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Abstract: In recent years, supervised learning-based methods have achieved excellent performance
for hyperspectral image (HSI) classification. However, the collection of training samples with labels
is not only costly but also time-consuming. This fact usually causes the existence of weak supervision,
including incorrect supervision where mislabeled samples exist and incomplete supervision where
unlabeled samples exist. Focusing on the inaccurate supervision and incomplete supervision, the
weakly supervised classification of HSI is investigated in this paper. For inaccurate supervision,
complementary learning (CL) is firstly introduced for HSI classification. Then, a new method, which
is based on selective CL and convolutional neural network (SeCL-CNN), is proposed for classification
with noisy labels. For incomplete supervision, a data augmentation-based method, which combines
mixup and Pseudo-Label (Mix-PL) is proposed. And then, a classification method, which combines
Mix-PL and CL (Mix-PL-CL), is designed aiming at better semi-supervised classification capacity of
HSI. The proposed weakly supervised methods are evaluated on three widely-used hyperspectral
datasets (i.e., Indian Pines, Houston, and Salinas datasets). The obtained results reveal that the pro-
posed methods provide competitive results compared to the state-of-the-art methods. For inaccurate
supervision, the proposed SeCL-CNN has outperformed the state-of-the-art method (i.e., SSDP-CNN)
by 0.92%, 1.84%, and 1.75% in terms of OA on the three datasets, when the noise ratio is 30%. And
for incomplete supervision, the proposed Mix-PL-CL has outperformed the state-of-the-art method
(i.e., AROC-DP) by 1.03%, 0.70%, and 0.82% in terms of OA on the three datasets, with 25 training
samples per class.

Keywords: complementary learning; convolutional neural network (CNN); deep learning; hyper-
spectral image classification; weakly supervised learning

1. Introduction

Hyperspectral remote sensing obtains the spatial and spectral information from objects
with hundreds of narrow spectral bands. The obtained hyperspectral image (HSI) contains
abundant spectral and spatial information, therefore, HSI has a wide variety of applications
such as agriculture [1], mineralogy [2], surveillance [3], physics [4], astronomy [5], chemical
imaging [6], and environmental sciences [7].

In order to fully explore the usage of HSI, many data processing techniques have been
proposed and classification is one of them [8]. The classification of HSI tries to assign a
label to each pixel in the scene and it is the basic of many applications [9]. Most of existing
HSI classification methods belong to supervised classification, where each training sample
has a corresponding label indicating it’s ground truth. It is a very active and hot topic, and
a great many methods have been proposed [10-12].

In the early stage of HSI supervised classification, most of classifiers do not classify
HSI in a deep manner. The typical HSI feature extraction and classification techniques
include support vector machine (SVM), morphological operation, and sparse represen-
tation [13]. For example, support vector machine (SVM) exhibits its low sensitivity to
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high dimensionality, therefore, SVM-based methods have obtained good performance for
HSI classification [14]. In order to extract the spatial features of HSI, many morphologi-
cal operations including morphological profiles (MPs) [15] and extended multi-attribute
profile (EMAP) [16] have been proposed for HSI classification. Another important tech-
nique is sparse representation, which generates a dictionary from inputs. And many sparse
representation-based methods have been successfully explored for HSI classification [17,18].
In recent years, deep learning-based methods, especially convolutional neural networks
(CNN’s), have shown their powerfulness in many research fields including HSI classifica-
tion [19-21]. Deep CNNs (DCNNSs) hierarchically extract discriminate features of HSI and
then obtain better classification performance compared with shallow models [22].

Although DCNN-based methods have achieved great progress in HSI classification,
accurate classification is still challenging in real practice. For example, to proper train
a large number of parameters in DCNNS, sufficient labeled samples are usually needed.
However, the collecting of labeled training samples is expensive, daunting, and time-
consuming. Therefore, the problem of learning with limited labeled samples should be
solved in CNN-based methods [23]. Furthermore, there are incorrect labeled samples when
labeling HSI training samples, which does great harm to classification performance [24].
However, traditional methods did not pay much attention to noisy labels in classification.

It is desirable to develop a new kind of classification mechanism which depends on
less support and weakly supervised classification is a proper method. Weakly supervised
learning covers a wide range of studies including incomplete supervision (i.e., only a subset
of training samples is labeled), inexact supervision (i.e., only coarse-grained labeled), and
inaccurate supervision (i.e., the given labels are not always right which are usually noisy
labels) [25]. For the classification of HSI, there are usually two types of weakly supervised
classification: semi-supervised HSI classification and HSI classification with noisy label.

Most of existing weakly supervised methods in HSI classification require discrim-
inative features [26-28]. However, the handcrafted features limited the classification
performance with weakly supervision. Therefore, we consider using deep CNN in the
presence of weak supervision. Meanwhile, complementary learning (CL) strategy is proper
to prevent CNN from being overfitting to weak supervision [29,30]. In CL, each training
example is supplied with a complementary label. It is an indirect learning method for
training CNN that “input image does not belong to this complementary label.” In this
manner, the noisy-labeled samples can contribute to training CNN by providing the “right”
information.

Due to the advantages of deep CNN-based methods, the property of CL and the
necessary of weak supervision in real practice, weakly supervised deep learning based
on CL is investigated in this study. Two kinds of weakly supervised classification, i.e.,
inaccurate supervision and incomplete supervision are addressed. The main contributions
of this study are summarized as follows.

(1) Complementary learning is introduced for HSI classification for the first time. Com-
pared to traditional supervised learning, complementary learning has the advan-
tages of using less supervised information, which makes it proper for weakly super-
vised classification.

(2) Animproved complementary learning strategy, which is based on selective CL (SeCL),
is proposed for HSI classification with noisy labels. The SeCL uses CL to filter noisy-
labeled samples out and uses selective CL to accelerate the training process.

(3) A method, i.e., Pseudo-Label, combined with mixup (Mix-PL), is proposed for semi-
supervised HSI classification. The usage of Mix-PL makes the training process more
stable and achieves better classification performance.

(4) SeCL is combined with Mix-PL (Mix-PL-CL) for further improving the performance
of HSI semi-supervised classification, owing to the SeCL’s capacity for filtering noisy-
labeled samples.

The rest of this paper is organized as follows. Section 2 presents the related works of
this study. Sections 3 and 4 introduce the proposed inaccurate and incomplete supervision-
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based HSI classification methods, respectively. Section 5 presents comprehensive experi-
ments including data description, results, and analysis. Finally, Section 6 summarizes the
main conclusion of this study.

2. Related Works
2.1. DCNN-Based HSI Classification

In recent years, DCNN-based methods have achieved significant breakthroughs in
HSI classification [31]. Compared to the traditional methods, DCNNs have been used to
automatically learn high-level features from HSI in a hierarchical manner, which have
achieved state-of-the-art performance. CNN-based methods for HSI classification can be
roughly divided into two branches: modified CNN [32,33] and CNN combined with other
machine learning techniques [34,35].

For the modified CNN methods for HSI classification, most works aim to modify the
architecture of CNN for HSI classification. For example, the authors in [36] proposed a
deep contextual CNN with residual learning and multi-scale convolution to explore the
spatial-spectral features of HSI. In [37], CNN was used to extract the pixel-pair features for
following HSI classification. In addition, due to the fact that the input of HSI should be a
3D cube, 3D convolution is used for HSI classification [38].

Many works have combined CNN with other machine learning techniques for HSI
classification, such as transfer learning [39], ensemble learning [40], and few shot learn-
ing [41]. In addition, to fully extract the spatial features of HSI, morphological profiles were
conducted on principal components and then followed by CNN to finish HSI classification
task [42,43]. Very recently, Transformer has been investigated for HSI classification with
CNN to extract spectral-spatial features [44]. However, the above approaches obtained
superior performance heavily depend on enough and correctly labeled samples.

2.2. Weakly Supervised Learning-Based Classification

In weakly supervised learning, two types of weak supervision are often discussed,
including inaccurate and incomplete supervision.

