this
paper, an algorithm is introduced that aims at enhancing this contrast. The enhancement is achieved
by a combination of careful filtering of the amplitude images and the interferometric phase image.
The algorithm is applied to an airborne interferometric SAR image pair recorded by the SmartRadar
experimental sensor of Hensoldt Sensors GmbH. The data were recorded during a measurement
campaign over the Bann B installations of POLYGONE Range in southern Rhineland-Palatinate
(Germany), with a time gap of approximately four hours between the overflights. In-between the
overflights, several vehicles were moved on the site and the goal of this work is to enhance the
coherence image such that the tracks of these vehicles can be detected as completely as possible in an
automated way. Several coherence estimation schemes found in the literature are explored for the
enhancement, as well as several commonly used speckle filters. The results of these filtering steps
are evaluated visually and quantitatively, showing that the mean gray-level difference between the
low-coherence tracks and their high-coherence surroundings could be enhanced by at least 28%. Line
extraction is then applied to the best enhancement. The results show that the tracks can be detected
much more completely using the coherence contrast enhancement scheme proposed in this paper.

Keywords: SAR interferometry; coherence; coherent change detection

1. Introduction

One of the most striking differences of Synthetic Aperture Radar (SAR) sensors when
compared to optical sensors is the coherent image formation process, and the ability to
measure both amplitude and phase of the return signal. Especially the recorded phase, if
used in an interferometric image pair, carries a wealth of information about the scene. This
information has been exploited in many ways, be it Persistent Scatterers [1], the creation
of worldwide digital elevation models [2] or small baseline interferometry [3]. All of
these approaches to exploit the interferometric phase rely on the data to be stable, i.e.,
coherent. Coherence plays an important role in image co-registration, see e.g., [4] for a
detailed description of how coherence can be used for co-registration, or as a measure for
the accuracy of the height information extracted from an interferometric image pair [5].
However, coherence in itself is of interest, since it can be used to detect subtle changes
on the ground that would not be noticeable in the amplitude images. Applications of
this kind of change detection (Coherent Change Detection, CCD) are manifold and cover
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such diverse situations as the detection of landslides [6,7], disaster monitoring in urban
areas [8,9], the monitoring of the stability of sand dunes [10] or the detection of human-
induced damage to the world-famous Nasca lines [11]. If the resolution of the sensor is high
enough, CCD can be used for security and surveillance tasks also, for example the tracks of
vehicles can be found in coherence images [12,13], provided that the ground surrounding
the tracks is of high coherence, thus having a good contrast to the low-coherence tracks.

Most CCD algorithms eventually rely on thresholding the coherence image to separate
the low-coherence changed areas from their high-coherence surroundings. For this to
work well, the contrast between the low-coherence and the high-coherence parts should be
as high as possible. In the literature, several approaches have been reported to enhance
this contrast. These include different schemes to estimate the coherence from the original
images, such as the algorithm [14] applied in this paper, dedicated estimators of coherent
changes [15], and the employment of a different coherence formalism to better suit the
needs of CCD [16].

In this paper, a novel algorithm is introduced that aims at enhancing the contrast
between high-coherence unchanged areas of the scene and the low-coherence target areas.
The algorithm consists of three parts, which are amplitude speckle filtering, removal of
the topographic phase and selective noise filtering of the interferometric phase only in
high-coherence areas. The novelty of this paper is the careful filtering of the phases and the
combination of the different filtering steps, which only when applied together yield the
maximum enhancement of the coherence in the high-coherence parts, while leaving the
low-coherence parts largely unchanged.

This paper is structured as follows: After the introduction in Section 1, the different
schemes to calculate coherence are discussed in Section 2. Section 3 introduces the dataset
used for the analysis and the evaluation of the algorithm. Sections 4 and 5 form the
technical heart of this paper, with Section 4 introducing the proposed algorithm, and
Section 5 containing the evaluation of the approach on the data set introduced in Section 3.
In Section 6, the findings are discussed, and Section 7 contains the conclusion. This paper
is an extended version of our paper published at EUSAR 2021 [17].

2. Coherence Calculation

In the literature, several approaches to coherence calculation exist, which all have
their own merits and shortcomings. Roughly, these can be categorized into window-based
approaches, which estimate coherence in a sliding window of fixed size, and into non-
local approaches. Although the window-based approaches are easy to implement and
to calculate, the coherence image suffers from artifacts that stem from the rather limited
amount of samples used for the calculation. Usually, also a loss of resolution and a blurring
of finer structures especially at the edges can be observed. On contrast, non-local approaches
come with a higher computational burden, but are able to conserve finer structures in the
final output. In a preliminary study to this work [18], the coherence estimator described
in [19] was considered. Since this estimator calculates the coherence only using amplitude
information, it will not benefit from the contrast enhancement scheme described in Section 4
and thus was not further investigated. Furthermore, in [18], also Non-Local InSAR [20] was
used. This estimator, however, takes very long to compute, so it was seen unfit for inclusion
in the algorithm below. Instead, a different non-window-based approach (Estimator D
below) was added. Thus, four coherence estimators were investigated, which will be
introduced briefly in this section.

2.1. Classical Approach, Coherence Estimator A

The classical approach to coherence estimation is given by the following formula:

γ(x) :=
∑N

i=1 z1(i) · z∗2(i)√(
∑N

i=1|z1(i)|2
)
·
(

∑N
i=1|z2(i)|2

) , (1)
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where the calculation is performed in a square sliding window of odd size with N pixels,
centered at pixel x. z1 and z2 denote the complex signals of the first and second image, and
∗ is complex conjugation. Usually, only the absolute value |γ| is used.

2.2. Coherence Estimator B

One of the problems with Estimator A is, that it is biased if there is topographic
phase contained in the interferometric phase. This may lead to wrong estimations of the
coherence. This problem is overcome to some extent by the estimator described in [14]. In
this paper, first two auxiliary images w1 and w2 are calculated as follows:

w1(m, n) := z1(m, n) · z∗1(m + 1, n) (2)

w2(m, n) := z2(m, n) · z∗2(m + 1, n), (3)

which are estimates of the phase derivative in direction m for the two complex images z1
and z2. Coherence is then calculated in a sliding window using

γ(x) :=
∑N

i=1 w1(i) · w∗2(i)√(
∑N

i=1|w1(i)|2
)
·
(

∑N
i=1|w2(i)|2

) , (4)

which is the classical formula, except that it is used on the phase derivatives. These
calculations can then also be carried out in direction n with analogous formulas. Indeed, in
this work, the average of the coherence estimations for directions m and n is used.

2.3. Coherence Estimator C

This estimator was published in [21] and is somewhat simpler and more computation-
ally efficient than the two estimators described in the last two paragraphs. It is also used in
a sliding window of fixed size N and is given by the following formula:

γ(x) :=
1
N
·

N

∑
i=1

z1(i) · z∗2(i)∣∣z1(i) · z∗2(i)
∣∣ . (5)

2.4. Coherence Estimator D

Estimator D is an example for a non-window-based estimation scheme. It is based on
a multi-stage wavelet transform of the whole interferometric phase image, using only the
phase information. This means that the amplitude is completely ignored in this approach,
while all of the window-based approaches examined in this paper use both the amplitude
and phase information. The algorithm uses two stages of wavelet decomposition and then
a final stage of wavelet tree decomposition. In each of these stages, the wavelet coefficients
containing a significant amount of signal are identified and enhanced, and at the same
time the noisy coefficients are suppressed. The detection of wavelet coefficients containing
signal is performed by using the following formula:

Γsig =
Iw − 22·j′ · σ2

v
Iw

, (6)

where Iw is the intensity of the wavelet coefficients at the highest stage j′ = 3, i.e., after
the wavelet tree decomposition, and σ2

v is the noise power. In [22], a threshold of −1 is
suggested to detect those coefficients containing significant signal parts, and all of the
wavelet coefficients above the threshold are multiplied by 2. Then, inverse wavelet packet
transform is applied. In the remaining two stages, all coefficients detected in one of the
previous stages as containing signal are again multiplied by 2. Newly detected signal
coefficients at the current stage by Formula (6) are then also multiplied by 2 and added
to those coefficients coming from the lower stages. After undoing all of the wavelet
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transforms, each pixel contains information about the noise-free signal Nc, which is linked
to the coherence via

Nc =
π

4
|γ| ·2 F1

(
1
2

,
1
2

; 2; |γ|2
)

, (7)

where 2F1(a, b; c; z) is the Gauss hypergeometric function. From Nc, the coherence |γ| can
then be inverted using this formula and a look-up table. For details of this algorithm
see [22].