For inaccurate supervision, there are noisy-labeled training samples whose given
labels don’t indicate their ground-truth. Three major strategies dealing with label noise
are widely explored: robust model architecture, robust loss, and sample selection. Noise
adaptation layer is often used in robust model design to estimate the noise transition
matrix [45]. In addition, designing robust losses is also a hot topic for learning with noisy
labels. Ref. [46] combined mean absolute error and cross-entropy loss to design a noise-
robust loss, which achieved good classification performance. Besides, sample selection
is a promising way to cope with label noise. For example, Co-teaching [47] utilized two
DNN s, each DNN selects a certain number of small-loss examples as clean samples and
feeds them to another DNN for further training. And many works based on co-teaching
were proposed for learning with noisy labels [48,49].

For incomplete supervision, there are not enough labeled training samples to train
a good classifier. Semi-supervised learning is a major technique for solving this problem,
which attempts to exploit unlabeled training samples to improve performance without
human intervention [50]. Specifically, graph-based methods mainly focus on the con-
struction of graph with different properties [51]. Ref. [52] introduced a new sparse graph
construction method that integrates manifold constraints on the unknown sparse codes
as a graph regularizer. Apart from graph-based methods, self-training is also a popular
strategy. Ref. [53] proposed Pseudo-Label for semi-supervised learning, which used the
labels predicted for unlabeled samples in the last epoch to train model. The authors in [54]
utilized the features extracted by CNN to conduct label propagation algorithm, and got the
pseudo labels for unlabeled samples.
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2.3. Weakly Supervised Learning-Based HSI Classification

There are usually two types of weakly supervised HSI classification: HSI classification
with noisy label and semi-supervised HSI classification.

For the HSI classification with noisy label approaches, many researchers are mainly
focused on cleaning of mislabeled samples [55,56]. For example, the authors in [57] used
spatial-spectral information extraction method to improve the separability of features,
and then a target detection method was utilized to find noisy-labeled samples and cor-
rect their labels. Ref. [58] designed a noisy labels detection algorithm based on density
peak algorithm. Training samples whose computed local densities below the threshold
were removed from the training set. After cleaning, SVM would be trained on the less
noisy training set. The above works used handcrafted features which would limit the
classification performance, and it is an open question to construct a deep model robust to
noisy labels.

A great many of methods have been proposed for HSI semi-supervised classification,
including graph-based methods [59,60], Self-Organizing Maps [61] and self-training meth-
ods [62,63]. Several studies based on self-training are related to our work. For example,
the authors in [64] utilized simple linear iterative cluster segmentation method to extract
spatial information, and multiple classifiers were assembled to find the most confident
pseudo-labeled samples. Of particular interest, [65] used the cluster results based on deep
features and classification results based on the output of deep model, to determine whether
to select the confident samples or not. The semi-supervised methods form a promising
research direction in HSI classification with application-realistic assumption of limited
availability of labeled samples.

3. CL-Based HSI Classification with Noisy Labels

CNN-based methods are quite powerful for classifying HSI if the labels are all correct.
Unfortunately, the process of labeling training samples with no error is not only time-
consuming but also sometimes impossible. If inaccurate labels are used in training stage,
the classification performance will be severely degraded. In this section, complementary
learning-based method is investigated for HSI classification with noisy labels.

3.1. CL-Based Deep CNN for HSI Classification

In supervised learning, each training sample contains an example (i.e., image) and
its corresponding label. For example, if a classification model receives a 3D hyperspectral
cube of a tree and a label “tree”, the supervised classifier will be trained to acknowledge
that the input cube is a tree.

For complementary learning, every training sample contains an image and a comple-
mentary label that the image does not belong to. For example, the model may receive a 3D
hyperspectral cube of a tree and a label “not soil”. Complementary label is relatively easy
to obtain and it can be used for weakly supervised learning.

In a c-class classification task f: X =Y, x € Xandy € Y= {1,-- - ,c} are the input
image and the corresponding label of a training sample, respectively. The complementary
label ¥ of the sample can be obtained by:

Y = Radom selection from {1,--- ,c}\{y}. 1)

In practice, y, 7 € {0,1}° are the one-hot vector of the training sample. For traditional
supervised deep learning-based classification, cross entropy is a widely-used loss function:

L(f,x, y) = =) feilog py @)

where p is a c-dimension vector outputted by CNN and p, is the k-th element of p, repre-
senting the probability that x belongs to class k. Cross entropy loss forces the output of
model to meet the true distribution. It works well if the labels are all correct.
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For CL-based learning, cross entropy loss is calculated as follows:

L(f,x, §) = =) i1Txlog(1 — py)- 3)

Equation (3) enables the probability value of the given complementary label (i.e.,
) to be optimized towards zero, resulting in an increase in the probability values of
other classes.

The framework of CL-based deep CNN for HSI classification is shown in Figure 1. In
the figure, a neighboring region of the pixel to be classified is obtained as input. Then, a
well-designed CNN is used for feature extraction and softmax is used to finish the HSI
classification task. In the training procedure, the complementary labels for training samples
are firstly obtained by Equation (1), and then CL-based loss, i.e., the loss in Equation (3), is
used to train the parameters in CNN based on back-propagation.

Samples CNN _Label_
; >

> »> > > o

Fully
Connected
HSI » Classification Map

777777777777 Original Label

Conv. BN Pooling ReLU @  Complementary Label

Figure 1. Complementary learning-based CNN for HSI classification.

3.2. CL-Based HSI Classification with Noisy Labels

Complementary learning can reduce the probability of wrong labeled training samples
and therefore it can prevent the deep learning methods from overfitting to noisy data,
which is useful for a supervised classification task with noisy labels.

Figure 2 demonstrates the proposed CL-based HSI classification method with noisy
labels (SeCL-CNN). Due to the powerfulness and good performance, CNN is used as the
basis of the classification system.

Sample: SeCL-CNN CNN

T

H | IClean

° i ;

g > > » | L > >

8 !
| » i (g . Classification Map
. 4 L | Discard

°
Conv. BN Pooling ReLU  Original Label Complementary Label

Figure 2. The framework of the complementary learning-based HSI classification with noisy labels.

In order to reduce the computational complexity of HSI classification, extended mor-
phological profile (EMP) [15] is used as a pre-processing step of CL-CNN-based classification.

In general, there are two stages in the whole method: detection stage using SeCL, and
classification stage using CNN. In the detection stage, the proposed SeCL firstly uses the
CL strategy to train a CNN by minimizing Equation (3). Then, the CNN is trained using
selective CL strategy, which only select the samples whose p, are larger than 1/c, for faster
and better convergence. In the classification stage, the training samples whose p, are larger
than 0.5 is selected, and then they are treated as clean samples to train a classifier (i.e.,
CNN) using Equation (2).
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In a nutshell, the overall flowchart of the proposed SeCL-CNN is shown in Algorithm 1.
Steps 4 and 5 mean the procedure of complementary learning and selective complementary
learning, respectively. Then step 6 selects clean-label samples from training set. And steps
7-9 use selected samples to train the CNN model for final classification.

Algorithm 1 SeCL-CNN for HSI classification with noisy labels

1. Begin
2. Input: Noisy training samples (x,y) € (X,Y), where x is a 3D cube from EMPs
of HSI and y is the corresponding label
3. Initialize network f
4. Fort=1toT; do:
Batch (Xp, Yp) = sample (x, y) from (X,Y)
For each x € X3 do:
Get complementary label i using Equation (1)
Calculate £(f,x, ¥) by Equation (3)
Update f by minimizing Y yex, £(f, x, ¥)
5. Fort=1to T, do:
Batch (Xp, Y) = sample (x, y) from (X, Y), if p, > 1/c
For each x € X3 do:
Get complementary label i using Equation (1)
Calculate L(f,x, ¥) by Equation (3)
Update f by minimizing ) yex, £(f, %, )
6. (Xcteans Yelean) = sample (x, y) from (X, Y), if p,>05
Initialize network f
8. Fort=1toT; do:
Batch (Xg, Yp) = sample (x, y) from (Xcieqn, Yerean)
For each x € X3 do:
Calculate L(f,x, y) by Equation (2)
Update f by minimizing }_ vex, £(f, %, y)
9.  Output: network f and filtered dataset (X je0,1, Yeiean)
10. End

N

4. CL-Based Semi-Supervised HSI Classification

The collection of labeled training samples is not only costly but also time-consuming.
In addition, there are tremendous unlabeled samples. How to effectively utilize both
the labeled and unlabeled samples is an urgent task in HSI classification. In this section,
a semi-supervised HSI classification method, which combines complementary learning,
Pseudo-Label, and mixup, is proposed for the task.