2.5. Value Range of the Coherence Estimators

Since the main goal of this paper is to enhance the gray-level difference between
the low-coherence changed parts of the scene and the high-coherence surroundings, the
value range of these estimators is important. From the formulas of Estimators A–C, it
can be easily deduced that the maximum possible value range is the interval [0,1]. For
coherence Estimator D, values greater than one can occur, however, following [22], these
values are then normalized to [0,1]. A value of one can be obtained if, and only if, all of the
contributions are in phase. For Estimators A and B, additionally, a value of one can only
be obtained if, and only if, the corresponding amplitudes, respectively, their derivatives
(for Estimator B), of the two images within the calculation window are linearly dependent.
Considering that in SAR images amplitudes usually are non-zero, coherence can only be
zero if the phases of the pixels within the window are such, that the complex numbers
cancel out, which is a very special situation. Since coherence is calculated from a finite
number of samples, the mean coherence even for completely decorrelated areas is not
zero. The minimal mean coherence depends very much on the size of the window for
the window-based approaches, and also on the processing of the SAR image itself. For
completely uncorrelated speckle, using a 7× 7 calculation window, the minimal mean
value is about 0.1. This changes quite drastically if, as is the case for the dataset introduced
in Section 3, the images are oversampled during the SAR processing. In this case, the
speckle is not uncorrelated any more. For the SmartRadar data used in this paper, the
oversampling by a factor of 1.4 leads to a theoretical minimal mean coherence of about
0.2. These values were generated by simulating completely decorrelated speckle, then
oversampling the image and calculating the mean coherence over a 128× 128 pixel image.
For stability, this simulation was carried out 100 times and the mean of the coherence means
was taken. Thus, even in perfect conditions, the maximal gray-level difference that can
be achieved is only about 0.8. This should be kept in mind when interpreting the results
presented in Section 5.

3. Dataset

The dataset used in this work was acquired during a measurement campaign at the
Bann B installations of POLYGONE Range in western Rhineland-Palatinate, Germany, in
2015. It contains an interferometric image pair that was recorded during two overflights
by the airborne SmartRadar sensor operated by Hensoldt Sensors GmbH, mounted on
a Learjet. SmartRadar is an X-band sensor with resolution in the decimeter range. The
acquisition geometry of the POLYGONE data used in this work can be found in Table 1.
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Table 1. Properties of the POLYGONE acquisitions.

Band X-band
Resolution Decimeter range
Slant range distance to first bin approx. 10,260 m
Flight height above ground approx. 4270 m
Depression angle first bin approx. 25◦

Time between acquisitions approx. 4 h
Scene center coordinate 49.377036 N, 7.602708 E
(Lat/Lon decimal, WGS84)
Baseline approx. 32.8 m

During the data takes, the Learjet operated in autopilot mode, giving very stable and
accurate flight paths. Figure 1a shows one of the images recorded during the measurement
campaign, while in Figure 1b the area is shown in an optical image. The two areas of
interest marked with red boxes will be used in the following sections for the evaluation of
the results, while the area marked with the yellow box will be used to show the effect of
the removal of the topographic phase.

(a) (b)

Figure 1. (a) SmartRadar image of the POLYGONE scene, areas of interest marked with red boxes;
the yellow box marks the area used in the following sections; (b) Optical image of the area, the
area contained in the SAR image is marked with a black box. Optical image DOP40 ©GeoBasis-
DE/LVermGeoRP 2021.

Note that the SAR image has not been geo-coded nor projected to ground geometry.
All of the calculations in the following are performed on the single-look complex images.
Furthermore, all of the cut-outs and images derived from the SAR images, unless stated
otherwise, have the same azimuth and range direction as the image shown in Figure 1a.

The scene mainly consists of forests and grassland, some roads and the buildings of the
Bann B installations of POLYGONE Range. The grassland around the buildings was mowed
just one day before the measurement campaign and the mowed, rather tall, grass was left
lying on the ground, giving very good coherence in these parts of the image. The scene
was kept as stationary as possible during the SAR image recordings, however, in-between
the overflights the three vehicles shown in Figure 2 were driven across the grassland. They
moved mainly in straight lines, but at both ends of the tracks, also situations that are more
complicated are present, such as curved paths and some intersection of the tracks. We aim
at extracting these tracks from the coherence image. To give an idea of the axle and wheel
widths of these vehicles, the approximate numbers are given in the following: The MAN
10 to truck has an axle width of 2.2 m and a wheel width of 0.4 m. The axle width of the
Mercedes-Benz Axor is about 1.8 m with a wheel width of 0.37 m. The Unimog U5000 has
an axle width of 1.92 m and the width of the wheels is about 0.4 m.
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(a) (b) (c)

Figure 2. Vehicles moved across the grassland. (a) MAN 10 to truck; (b) Mercedes-Benz Axor truck;
(c) Unimog U5000 truck.

Figure 3 shows a detail of the scene containing a part of the vehicle tracks. In (a)
the original amplitude image of the second overflight is shown. Figure 3b contains the
interferometric phase, and (c) is the coherence estimate using the classical Estimator A in a
7× 7 window. For the choice of this window size, see the discussion in Section 4.1.

(a) (b) (c)

Figure 3. Detail of POLYGONE scene. (a) Original amplitude image of second overflight;
(b) Interferometric phase; (c) Coherence.

Figure 3a shows that the vehicle tracks are not visible in the amplitude image of the
second overflight, while they can clearly be seen in both the phase image (b) and the
coherence image (c).

4. Coherence Contrast Enhancement

As mentioned in the last section, the goal is to detect the tracks of the vehicles that
moved across the grassland at POLYGONE, i.e., a CCD task. Usually, CCD is performed by
applying some threshold to the coherence image and then filtering the results. For this to
work well, the high-coherence parts of the scene should have good contrast or gray-level
difference to the low-coherence (changed) areas.

The ideas for the contrast enhancement come from closely examining Formula (1),
the classical formula for coherence estimation. As discussed in Section 2.5, this formula
becomes maximal, if the amplitudes of the corresponding pixels within the window are
linearly dependent, and are in phase, i.e., the phase difference is zero. So, in order to get
as close as possible to such a situation, the following steps are proposed, which are also
shown as a flowchart in Figure 4.

1. Speckle filtering of the amplitudes A0,1 and A0,2 for the whole image; this leads to the
filtered amplitudes A1,1 and A1,2 being close to constant in small windows;

2. Calculation of a first coherence estimate C1. There are two possible choices for this
step: Using one coherence estimator for the whole algorithm (i.e., the one used in
Step 5 below), or using one fixed estimator for this first step, which means that in
Step 5 all estimators have the same input. It was decided to conduct two experiments:
Experiment 1 uses the filtered amplitudes of Step 1, the classical Estimator A for Step 2
and the estimator of choice for Step 5, while Experiment 2 uses the same coherence
estimator for Step 1 and Step 5;
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3. Removal of the topographic phase from the original phase image P0, resulting in
the intermediate phase image P1; this leads to the phases being more similar in the
high-coherence parts while not changing much in the low-coherence parts; this step
uses the coherence estimate of Step 2;

4. Noise filtering of P1, only in the high-coherence parts, resulting in the phase image
P2; this supports the coherence becoming maximal in the high-coherence parts while
remaining unchanged in the low-coherence parts. This step also uses the coherence
estimate of Step 2;

5. Re-calculation of the coherence using the coherence estimator of choice, the filtered
amplitudes A1,1 and A1,2 and the filtered phase P2, resulting in the final coherence
estimate CFinal .

Note that Step 1 and Step 3 act on the whole image, thus also altering the values in the
low-coherence parts. Indeed, the amplitude filtering in some cases might raise coherence
in the low-coherence parts slightly. However, since the interferometric phase in these parts
remains random, this effect will not be very pronounced, while in the high-coherence
parts, the combined effect of speckle filtering and phase smoothing yields a much higher
coherence. As for the topographic phase, if the topography is not very pronounced, in
the small windows used for the calculation of the coherence, this amounts to an almost
constant factor that is subtracted from all phases within the window, thus only altering the
coherence calculation very slightly.

The filtering steps and the methods chosen for the evaluation of the algorithm will be
discussed in more detail in the following. We also tried a re-calculation of the coherence
after Step 3. However, the differences in the final coherence estimate were minor, while
calculation time increased, so this step was dropped in the final algorithm.

Figure 4. Flowchart showing the five steps of the proposed optimization process.

4.1. Choice of Window Size

For the window-based approaches of coherence calculation, the size of the calculation
window has to be chosen. In this paper, all window-based approaches, except for the
removal of the topographic phase, use a 7× 7 calculation window. In a previous study [18],
the effect of the window size on the coherence estimation was discussed in depth and
it was concluded that using a 7× 7 estimation window provided the best compromise
between stability of statistics and detectability of the rather fine structure of the vehicle
tracks. To be consistent with this choice of window size, also the window-based speckle
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filters, introduced in the next section, were applied with this window size. The non-local
SAR speckle filter requires two windows, the comparison window and the search window.
For this algorithm, again, the comparison window was set to 7× 7 pixels, while the search
window was set to 21× 21 pixels.

4.2. Speckle Filtering

In the literature, many speckle filters exist, see e.g., [23,24] for overviews of the
classical and some more advanced speckle filters, and [25,26] for more recent developments
involving convolutional neural networks. Several of these were applied to the original
amplitude images A0,1 and A0,2 to evaluate their impact on the enhancement of the contrast
between the high-coherence and the low-coherence parts of the scene. Since the vehicle
tracks are not visible in the amplitude images (see Figure 3), the amplitude speckle filtering
was applied to the whole image. The investigated speckle filters were

• Lee-Filter ([27]);
• Gamma-MAP ([28]);
• Non-local SAR, non-iterative version ([29]);
• Average filtering.