Incomplete supervised HSI classification concerns the situation with a small amount
of labeled data, which is insufficient to train a classifier well, and a large number of
unlabeled data. For incomplete supervision, the task is to learn f = X — Y from labeled
and unlabeled training set. The labeled training dataset D; and unlabeled D, can be
denoted as:

Dy = {(x1,y1), (x2,v2), -, (xp,y1), -+, (Xm, Ym) }, 4)
D, = {xm+1/xm+2/' s Xus s Xmdn } (5)

There are m samples with cubes x; and their corresponding labels y; (I = 1 : m) in labeled
training dataset. Furthermore, D, has n unlabeled training samples x,, (u = m +1:m+n).

4.1. Pseudo-Label for HSI Semi-Supervised Classification

Pseudo-Label (PL) is a simple but efficient method which can exploit both labeled and
unlabeled samples. It just picks up the class which has the maximum predicted probability,
and uses them as if they were true labels.
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In PL, a CNN g is trained in a supervised fashion with labeled and unlabeled data
simultaneously. For an unlabeled samples x,, in the current training epoch, its pseudo label
7. has been obtained by

Ju = &(xu), (6)

in the last epoch. And then #,, is used to calculate the cross entropy loss for unlabeled samples.
The overall loss function is

£toifal = Ls+ p(t) * Ly, (7)
1
Ls = EZleBlﬁ(gfxlryl)r ®)
1 .
Eu = EZueBzﬁ(grxul ]/u)/ (9)

where £; and £, are supervised loss generated by labeled samples and unsupervised loss
generated by unlabeled samples, respectively. And p(t) is a balancing coefficient, varying
with epoch represented by ¢, to weight the importance of unsupervised loss. B; and B, are
batch-size for each kind of loss. £(-) is the cross-entropy loss defined by Equation (2).

4.2. Combining Mixup and Pseudo-Label for HSI Semi-Supervised Classification

As is introduced in Section 4.1, PL trains a CNN by using pseudo labels as if they were
true labels. In order to alleviate the negative impact caused by incorrect pseudo labels and
regularize the model for better convergence, PL combined with mixup [66], abbreviated as
Mix-PL, is proposed for HSI semi-supervised classification.

Given a mixup operation:

X=A"+(1-A)x"
{ y=M+(1-A)y" ’ (10

where (¥, y') and (x”, y”) are randomly selected from training set while using correspond-
ing one-hot label vector. The decision boundary is pushed by enforcing the prediction
model to behave linearly in-between training examples. The parameter A ~ Beta(x, «),
with & € (0,00). Beta(w, «) represents the Beta distribution in probability theory. And the
hyper parameter « controls the strength of interpolation for mixup.

From Equation (10), it can be seen that labels are needed for mixup. Here we
extend mixup to the semi-supervised learning setting by using the pseudo label for
unlabeled samples:

{ Xy = Axy, + (1= A)xy, 1)
yu = )\f/ul + (1 - )\)yuz '
where x,, x,, are sampled from unlabeled dataset, and #,, 7},,, are corresponding one-hot

pseudo labels which are generated by Equation (6).
The unsupervised loss can be calculated by:

1 ~ 4
Lmu - Bi2 ZuEBQ»C(g/xu/ yu>/ (12)

where L(-) is the cross entropy loss and ¥, #,, are generated by Equation (11). Ly, is
revised as:

Etotal =L+ P(t) * Lo (13)

4.3. Combining CL and Mix-PL for HSI Semi-Supervised Classification

Considering the excellent performance in the presence of label noise, we further
combine Mix-PL with SeCL to filter out some incorrect labels and propose Mix-PL-CL
method based on self-training.
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Figure 3 illustrates the proposed Mix-PL-CL for semi-supervised HSI classification.
Specifically, we firstly train a CNN denoted by g using Mix-PL. And then the classi-
fier is used to make predictions on abundant unlabeled samples. This process can be

described by:
Ju=g(xy), u=m+1:m+n, (14)
Dyoisy = {(x1,¥1), (x2,2),+ ++, (Xmsn, Dmtn) }- (15)
,,,,,,,,,, MixPL . . SeCLCNN
> > > > >
1 % Classification Map
e ———— e \*—‘**’/
[ ]
Conv. BN Pooling ReLU  Original Label Complementary Label

Figure 3. The framework of the complementary learning-based HSI semi-supervised classification.

The predicted pseudo-labels are not absolutely correct, so D,y;s, is used here to denote
the labeled and pseudo-labeled samples. We would like to select pseudo-labeled samples
that are most likely to be correct, treat them as truly labeled, and add them to the labeled
training set. This can be accomplished by SeCL-CNN, which has been introduced in
previous section:

Dy jeqn = select (Dnoisy)/ (16)

where select(-) means using SeCL to choose less noisy samples.

Iterating this procedure is an alternative way of improving the quality of pseudo-labels
and finally obtain better classification performance.

Algorithm 2 shows the overall process of the proposed semi-supervised classifica-
tion method.

Algorithm 2 Mix-PL-CL for HSI semi-supervised classification

1. Begin
2. Input: labeled training set D;, unlabeled training set D,
3. Initialize network g
4. Fori=1to Ty do:
5 Fort=1to Ts do:
For each x,, € D, do:
Ju = 8(xu)
Dy = {(xu, Ju) }Z:nriﬂ
Sample {(xl,yl)}ﬁl from D,
Calculate supervised loss £s by Equation (8)
Sample {(xm,]?u])}fle from D,

{(u ) by = permutation ({ (xu,, fuy) }71)
Get { (¥4, Ju) 52:1 by Equation (11)
Calculate unsupervised loss L, by Equation (12)
Update g by minimizing Equation (13)

6. For each x,, € D, do:
Ju = g(xu)

7. Dyoisy = {(x1,y1), (x2,¥2),* *+ , (¥m+n, Gmtn) }

8. D; = D¢jeqn = select (Dnoisy>r Dy = Dypisy — Dy

9. Output: network g

10. End
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5. Results
5.1. Datasets Description

To evaluate the performance of the proposed methods, three widely-used hyper-
spectral datasets, including Indian Pines, Houston, Salinas Valley, were employed in the
experiments, which are described as follows.

(1) Indian Pines: This dataset was acquired by the Airborne Visible/Infrared Imaging
Spectrometer sensor in June 1992, covering the agricultural fields in Indian, USA. The scene
consists of 145 x 145 pixels with a spatial resolution of 20 m x 20 m and has 220 bands
covering the range from 400 nm to 2500 nm. In this paper, 20 low signal to noise ratio (SNK)
bands were removed and a total of 200 bands were reserved for classification. Figure 4
illustrated the false color composite images and corresponding ground-truth map of the
Indian Pines dataset. The numbers of samples for each class were listed in Table 1.

(b)

Figure 4. Indian Pines dataset: (a) false color map; (b) ground-truth map.

Table 1. Land cover classes and numbers of samples in the Indian Pines dataset.

No. Color Class Name Number
1 Alfalfa 46
2 [ | Corn-notill 1428
3 [ Corn-mintill 830
4 Corn 237
5 | Grass-pasture 483
6 [ | Grass-trees 730
7 | Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 I Soybean-notill 972
11 Soybean-mintill 2455
12 | Soybean-clean 593
13 Wheat 205
14 [ | Woods 1265
15 Buildings-Grass-Trees 386
16 Stone-Steel-Towers 93
Total 10,249

(2) Houston: The Houston dataset was acquired over the Houston University campus
and its neighboring area, by an ITRES-CASI 1500 sensor. It had been used in the 2013 GRSS
Data Fusion Contest. The dataset contains 144 spectral bands ranging from 380 nm to 1050
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nm region, and 349 x 1905 pixels with a spatial resolution of 2.5 m. This dataset is an urban
dataset whose most of the land covers are man-made objects. It contains fifteen classes.
Figure 5 illustrated the false color composite images and corresponding ground-truth maps.
The numbers of samples for each class were listed in Table 2.

(b)

Figure 5. Houston dataset: (a) false color map; (b) ground-truth map.

Table 2. Land cover classes and numbers of samples in the Houston dataset.