4.3. Topographic Phase Removal

The first step of phase filtering is the removal of the topographic phase. Figure 3b
contains the original interferometric phase P0 for the scene. The figure shows that there is
some topography present in the scene, however, this topography is not very pronounced.
This is also the assumption for the phase filtering process. The topographic phase is
estimated by averaging the interferometric phase in a large (51× 51 pixel) window. Since
the phase in the low-coherence parts of the scene contains mainly noise, the phase values
are multiplied by the coherence estimate C1 of Step 1, so that the low-coherence pixels
contribute less to the average. The effects of this filtering step are shown in Section 5.

4.4. Phase Noise Filtering

The most crucial step in the filtering of the interferometric phases is the suppression
of the phase noise. This has to be done very carefully, since the goal is not to smoothen
the phases in the low-coherence parts of the scene. The phase smoothing applies a small
(7× 7 pixels again) sliding averaging window to the scene. However, only those pixels
are filtered, in whose vicinity, i.e., within the filter window area, only a maximum of
11 pixels are below 0.7 in the coherence estimate C1. Since the sliding window is rather
small, the vehicle tracks will not be affected by the filtering, while their surroundings will
be smoothed. Results of this filtering step on the dataset are shown in Section 5.

4.5. Quantitative Evaluation of Coherence Enhancement

For the evaluation of the improvement of contrast between the high-coherence and
low-coherence areas of the scene, two representative parts of the vehicle tracks were chosen.
These are marked with red boxes in Figure 1. The main difference between the two areas of
interest is that the track in Area 1 is less pronounced than the track in Area 2, meaning it
has worse contrast with the coherent surroundings. Figure 5a,b show details of the scene
around the areas of interest in the original amplitude image of the second overflight (left),
while the corresponding images on the right show the same areas in the coherence image
obtained with the original amplitude and phase data and Estimator A. In the coherence
images, the actual portion of the tracks used for the qualitative evaluation in Section 5 is
marked with a blue rectangle.



Remote Sens. 2021, 13, 5010 9 of 17

(a) (b)

Figure 5. Areas of interest. (a) Area 1; (b) Area 2; Left: Original amplitude image; Right: Coherence
estimate with original data and Estimator A. The amplitude images have the same scaling as Figure 3a,
and the coherence images have the same scaling as Figure 3c.

Within these areas, the tracks and their surroundings were manually delineated. To
facilitate this, the cutout image parts were rotated so that the tracks were approximately
horizontal. The delineation of the areas can be seen in Figure 6. Note the gap between
the areas marked as tracks (between the green lines) and those marked as surroundings
(between the red lines). These were left on purpose to evaluate the maximal gray-level
difference/contrast between the low- and high-coherence areas.

(a) (b)

Figure 6. Vehicle tracks used for quantitative evaluation. (a) Area 1; (b) Area 2. Track areas are
between green lines, surroundings between red lines. For the extraction the tracks were rotated, so
that the image orientation for these two images is not conformal with the rest of the images.

For the evaluation, the average contrast between the areas marked as track (green) and
the areas marked as surroundings (red) was calculated. Although contrast is a widely used
measure, the raw difference between the gray-levels is considered also very important,
especially if a threshold is to be applied to the coherence image. Thus, the average gray-
level difference was also calculated.

The contrast ρ is defined as

ρ =
µC − µIC
µC + µIC

, (8)

where µC and µIC are the mean gray-values in the high-coherence parts (surroundings)
and the low-coherence parts (tracks), respectively.

4.6. Evaluation of the Algorithm with Respect to Detectability of the Tracks

Eventually it is of interest whether the coherence optimization affects the change
detection capabilities with regard to the vehicle tracks in the image area. To assess the
performance, a track detection was performed on the original coherence, calculated with
the original amplitudes and phases, and the optimized coherence CFinal using a standard
approach, involving an auto-thresholding of the coherence image to obtain a binary image
and a subsequent line detection operation. Regarding the auto-thresholding, several
standard methods were considered, such as the global entropy method [30] and Otsu’s
method [31]. However, results show that not all methods are suitable for the task at hand;
in fact, best results were achieved using the mean of coherence values as the threshold. As
a standard line detection method, a Steger line operation [32] was then performed on the
binarized image (see Section 5.6).

5. Results

In this section, the methods discussed in Section 4 are applied to the Bann B scene and
the effects of the filtering are evaluated both visually and quantitatively. Furthermore, the
success of the algorithm is demonstrated by extracting the tracks both from the original
and from the optimized coherence image, showing that the latter are much more complete
than the tracks extracted from the original coherence image.
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5.1. Removal of the Topographic Phase

The method to calculate the topographic phase was introduced in Section 4.3. The
original interferometric phase is shown in Figure 3b and again in Figure 7a for comparison.
The resulting topographic phase, exemplary calculated with the help of the coherence
image C1 obtained with Estimator A, can be seen in Figure 7b, and the remaining phase P1
after removal of the topography is shown in Figure 7c. The black rectangle in Figure 7c
marks the location of Area 1. This area is used in Figure 8 to demonstrate the effects of the
phase noise filtering.

(a) (b) (c)

Figure 7. Removal of the topographic phase. (a) Original phase image P0; (b) Estimated topographic
phase; (c) Residual phase P1 after topography removal. The black rectangle in (c) marks Area 1.

Re-calculation of the coherence after removal of the topographic phase has shown that
the impact on the coherence is very small. This was to be expected, since the topography
is locally smooth in the area and since the coherence estimation windows are small. The
wavelet-based approach (Estimator D), which acts on the whole image at once, basically is
a noise filter for the phases. Since the topographic phase is deterministic, this filter also is
not affected significantly by the topographic phase.

5.2. Phase Noise Filtering

This is the most crucial step in the algorithm, and the method was introduced in
Section 4.4. It is applied to the topography-removed phase shown in Figure 7c. The
exemplary coherence estimate used for this step is again the first coherence estimate C1
calculated by Estimator A.

(a) (b)

Figure 8. Effect of phase filtering. (a) Topography-removed phase P1; (b) Topography-removed and
noise filtered phase P2.

Figure 8a shows a zoom into the part of Figure 7c marked with the black rectangle,
which is also Area 1. In Figure 8b, the phase noise in the high-coherence areas is very much
suppressed, as was intended, while the low-coherence areas have remained unchanged.

The next two sections contain the quantitative evaluation of the algorithm for the
Experiments 1 and 2 described in Section 4, in Areas 1 and 2.
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5.3. Quantitative Evaluation, Experiment 1

For Experiment 1, the coherence estimation C1 of Step 2 of the algorithm described
in Section 4 was calculated using the classical Estimator A. Table 2 shows the results of
Area 1 for the different coherence estimators and the different amplitude filters. Note that
even though Estimator D uses only the phase information for the calculation of CFinal , the
different amplitude filters change the coherence image C1 (using Estimator A) slightly.
Thus, the filtering steps using C1 also change, which is why the contrast and difference
of gray-level for Estimator D are not constant, depending on the amplitude filtering. For
comparison with the results of the algorithm, in the first row, the contrast and gray-level
difference using Estimator A and the original amplitudes and phases are also shown.
Table 3 contains the corresponding results for Area 2.

Table 2. Average contrast and difference of coherence, Experiment 1, Area 1. L = Lee-Filter [27],
GM = GammaMap [28], NL = Non-Local SAR filter, non-iterative version [29], Avg = Multi-look in
sliding 7× 7 averaging window, TR = Topographic phase removed, NF = Noise-filtered. Best results
are highlighted in gray.

Amp. Phase A B C D

Contr. Diff. Contr. Diff. Contr. Diff. Contr. Diff.
Or. Or. 0.126 0.195
L TR + NF 0.132 0.226 0.117 0.198 0.122 0.214 0.126 0.221

GM TR + NF 0.164 0.271 0.151 0.249 0.163 0.269 0.142 0.240
NL TR + NF 0.182 0.284 0.176 0.270 0.182 0.284 0.146 0.240
Avg TR + NF 0.181 0.287 0.176 0.276 0.179 0.286 0.146 0.241

Table 3. Average contrast and difference of coherence, Experiment 1, Area 2. Notation see Table 2.

Amp. Phase A B C D

Contr. Diff. Contr. Diff. Contr. Diff. Contr. Diff.
Or. Or. 0.280 0.366
L TR + NF 0.330 0.469 0.228 0.340 0.317 0.465 0.259 0.399

GM TR + NF 0.356 0.480 0.257 0.366 0.353 0.479 0.270 0.397
NL TR + NF 0.358 0.459 0.258 0.342 0.358 0.459 0.270 0.387
Avg TR + NF 0.361 0.470 0.270 0.364 0.359 0.470 0.271 0.390

As can be seen from the tables, for both areas the average contrast and the average
gray-level difference between the unchanged and changed parts of the scene are strongly
enhanced.

5.4. Quantitative Evaluation, Experiment 2

For the second experiment, C1 is calculated using the same coherence estimator as for
CFinal . The resulting contrasts and gray-level differences are shown in Table 4 for Area 1
and in Table 5 for Area 2. For this experiment, in order to compare the effects of the
filtering steps to the original coherences, the coherence for the respective estimator using
the original amplitudes and phases are given in the first row of the tables.

Table 4. Average contrast and difference of coherence, Experiment 2, Area 1. Notation see Table 2.