No. Color Class Name Number
1 Grass-healthy 1251
2 [ ] Grass-stressed 1254
3 i Grass-synthetic 697
4 Tree 1244
5 | Soil 1242
6 || Water 325
7 [ Residential 1268
8 Commercial 1244
9 Road 1252
10 [ Highway 1227
11 Railway 1235
12 [ | Parking-lot-1 1233
13 Parking-lot-2 469
14 | Tennis-court 428
15 Running-track 660

Total 15,029

(3) Salinas: This dataset was acquired by the 224-band AVIRIS sensor, capturing an
area over Salinas Valley, CA, USA. The dataset consists of 204 spectral channels after the
removal of 20 water absorption bands (108-112, 154-167, and 224), ranging from 400 to
2500 nm. 512 x 217 pixels are included with a spatial resolution of 3.7 m. In this dataset,
there are approximately 54,129 labeled pixels with 16 classes sampled from the ground-
truth map. Figure 6 demonstrated the false color composite images and corresponding
ground-truth maps. The numbers of samples for each class were listed in Table 3.
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Table 3. Land cover classes and numbers of samples in the Salinas dataset.

(a)

(b)

Figure 6. Salinas dataset: (a) false color map; (b) ground-truth map.

No. Color Class Name Number
1 Brocoli-green-weeds-1 2009
2 [ ] Brocoli-green-weeds-2 3726
3 I Fallow 1976
4 Fallow-rough-plow 1394
5 [ | Fallow-smooth 2678
6 I Stubble 3959
7 | Celery 3579
8 Grapes-untrained 11,271
9 Soil-vineyard-develop 6203

10 [ | Corn-senesced-green-weeds 3278
11 Lettuce-romaine-4wk 1068
12 [ | Lettuce-romaine-5wk 1927
13 Lettuce-romaine-6wk 916
14 [ | Lettuce-romaine-7wk 1070
15 Vineyard-untrained 7268
16 Vineyard-vertical-trellis 1807
Total 54,129

5.2. Experimental Setup

For the three datasets, the samples were divided into two subsets which contained the
training and testing samples, respectively.
(1) Experimental Setup for Classification with Noisy Labels: In the training process

with noisy labels, 30 samples were chosen randomly for each class and only 15 labeled
samples were chosen if the corresponding class had less than 30 samples.

For each training sample x;, the potential noisy label y; could be generated as follows:

p(yi = klyi = j,xi)) = p(yi = klyi = j) = njx,

(17)
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o 1-9y, j=k

c-1/
where y; represented the correct label, whose value was j, and it had the probability 7 to
become the noisy label k. From Equation (17), one could see that the noise added in labels
was independent of individual samples. And Equation (18) showed that the probability
of label transition from one class to the other was constant. This type of label noise was
called symmetric noise. Following most related works, we used symmetric label noise in
the experiments.

In the experiments, the general noise ratio # was set to be 0.1, 0.2, and 0.3 for exploring
the performance of different leraning algorithms.

As a noisy label detection method, the proposed SeCL-CNN was compared with
density peak based mehtods including DP, KSDP [58], and SSDP [56]. And a method with
noise-robust loss function, denoted as Lq-CNN, was used for comparison [46]. Besides,
traditional classification methods were also conducted, such as SVM, EMP-SVM, CNN, and
MCNN-CP [67]. Among these methods, SVM, EMP-SVM, CNN, MCNN-CP, and CNN-Lq
were end-to-end classification methods, while DP, KSDP, SSDP, and SeCL-CNN would filter
out noisy samples firstly, and then use the rest samples to train CNNs for classification.

In SVM-based methods, we adopted grid search together with five-fold cross valida-
tion to find the proper C and y (C =107%,103,...,10%,4 = 107%,1073,...,10%). When
using EMP, the first four principle components (PCs) were used. For each PC, three open-
ings and closings by reconstruction were conducted with a circular structuring element
whose initial size was four and step size increment was two.

The architecture of the CNN used in the experiments was shown in Table 4. It con-
tained three convolutional layers with rectified linear unit (ReLU), three batch normaliza-
tion layers, and two pooling layers. In order to use spatial information, the 27 x 27 image
regions corresponding to a center pixel were fed to the 2D CNN.

Table 4. Architecture of CNN.

No. Convolution ReLU Pooling Padding Stride BN
1 4x4x32 YES 2x2 NO 1 YES
2 5x5x32 YES 2x2 NO 1 YES
3 4x4x64 YES NO NO 1 YES

For CNN and Lg-CNN, the initial learning rates were set to 0.01, and it was divided
by 10 every 50 epochs. The number of epochs for training was set to 150.

The initial learning rate for SeCL-CNN was set to 0.01, and it was divided by 10
at the 400th and 800th epochs. The complementary learning was conducted in the first
800 epochs, followed by selective complementary learning in the next 1000 epochs. The
last 200 epochs were used for conducting traditional learning. The batch-size of the deep
learning-based methods was set to 128.

In the experiments, the classification performance was mainly evaluated using overall
accuracy (OA), average accuracy (AA), and Kappa coefficient (K). Besides, the area under
ROC curve (AUC) was also adopted to evaluate the detection ability of different methods.
Experiments were repeated ten times.

(2) Experimental Setup for Semi-Supervised Classification: In semi-supervised clas-
sification, 8000 samples were chosen randomly as the unlabeled samples and they were
also the testing samples. 20, 25, and 30 training samples (denoted by N) for each class were
selected as the labeled training set for exploring the classification performance of different
methods, but only 15 labeled examples were chosen if the corresponding class has less than
30 samples.

The proposed Mix-PL-CL method was compared with popular semi-supervised clas-
sification methods, such as label propagation (LP), Laplacian support vector machine



Remote Sens. 2021, 13, 5009

13 of 26

(LapSVM), EMP-LapSVM, pseudo-label (PL) AROC-DP [65], and proposed Mix-PL. Be-
sides, supervised methods like EMP-CNN and MCNN-CP were also considered.

In LapSVM based methods, we adopted grid search method with five-fold cross
validation to find the proper 74 and 7 (74 = 1075,1074,...,10!,9y = 1075,107%,... 101).
Besides, a one-against-one multiclass strategy which involved a parallel architecture con-
sisting of c(c — 1) /2 different SVMs was adopted, where c is the number of classes. In the
graph-based method like Label Propagation, we used a RBF kernel to construct a graph,
and the clamping factor « was set to be 0.2, which represented that the 80 percent of original
label distribution was always reserved and it changed the confidence of the distribution
within 20 percent. The parameter of the kernel was chosen from { 1073,...,10%). LP iterated
on a modified version of the original graph and normalizes the edge weights by computing
the normalized graph Laplacian matrix, besides, it minimized a loss function that has
regularization properties to make classification performance robust against noise.

When training g, the initial learning rate was set to 0.001, and it was divided by
ten after 60 epochs. The number of epochs, denoted by Ts, was set to 450. The hyper
parameters « used in mixup was fixed to one and balancing coefficient p(t) was obtained
by Equation (19). In the experiments, ¢; and ¢, were set to be 120 and 300, respectively. And
Pend Was set to be two. Figure 7 illustrated the p(f) set in the experiments. The influence
of p¢ng and & would analyzed later. The number of iterations, denoted by Ty, was set to
be two. That meant Mix-PL was used twice and CL-CNN was used once in the iteration.
Ty would have a great impact on classification performance, and it would be analyzed in
the experiments.

0 t <ty
t—t
p(t) = ﬁpend h<t<t, (19)
Pend t> 1

2.001
175
1.50 1
1251
< 1.00
0.75 1
0.50 1
0.25 1

0.00 1

0 100 200 300 400
t /epoch

Figure 7. Balancing coefficient p(t).

5.3. Results of HSI Classification with Noisy Labels

(1) Training Process of CNN Using CE Loss in the Presence of Label Noise: Gener-
ally, CNNs were capable of memorizing completely random labels and exhibited poor
generalization capability in the presence of noisy labels.

Figures 8-10 showed the distribution of training data in different learning stages with
30% label noise, according to probability p, . From Figures 8a, 9a and 10a, one could see
that a large number of clean samples together with few noisy samples lay in the right of the
graphs. This meant that they were firstly learned by the deep model in the early training
stage. With training going on, noisy samples would move toward to the right, indicating
that the model was becoming overfitting to noisy samples, just like Figures 8b, 9b and 10b
showed. When the training was completed, most of training samples had large values
of p,, meaning that the model had memorized most of the noisy training set, just like
Figures 8c, 9c and 10c showed.
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Figure 8. The distribution of Indian Pines training data in different learning stages with 30% label noise, according to

probability p, . (a) early stage of learning; (b) middle stage of learning; (c) late stage of learning.
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Figure 10. The distribution of Salinas training data in different learning stages with 30% label noise, according to

probability p, . (a) early stage of learning; (b) middle stage of learning; (c) late stage of learning.