Amp. Phase A B C D

Contr. Diff. Contr. Diff. Contr. Diff. Contr. Diff.
Or. Or. 0.126 0.195 0.112 0.171 0.097 0.163 0.123 0.186
L TR + NF 0.132 0.226 0.109 0.185 0.109 0.194 0.134 0.228

GM TR + NF 0.164 0.271 0.150 0.235 0.160 0.266 0.134 0.228
NL TR + NF 0.182 0.284 0.154 0.212 0.181 0.284 0.134 0.228
Avg TR+NF 0.181 0.287 0.164 0.238 0.177 0.284 0.134 0.228
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Table 5. Average contrast and difference of coherence, Experiment 2, Area 2. Notation see Table 2.

Amp. Phase A B C D

Contr. Diff. Contr. Diff. Contr. Diff. Contr. Diff.
Or. Or. 0.280 0.366 0.200 0.268 0.237 0.344 0.250 0.326
L TR + NF 0.330 0.469 0.218 0.324 0.310 0.461 0.258 0.381

GM TR + NF 0.356 0.480 0.220 0.296 0.352 0.480 0.258 0.381
NL TR + NF 0.358 0.459 0.195 0.234 0.358 0.459 0.258 0.381
Avg TR + NF 0.361 0.470 0.212 0.261 0.360 0.471 0.258 0.381

5.5. Visual Comparison of Coherence Enhancement

Figure 9 shows the original coherence estimated with Estimator A and the results of
Experiment 1 for the different estimators for visual comparison. For this visualization, Area
1 was chosen because it yields the bigger relative improvement in gray-level difference.
However, the results for Area 2 are similar. Comparing with the coherence estimated from
the original data shown in (a) it can be seen that for all estimators, the examined vehicle
track becomes much more pronounced. Note that for direct visual comparison, all images
shown in Figures 9 and 10 are scaled between 0 and 1.

(a) (b) (c)

(d) (e) (f)

Figure 9. Results of Experiment 1, Area 1. (a) Coherence estimate of Estimator A with original
amplitudes and phases; Best results with respect to gray-level difference using Estimator A for C1

and (b) Estimator A; (c) Estimator B; (e) Estimator C; (f) Estimator D for CFinal ; (d) Common scaling
for all images in the figure.

Figure 10 shows the best results for Experiment 2 and Area 1. Since in this experiment
the coherence images C1 and CFinal are calculated with the same estimator, for each of these
the original coherence image, calculated with the original data, is shown (left) along with
the best result of the filtering (right).

(a) (b)

(c) (d)

Figure 10. Results of Experiment 2, Area 1. Original coherence with original amplitudes and phases
(left), CFinal (right) for (a) Estimator A; (b) Estimator B; (c) Estimator C; (d) Estimator D. The scaling
is the same as in Figure 9.

On average, considering both study areas, the combination of amplitude average
filtering (Avg) and the classical coherence estimator A performs best, both when the
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average contrast and when the average gray-level difference are considered. As for the
wavelet-based approach, being the only investigated non-window-based approach, the
original paper [22] already mentions that the estimator is biased in low-coherence areas,
where it tends to over-estimate coherence, which in this case leads to less contrast.

5.6. Comparison of Track Detection Performance

In this section, the success of the coherence contrast enhancement is demonstrated by
extracting the tracks both from the original coherence, calculated with original amplitudes
and phases, as original image, and from the optimized coherence CFinal . Since the numerical
results, on average over both test areas, showed that average amplitude filtering and the
use of Estimator A provided the best enhancement of the coherence, this setup was used for
the calculation of CFinal , and the corresponding original image was also calculated using
Estimator A. For better comparison, the test scene was enlarged.

Figures 11 and 12 show the line detection results for the vehicle tracks regarding the
original coherence image and the optimized coherence image CFinal , respectively. It can
be observed that the line detection indeed performed better on CFinal than on the original
image, showing in distinctly fewer discontinuities of the lines. Figure 13 depicts three
cutouts of the scene (I.–III.) in more detail, showing the difference on pixel level. The
disparity of the binary images is visualized in (b), with green indicating pixel additions,
and red indicating pixel omissions. The strengthening of the line structure is perceptible
and accordingly the resulting line extractions show distinct improvement.

(a) (b) (c)

Figure 11. Results of track detection on the original image. (a) Coherence image; (b) Binary image
after auto-thresholding; (c) Extracted Steger lines.

(a) (b) (c)

Figure 12. Results of track detection on CFinal . (a) Coherence image; (b) Binary image after auto-
thresholding; (c) Extracted Steger lines.
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original optimized original optimized

I.

II.

III.

(a) (b) (c)

Figure 13. Impact of coherence optimization on auto-thresholding and line detection for three details
(I.–III.) of the scene. (a) Binary image for original and optimized coherence; (b) Difference of the
binary images (green: additions, red: omissions); (c) Line extractions for original and optimized
coherence.