(2) Training Process of CNN Using CL in the Presence of Label Noise: Figures 11-13
showed the distribution of training data using different learning methods with 30% label
noise, according to probability p, Figures 11a, 12a, 13a and 11b, 12b, 13b respectively
showed the histogram of the training data after traditional learning (using CE) and CL.
Different from the fact that the probability p, of both clean and noisy samples seemed large
in PL, the probability of noisy samples was much lower than those of clean samples in
CL, indicating the CL’s capability to prevent the CNN from overfitting to noisy samples.
After CL, noisy samples and clean samples could be separated, which could be seen in
Figures 11b, 12b and 13b clearly.
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Figure 11. The distribution of Indian Pines training data in different learning strategies with 30% label noise, according to

probability p, . (a) traditional learning; (b) complementary learning; (c) selective complementary learning following CL;

(d) traditional learning using samples whose p, > 0.5.
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Figure 12. The distribution of Houston training data in different learning strategies with 30% label noise, according to

probability p, . (a) traditional learning; (b) complementary learning; (c) selective complementary learning following CL;

(d) traditional learning using samples whose p, > 0.5.
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Figure 13. The distribution of Salinas training data in different learning strategies with 30% label noise, according to

probability Py (a) traditional learning; (b) complementary learning; (c) selective complementary learning following CL;

(d) traditional learning using samples whose p, > 0.5.

However, there was still an overlap between the distributions of clean and noisy
samples, which could be seen in Figures 11b, 12b and 13b. And most of noisy samples
had the output p, less than 1/c, which was align with cognition. Figures 11c, 12c and 13c
showed that there was smaller overlap after training the CNN only with the data having
p, over 1/c. Using thresholds, the samples involved in training tended to be less noisy
than before, and thus improved the convergence of the CNN.

Figures 11c, 12c and 13c showed that noisy samples could be detected by judging if
the values of p, were smaller than 0.5 for simplicity and universality, which meant samples
having p, less than 0.5 would likely to be noisy samples. After training CNN only with
samples having probability p, larger than 0.5, almost all clean samples exhibited high p, ,
which could be seen from Figures 11d, 12d and 13d.

(3) Detection Performance Compared with Other Methods: Table 5 showed the AUC
of different noisy labels detection methods. From Table 5, one could see the proposed CL
performed best on three datasets, compared with DP, KSDP, and SSDP. And it could work
well in noisy datasets with different noise ratios. The results showed that the proposed
method had better detection ability.



Remote Sens. 2021, 13, 5009

16 of 26

(4) Classification Performance Compared with Other Methods: Tables 6-8 showed the
classification results of different methods on three datasets. And the detailed classification
results with 30% label noise could be seen in Tables A1-A3, Appendix A.

Table 5. AUC of detection results on the three datasets.

Dataset

10% 20% 30%

DP KSDP SSDP SeCL DP KSDP SSDP SeCL DP KSDP SSDP SeCL

Indian Pines
Houston
Salinas

09027 0
09130 0
0.9679 0

9281 09411 09756 0.8994 09277 0.9391 0.9778 0.8988 0.9248 0.9386 0.9672
9262 09353 09503 0.9007 09123 0.9285 0.9449 0.8875 0.8932 09124 0.9404
9786 09861 09951 09681 09776 0.9844 0.9956 0.9678 0.9751 0.9806 0.9955

Table 6. Testing data classification results (mean =+ standard deviation) on the Indian Pines dataset.

Noise Ratio RBF-SVM EMP-SVM CNN MCNN-CP CNN-Lq DP-CNN KSDP-CNN SSDP-CNN SeCL-CNN
OA (%) 62.254+2.65 74524252 7684+2.04 83.94+176 8251+1.85 79.55+1.72 80.01+1.74 81.86+1.68 82.70 £ 1.96

10% AA (%) 7350+£151 83.17+£1.13 8332+096 87.77 £1.65 89.59+1.63 8620+157 86.60+1.03 8825+167 89.36+1.73
Kx100 57574285 71.234+273 73884223  81.81+1.95 80.18+2.06 76.88+1.88 77.40+1.87 79.45+1.92 80.35 £2.20

OA (%) 59.55+1.99 71.16+270 67.45+252 7691 £ 216 7819+261 72.81+£456 7679259  78.81 £1.94 79.98 £2.40

20% AA (%) 7098 £171 8029+£191 7319+£201 7998+1.07 8526+144 8266+1.86 8479+0.78  86.11 & 1.44 88.04 +1.54
Kx 100 8458+195 67484282 6348+270 73.97+230 75.33+283 69.43+499 73794+279 7635+212 77.28 £2.63

OA (%) 55.384+4.53 67.11+3.54 5734+287 68.16+327 6636+514 7043+282 7222+264 72.88+247  73.90+294

30% AA (%) 6690277 76.60+£219 6348 +1.97 72.21 £2.06 7532+£3.01 7827+£1.68 81.00+£173 82.62 124 83.44 £ 2.07
Kx 100 4994+453 6292+370 52.56+3.00 64.30+ 3.48 6230£5.51 66.72+3.01 68.66+284 69.86 267 7051+3.21

Table 7. Testing data classification results (mean =+ standard deviation) on the Houston dataset.

Noise Ratio RBF-SVM EMP-SVM CNN MCNN-CP CNN-Lq DP-CNN KSDP-CNN SSDP-CNN SeCL-CNN
OA (%) 82.81+214 8565+191 8203+142 88.01 £1.59 86.47 + 1.62 8496+142 85.76 £1.04 86.29 + 1.37 86.95 +2.18

10% AA (%) 8296+1.81 86.11+1.71 82944143 89.09+135 87.82 £1.45 86.26 :1.38  87.02 + 0.96 88.25 £ 1.45 88.42 +£2.04
Kx100 81404231 84484206 80.60+1.54 87.05+172 85.38 £1.75 83.76 153  84.62+1.12 79.45 £ 1.89 85.89 +2.36

OA (%) 7992+£085 8226+0.85 71.29+0.92 8213 +2.46 81.97 £ 1.50 80.00+2.64 8125+ 1.60 82.43 +£1.96 83.68 +2.57

20% AA (%) 80.65+0.70 83.09+0.80 72.17+£095  83.18 £ 2.49 83.02 £ 1.60 81.55 £2.31 82.66 + 1.11 83.91 £ 1.88 85.01 £ 2.58
Kx100 78294092 80.814+0.92 69.03+0.99  80.70 & 2.66 80.52 £ 1.63 7841£285 7974+ 171 81.15 £2.03 82.37 £2.77

OA (%) 7705£191 7888+£1.62 6205+£196 7558 £ 2.63 7444 + 212 7525+£236  76.65 £2.27 78.16 £ 2.00 80.00 £2.51

30% AA (%) 7787+£133 7996+154 6233+192  76.02 £+ 233 7521 +2.28 7693 +£222 7836 £2.26 79.49 £1.49 81.41+245
Kx100 75184206 7716+175 59.094+211  73.63 +2.84 7241 +229 7329+253 7477 £2.93 76.40 £2.13 7839 +£2.72

Table 8. Testing data classification results (mean + standard deviation) on the Salinas dataset.