6. Discussion

Interferometric pairs of SAR images acquired at different times, besides classical
amplitude change detection, offer the opportunity to perform CCD, if the time frame
between the acquisitions is not too long, or the imaged area, in general, is very stable.
While amplitude change detection relies on the change in backscattering coefficients, CCD
mainly relies on the properties of the interferometric phase. With this technique, changes
can be detected which are not visible or detectable in the amplitude images. Most CCD
algorithms rely on a threshold to separate the low-coherence changed areas from the
high-coherence unchanged surroundings. For this to work well, the contrast, or gray-level
difference between these parts of the image should be as high as possible.

The algorithm introduced in this paper aims at increasing this contrast, by enhancing
the coherence in the high-coherence parts of the image and leaving the low-coherence parts
largely unchanged. This is achieved by amplitude speckle filtering and a careful noise
filtering of the interferometric phase only in areas of high coherence. For speckle filtering,
a simple average in a sliding window gave the best results. This might be particular to
the situation at hand, where the tracks to be detected are completely located in a rather
homogeneous grassland area. However, average filtering is expected to be a good choice
in any situation where no subtle structures such as dihedral or trihedral corner reflectors
or other textural information need to be preserved. Indeed, one of the quality indices for
speckle filters is the mean preservation index (see [24]). In [24], many classical and some
advanced speckle filters are investigated, and it is found that at least the classical filters
preserve the mean very well, which in turn means that in homogeneous areas they more or
less act as an averaging filter.

The choice of window size is to some extent special to the resolution of the data to
be processed, and to the size of the structures that should be preserved. However, this
parameter can be easily adapted to different situations. For the task at hand, in a preceding
study [18] we found that applying a 7× 7 window gave the best results for our dataset
and the structure of the tracks that are to be detected. The choice of window size then also
influences the choice of number of low-coherence points allowed within high-coherence
areas to perform phase noise filtering in these areas. This parameter controls which parts
of the scene are filtered. The choice of this parameter very much depends on the size and
shape of the changes to be detected. For the task of vehicle track detection demonstrated in
this paper, the shape of the changed areas is expected to be rather elongated, and to occupy
a rather large area of the calculation window. Thus, the value was experimentally set to
11 pixels, which is about 22% of the pixels in the window.

Even though the choices described above are particular to the task at hand and the
resolution and temporal baseline of the dataset, we believe that the general algorithm is
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applicable to a wide range of CCD applications, since it only relies on basic properties of
the coherence estimate, which are common to all interferometric image pairs.

The quantitative results obtained with the help of two different areas of the tracks
show, that the gray-level difference between the tracks and the coherent surroundings
on average could be enhanced by 47% for the weaker track (Area 1) and by 28% for the
more pronounced track (Area 2), which already had a good contrast to its surroundings.
For Area 2, an average gray-level difference of 0.48 could be reached, which is a very
good result, considering that even in perfect conditions, the maximal reachable gray-level
difference for the images used in this paper is around 0.8, as demonstrated in Section 2.5.

The assessment of the gray-level enhancement for the detection of the tracks also
shows that in comparison with the coherence calculated on the original amplitudes and
phases, the lines could be detected much more completely, which demonstrates the success
of the presented algorithm for this task.

7. Conclusions

In this paper, an algorithm to enhance the contrast between low-coherence changed
parts of a scene and the high-coherence unchanged parts was introduced. This algorithm
consists of amplitude speckle filtering, removal of the topographic phase and phase noise
filtering, which is only performed in the high-coherence areas. Furthermore, several
common speckle filters and several coherence estimators were examined for their suitability
for the task of detecting the tracks of several military trucks on a meadow in airborne data
with a resolution in the decimeter range. It was concluded that amplitude average filtering
in combination with the classical formula for coherence estimation in a 7× 7 window gave
the best enhancement of contrast for the tracks and their surroundings. Application of an
automatic threshold, followed by Steger line extraction showed that the vehicle tracks can
be extracted from the optimized coherence much more completely than from the original
coherence estimate, showing the success of the method.

Even though the findings are particular to the situation at hand, we believe that the
general algorithm will be valuable for other coherent change detection tasks, also using
data of different resolutions. Future work could include selective speckle filtering only in
the high-coherence areas, which might further enhance the contrast between the changed
and unchanged parts of the scene, and the application of the algorithm to data of different
resolutions and different tasks to study its performance in these cases. Furthermore, the
results of the line extraction will be further processed to suppress false alarms and to fill
still existing gaps in the tracks so that ultimately, the tracks will be extracted as completely
as possible, to successfully fulfill the coherent change detection task we are aiming at.
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