Noise Ratio RBF-SVM EMP-SVM CNN MCNN-CP CNN-Lq DP-CNN KSDP-CNN  SSDP-CNN SeCL-CNN
OA (%) 87.014+1.92 90.094+0.89 88.06+2.03  92.68 +1.28 92144229 9090+1.86 91.80+2.64 9224 +256 92.57 £2.45

10% AA (%) 9261093 9445+046 92.06+114 94.34 £ 0.96 96.10+0.89 9517+0.54 9544+125 95.86 = 1.67 96.39 £+ 1.26

K x 100 85574209 88974098 86784224  91.62+ 142 91.284+253 89.914+2.04 90914291 91.324+282 91.74 £2.70

OA (%) 85.80+2.17 88224201 81.36+3.04 88.43+212 91.73+210 89.924+2.04 90.62+178  91.31+1.80 92.13 £ 1.62

20% AA (%) 91.794+0.86 93334+0.98 8501+1.80 89.85+2.03 95.69+1.26 94424098 94.56+1.31 95.01 £1.21 95.88 £ 0.75

K x 100 84234234 86.912.21 7939 £332 87.15+£235 90.81 £2.34 88.81+£224 8957199 90.35 £2.03 91.27 £1.79

OA (%) 8559 £2.05 86.85+2.02 7236+230 84.53 £2.79 89.99+1.92 87.10£238 8835+£332 89.76 £ 1.67 91.51 £2.31

30% AA (%) 91.244+1.09 9223+135 75444124 8527 +295 93.77+157 90.794+2.01 9225+1.17  92.86 +1.40 95.07 £1.48

K x 100 83984222 85384221 69.544+248  82.84 +3.07 88.89+2.13 8570+2.63 87.09+253  88.62+1.85 90.57 £ 2.55

From these results, one could see that though CNN-based models performed well
in traditional HSI classification tasks. However, they exhibited poor generalization capa-
bility when noisy labels existed. For example, CNN and MCNN-CP achieved excellent
classification results with non-noisy labels or less noisy labels, compared with EMP-SVM.
When the noise ratio was 10%, MCNN-CP maintained highest classification results. But
CNN-based models’ OA, AA, and K decreased drastically as the noise ratio increased. And
they couldn’t perform as well as EMP-SVM in the case of higher noise ratio. It behaved
the same on the other two datasets. One could also see that the accuracies of EMP-SVM
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didn’t decrease as drastically as CNN when the noise ratio increased, but EMP-SVM’s
classification performance was limited by handcrafted features.

The proposed SeCL-CNN outperformed other methods in terms of OA, AA, and K.
For example, in Table 6, one could see that the OA of SeCL-CNN was 73.90% when the
noise ratio was 30%. This accuracy was higher than the ones obtained by the other methods.
SeCL-CNN outperformed SSDP-CNN by 1.02%, 0.82%, and 0.0065 in terms of OA, AA, and
K, respectively. When noise ratio was 10% and 20%, SeCL-CNN gained better classification
results than compared methods in terms of OA, AA and K, except that the accuracies
were slightly lower than the ones obtained by MCNN-CP. However, our proposed method
mainly focused on the cleaning of noisy-labeled samples and could be combined with any
classifier, including MCNN-CP, to complete the final classification.

(5) Ablation Studies: Table 9 showed the results obtained by ablation studies, when the
noise ratio was 30%. From Table 9, one could see that without EMP, the OA decreased 1.67%,
1.38% and 1.29 on the three datasets, respectively. And the AUC decreased 0.0146, 0.0058,
0.0028. It showed that the use of EMP enhanced the capacity of noisy labels detection
and finally improved the classification performance. And it was similar to selective CL.
Without selective CL, the AUC and OA both decreased, which meant the importance of
selective CL.

Table 9. Ablation studies for inaccurate supervision on the three datasets (30%label noise).

Dataset Metric SeCL-CNN Without EMP Without Selective CL
Indi OA (%) 73.90 72.23 72.98
ndian AUC 0.9672 0.9526 0.9559
H OA (%) 80.00 78.62 79.07
ouston AUC 0.9404 0.9346 0.9373
Sali OA (%) 91.51 90.20 90.62
alinas AUC 0.9955 0.9927 0.9915

5.4. Results of HSI Semi-Supervised Classification

(1) Classification Performance Compared with Other Methods: Tables 10-12 showed
the classification results of different supervised and semi-supervised classification methods
on the three datasets. And the detailed semi-supervised classification results with 25
labeled training samples per class are reported in Tables A4-A6, Appendix A.

From Table 10, one could see that the proposed Mix-PL-CL achieved the best per-
formance compared with other methods. Mix-PL-CL outperformed AROC-DP by 1.03%,
0.19%, and 0.00115 in terms of OA, AA, and K when the number of samples per class
was 25, and the accuracies of each class obtained by Mix-PL-CL demonstrated good per-
formance compared with other compared methods, including supervised methods like
MCNN-CP. Besides, the accuracies gained by different classification methods increased
as the number of labeled training samples per class grew, and the proposed methods, i.e.,
Mix-PL and Mix-PL-CL, still achieved higher classification accuracies, which showed the
superior classification ability.

Table 11 showed classification results of different methods on Houston dataset. The
usage of mixup helped PL improved classification accuracies. And, Mix-PL-CL achieved
better classification results when compared with Mix-PL, which showed the importance of
CL. On Houston dataset, Mix-PL-CL outperformed AROC-DP by 0.70%, 0.55%, and 0.0086
in terms of OA, AA and K when the number of samples per class was 25. And the highest
classification accuracies were obtained by the proposed method in the case of different
numbers of labeled training samples.

From Table 12, one could see that the proposed Mix-PL-CL still achieved superior
performance on Salinas dataset with different numbers of labeled training samples.
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Table 10. Testing data classification results (mean =+ standard deviation) on the Indian Pines dataset.

N EMP-CNN  MCNN-CP LP LapSVM EMP-LapSVM PL AROC-DP Mix-PL Mix-PL-CL
OA (%) 88.67+199 89.97+143 55964215 59.02 +1.89 84.10 + 2.58 89.784+2.00 90.73+1.68 91.65+211 9254 +1.93
20 AA (%)  93.00+1.01 9476+076 6693+156 70.27 + 1.44 89.86 & 1.29 9399 +1.08 9447-+0.87 9448 +121 9467 +121
K x100 87084224 8811+1.60 5045+228 53.89 +2.05 81.96 + 2.92 88.36+226 89.45+1.88 9048 +2.39  91.45+220
OA (%) 92.83+145 93.88+146 59494125 63524 1.07 86.55 =+ 2.39 9356 +157 93.69+1.80 9441+1.39  94.82+ 132
30 AA (%) 95.84+0.75 9635+0.56 6847 +0.81 73.38 £2.11 91.37 £1.37 96.06 £0.74  96.11 £0.85 96.33 + 0.58 96.72 + 0.64
Kx100 91.824+1.64 9299+1.66 5428+130 58.89 +1.19 84.70 + 2.68 9263+177 92464204 9357+156  94.06 + 1.50
OA (%) 91784222 9274+149 58124133 61.27 +127 85.00 + 2.34 92874230 9230+172 93124328  93.33 +£229
25 AA (%) 9495+1.20 9619+074 67864127  71.60 + 1.64 90.57 4+ 1.43 95354126 95554077 9537+127 9574+ 1.11
Kx100 90604252 91.71+1.69 5273+140 56.26 + 1.46 83.07 + 2.61 91.83+262 91204195 9212+271 9235+ 261
Table 11. Testing data classification results (mean + standard deviation) on the Houston dataset.
N EMP-CNN  MCNN-CP LP LapSVM EMP-LapSVM PL AROC-DP Mix-PL Mix-PL-CL
OA (%) 9048 +£097 9253+127 78.21+£0.99 80.63 + 1.06 85.63 + 1.53 91.52£098 9290 £0.86 92.89 +1.12 93.39 + 1.06
20 AA (%) 91.38+0.81 93.66+1.10 7891+0.83 81.12 +£1.21 86.75 + 1.37 92.15+0.84 93.82+0.73 93.44 +0.92 94.29 + 0.87
Kx100 89.714+1.05 91.93+138 7645+1.08 79.06 +1.16 84.47 + 1.66 90.86+0.92 9233+£093 92.01+1.25  92.86+1.14
OA (%) 93.34+0.86 9434+080 81.04+0.89  83.49 + 1.08 88.13 + 1.26 9412+1.05 9459+0.68 94.82+1.28  95.62+ 098
30 AA (%) 94.13+£0.67 95.32+0.71 81.47+0.79 83.69 + 1.02 88.89 + 1.13 94.86 £0.89  95.56 £ 0.69 95.49 + 1.12 96.36 + 0.81
Kx100 92.80+093 93.88+0.87 79.50+0.96 82.14 + 1.16 87.17 £ 1.36 93.52+1.12 94.12+1.12 9441+ 1.39 95.26 + 1.06
OA (%) 9205+0.82 93444099 79.86+0.88 8230+ 1.04 86.52 + 1.24 93.39+133 93484115 93.77+095 9418 +0.82
25 AA (%) 92.86+0.76 9453+098 80374085 8255+ 1.18 87.54 & 1.24 9423+128 94434116 9475+0.89 9498 +0.86
Kx100 91424089 9291+1.07 7822+094 80.86 +1.13 85.43 + 1.34 9286+144 92954124 9327+1.02  93.71 +0.89
Table 12. Testing data classification results (mean =+ standard deviation) on the Salinas dataset.
N EMP-CNN  MCNN-CP LP LapSVM EMP-LapSVM PL AROC-DP Mix-PL Mix-PL-CL
OA (%) 94.60+3.32 9577+150 83774088 85374192 91.38 + 1.62 95.41+137 95474186 9594+1.68 9620+ 1.13
20 AA (%) 97.88+1.80 98124038 91254046 9143 +1.25 94.81 4+ 1.03 97.99+ 048 98264058 98.02+0.75 9829 + 0.51
Kx100 94.00+3.81 95.30+155 82.00+0.98 83.76 £ 2.12 90.41 £ 1.81 9490+ 151 9497 £2.05 95.45 + 2.02 95.77 £ 1.25
OA (%) 95724137 96444067 8430+076 8614+ 1.41 92.90 + 0.94 96.36+259 9695+1.13 96.85+1.60  97.18 +0.84
30 AA (%) 9841+048 9843+045 91.834+031 9243 4091 95.85 + 0.63 98.73+0.78 9891040 98.80£0.78  98.83 + 0.44
Kx100 95254151 96.04+095 8260+0.81 84.61+1.54 92.10 4+ 1.04 95.97+285 96.67+126 9650 +1.80  96.87 + 0.93
OA (%) 9495+246 96.17+098 8413+1.19 86124+ 1.96 91.93 + 1.71 95.97+225 96184172 96.69 +£0.71  97.00 + 0.85
25 AA (%) 9824 +0.80 9837+0.37 91.91+044 92.01 £1.01 95.18 £ 1.10 98.49 +£0.82  98.63 £0.44 98.82 +0.22 98.91 + 0.30
Kx 100 94404270 95.64+085 8240+130 84.59 +2.15 91.02 + 1.91 9553 +248 9576+134 9633 +0.78  96.67 +0.94

(2) Ablation Studies: Table 13 showed the results obtained by ablation studies, when
the number of training samples per class was 25. From Table 13, one could see that every
module contributed to the final classification results. (1) EMP was used in CL-Mix-PL to
reduce the computational complexity of HSI classification, which made the model be less
overfitting. And without EMP, the OA on the three dataset decreased. (2) Without PL,
the model (CL-CNN) only used ordinary CNN to generate pseudo labels for unlabeled
samples, which were less accurate than the ones generated by Mix-PL-CL. And one could
see that the OA on the three dataset decreased 0.97%, 1.37%, 1.86%, compared to Mix-PL-
CL. (3) CL was used in Mix-PL-CL to filter the noisy pseudo-labels generated by Mix-PL.
And one could see that the OA of Mix-PL was lower than that of Mix-PL-CL on three
datasets, which showed the importance of CL. (4) Without mixup, the model (CL-PL) only
used Pseudo-Label method to generate pseudo labels for unlabeled samples. the results
showed that the use of mixup led to gains of OA over three datasets.

Table 13. The OA (%) of ablation studies for semi-supervised classification on the three datasets
(N =25).

Dataset Mix-PL-CL Without EMP Without PL Without CL  Without Mixup

Indian 93.33 92.15 92.36 93.12 92.98
Houston 94.18 92.76 92.81 93.77 93.75
Salinas 97.00 96.05 95.14 96.69 96.63
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Figure 14 showed the influence of p,,4, T4, and «, respectively. From Figure 14a, one
could see that it was better to set the value of p,,,; to 2. A higher p,,,; would make the model
quickly be overfitting to the noisy pseudo-labeled samples and degrade the accuracy. On
the contrary, the lower p,,,; would make model learn fewer from the unlabeled samples and
get lower classification results. Figure 14b showed that « was better set to one. Figure 14c
showed that T, was better set to two. When T; was one, the model was actually Mix-PL.
With T increased, the model would gradually be overfitting to the pseudo-labeled samples
and degrade the accuracy.

97.00 97.00 9B A 9669  97.00
i Wt 96.04 9642 o634 OB 9612 9638
% i 9418 o 9% %
8 —_ 93.98 94.18 —_ 94.18
<94 " 93.13 92.56 2 93.38 93.42 » B 93.77 93.24
< — = 94 —s <94 . 93.01 :
93.33 o ')_——o———‘ o E—
5% 92.61 9245 9198 0 9305 9312 9333 :
90 92.45 92 92.56 92.43
88 90 90
1 2 4 0.125 0.25 0.5 1 1 2 3 4
Pend a T,
«@-— ndian Pines Houston Salinas g Indian Pines Houston Salinas @ Indian Pines Houston Salinas
(a) (b) (c)

Figure 14. The influence of p,,,; and &« on OA with N = 25. (a) OA with different values of p,,,;, while « = 1.0, Ty = 2; (b)
OA with different values of a, while p,,,; = 2, Ty = 2; (c) OA with different values of Ty, while & = 1.0, p,;,y = 2.

5.5. Classification Maps of Different Classification Methods

Figures 15-17 showed the classification maps of different methods, including clas-
sification methods in the presence of noisy labels and semi-supervised methods, on the
three datasets.

From these maps, one could clearly see the differences. For example, it showed that
pixels near some noisy samples were misclassified, while getting correct labels in anti-label
noise methods such as SeCL-CNN and KSDP-CNN. And SeCL-CNN performed better than
methods for comparison. And for semi-supervised classification, the proposed Mix-PL-CL
achieved better classification results.

(d) (e) (f) (8) (h)

Figure 15. Indian Pines. (a) The ground-truth map with noisy training samples, the classification map using (b) SeCL-CNN;
(c) KSDP-CNN;; (d) CNN-Lg; () CNN; (f) EMP-SVM; (g) Mix-PL-CL; (h) LP.
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(8) (h)

Figure 16. Houston. (a) The ground-truth map with noisy training samples, the classification map using (b) SeCL-CNN;
(c) KSDP-CNN; (d) CNN-Lg; (e) CNN; (f) EMP-SVM; (g) Mix-PL-CL; (h) LP.

(a)

(b)

(c) (d) (e) () (8 (h)

Figure 17. Salinas. (a) The ground-truth map with noisy training samples, the classification map using (b) SeCL-CNN;
(c) KSDP-CNN;; (d) CNN-Lg; () CNN; (f) EMP-SVM; (g) Mix-PL-CL; (h) LP.

6. Conclusions

In this study, the strategy of complementary learning was explored for hyperspectral
weakly supervised classification. For inaccurate supervision, complementary learning
method was proposed for HSI classification. Then SeCL, using selective CL, was proposed
for classification in the presence of noisy labels. For incomplete supervision, Mix-PL was
proposed, which combines mixup and Pseudo-Label method. And then Mix-PL-CL was
designed aiming at better semi-supervised HSI classification capacity.

Experimental conclusions can be drawn for the three widely used datasets (i.e., Indian
Pines, Houston, and Salinas datasets): (1) The CL strategy can prevent DCNNs from being
overfitting to noisy labels and can be used to detect noisy-labeled training samples. The pro-
posed SeCL can further improve the ability of dealing with label noise. (2) According to the
experimental results, the proposed Mix-PL can achieve good semi-supervised classification
results. And the use of CL (Mix-PL-CL) further improves the classification performance.
(3) The classification results on the three datasets demonstrate that the proposed methods
for inaccurate and incomplete supervised classification outperformed other studied state-
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of-the-art methods as well as the conventional techniques. This research provides guidance
for further studies to explore complementary learning and weakly supervised learning in
the field of HSI classification.
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Appendix A. Detailed Classification Results

Table A1. Detailed classification results (mean =+ standard deviation) with 30% label noise on the Indian Pines dataset.

Noise Ratio  Class RBF-SVM EMP-SVM CNN MCNN-CP CNN-Lq DP-CNN KSDP-CNN SSDP-CNN SeCL-CNN
OA (%) 55.384+4.53 67.114+3.54 57.34+287 68.16+327 6636+514 7043+282 72.22+2.64 72.88 £2.47 73.90 £2.94

AA (%) 66.90+2.77 76.60+219 6348+1.97 7221 +2.06 75.32+3.01 7827+1.68 81.00+1.73 82.62 +£1.24 83.44 +£2.07

Kx 100 49944453 62924370 5256+3.00 64.30+3.48 6230+551  66.724+3.01  68.66 +2.84 69.86 + 2.67 70.51 £3.21
83.75+11.92 9313+9.04 7438+10.25 7321£11.23 93.75+9.27 88.13+£946 97.50 £ 5.00 95.62 + 5.63 99.38 +1.88

[ ] 32.804+8.13 491341734 49244536 61.56+478 54434+7.74 5835+5.87  56.36+7.61 58.36 = 5.73 58.50 £ 6.82

[ | 4324+1050 64.74+997 51.08+£548 5728+1034 5553+£9.00 5886+£887 61.74+1058 63.62+8.71 64.35+ 1591

62.614+9.38 69.61+10.14 69.37+6.21 77.94+ 691 79.28+6.68 83.48+9.03  83.24 +8.50 85.51 £ 4.41 89.66 £ 8.20

[ | 76.05+499 8232+286 5945+7.01 7577 £+ 6.69 71.59+830 789441177 7596+10.95 80.04+10.93  77.68 +9.93

[ | 80.214+8.03 87.07+745 52744583  69.90 + 6.54 65.66+643 75264+9.35 79.70+12.68 79.06+10.69 74.74+19.23

30% [ ] 89.234+7.05 94.62+3.53 63.85+2231 67.56+1822 86.15+1846 81.54+20.12 86.15+16.06 89.24+15.07 99.23 +£2.31
82254480 94404+429 7527+8.68  81.64+552 89.04+594 88.26+8.17 9520+ 3.32 95.31 £ 5.07 93.82 +£4.75

80.00 £20.00 84.00£14.97 76.00+24.98 88.17+19.84 84.00+23.32 88.00+£13.27 94.00£9.17 96.00 + 8.00 98.00 £ 6.00

[ | 59.474+13.28 63.954+10.70 59.00+10.12 69.47 +8.12 67.19+10.39 68.75+8.95  68.96 + 6.75 72.65 £7.27 72.40 £7.08

4427 4+1899 56.66+1536 51.51+9.11 62.66+11.56 60.40+1531 64.11+£887  66.89 £ 9.60 69.47 £9.33 69.62 £ 8.31

[ ] 40.254+941 63.184+11.00 58374550  67.21 +4.62 67.55+759 67944694 7197 +8.46 70.94 £ 6.03 67.67 £ 6.76

95.83+214 9743+172 6897+10.11 7516+837  88.80+10.19 88.69+493  92.00+5.01 91.60 + 6.86 95.49 £ 5.61

[ ] 79.03+£875 84.08+556 67224975 79.68+8.67 77.06+11.75 8455+7.13  86.04 + 6.02 90.56 + 5.63 88.93 £5.16
369441052 54.754+10.89 70.511+8.88  72.77 +9.95 78.99+9.70 80.76 793 84921788 85.45 £7.05 88.76 £9.43

84.444+9.14 86511893 68731994 753441395 8571+572 96.67+423 9540+ 451 93.65 £ 4.32 96.83 £ 4.65

Table A2. Detailed classification results (mean =+ standard deviation) with 30% label noise on the Houston dataset.

Noise Ratio Class ~ RBF-SVM  EMP-SVM CNN MCNN-CP  CNN-Lg  DP-CNN  KSDP-CNN  SSDP-CNN  SeCL-CNN
OA (%) 7705+191 7888+162 6205+196 7558+263 74444212 7525+£236 7665+£227  7816+200  80.00 %251

AA (%) 77874133 7996+154 6233+192 7602+233 75214228 7693+£222 7836+£226 7949149 8141 +245

Kx100 7518£206 7716+175 50.09+211 73634284 7241+£229 73294253 74774293 7640213 7839 £272

8970£7.10 89.74+770 70774839 727241454 8518+£7.02 8316+717 82704749 7876719 8647 £7.49

30% Bl 5792+667 8271+859 60174857 7607+£1170 6824+£1305 7478+£9.09 7471+£893 7143564  76.09 826
B 9910+£067 99244105 725941069 85274564 87454946 8438+756 8832+7.03  8885+7.78 9486 +£575

9192+£312 91.28+3.06 6696832 83554619 8200+£555 88.66+586 8857524  8476+£286  87.20 £2.70

Bl 9205+459 94564398 70.14+500 85284568 8572+£844 88.68+637 89.84+552  93.01+£557 9320457

Bl 8532+1014 85394833 56584596 70154772 67732818 74824680 7498+517 7295682  7414+13.12
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Table A2. Cont.

Noise Ratio  Class RBF-SVM  EMP-SVM CNN MCNN-CP CNN-Lq DP-CNN  KSDP-CNN  SSDP-CNN  SeCL-CNN
[ ] 7645+ 674 8365+929 54294581 68.15+811 67.81+£572 71754564 7355+771 7554 +445 7598 +7.18
5044 +720 5146+674 49894738 63.07+514 57.35+1062 57.30+583 60.72+7.89  6791+833  55.03 + 890

7417 +£544 7635+898 54184836 6724 +896 6461+7.05 6500+857 6596+7.81 6835+1148  75.63 +8.14

[ | 65.33+17.97 64701138 6536+12.98 73324921 7633+£934 6590+13.12 69.86+1390 729041255 7574 +16.92
7237+640 8425+559 62.76+535 84.00+582 73.70+7.49 6747+630 67.16+731  7406+725 77.82+1142

[ 528141050 51.79+13.84 59.80+806 73.71+10.65 7178875 70.12+9.86 7219+7.80 77.22+683 7826+ 847
3715+551 49254546 643141114 77164911  82.07+7.64 76.63+1097 7727 +631  79.68+£832  91.50 + 3.00

[ ] 96.41+1.03 97.66+£2.09 6448+956 7830+1050 805341125 9595+7.96 9729 +445 9558 £517  91.83 + 7.64
96.08+2.09 9733290 62784581  82.31 & 4.69 7762858  89.33+818 9235+438  91.33+598  87.38+ 852

Table A3. Detailed classification results (mean =+ standard deviation) with 30% label noise on the Salinas dataset.

Noise Ratio  Class RBF-SVM EMP-SVM CNN MCNN-CP CNN-Lq DP-CNN KSDP-CNN SSDP-CNN SeCL-CNN
OA (%) 85.59+2.05 86.854+2.02 72364+230 8453 +279 89.994+1.92 87104238 88354332 89.76 £ 1.67 91.51 £2.31

AA (%) 91.244+1.09 9223+135 75444124 8527 +295 93.77+157 90.79+2.01 9225+1.17 92.86 £ 1.40 95.07 £1.48

Kx 100 83984222 85384221 69544248 8284+3.07 8889+213 8570+263 87.09+253 88.62 +£1.85 90.57 £2.55
98.184+0.93 99.024+046 7516+9.77 88.88+7.36 97.64+295 96.38+3.05 97.18+274 97.29 £3.31 99.95 + 0.08

[ | 9718 +3.13 98.28+1.68 73.40+6.30 89.40+4.16 94504584 92774583  93.14 - 6.44 93.43 +4.84 96.68 + 4.05

[ ] 85.99+12.47 89.90+13.79 69.30+8.63  84.47 +9.66 91.51+841 88244930 89.90+9.23 89.95 + 8.86 92.97 £+ 8.47

98.914+0.52 9856+1.95 82031727  85.03+8.80 97.69+£2.00 96.06+3.27  95.84 +3.28 94.40 £5.75 99.24 £1.10

[ | 95324370 95.07+4.70 81.024+8.93  88.11 +3.09 9726 £4.77 9315+6.80 9459 +6.22 91.81 £5.91 96.15 £ 6.76

[ | 96.75+3.02 96.13+3.73 75744+9.07 87.78 +9.04 96.70+3.33 93.63+8.22 9435+7.82 97.01 £ 6.42 97.89 + 3.50

30% [ ] 98.944+049 9896+0.62 71.684+9.23 84.18+10.03 93.18+7.71 89.96+8.66  92.33 +6.36 92.30 £+ 5.07 94.69 + 3.30
72.64+1211 7240+11.75 61.23+726  81.05+4.70 7694+ 645 73.06+6.14 742241033 77.68 +4.84 78.37 £7.55

98.41+£1.32 99.24+096 8476+554 91.37 £8.36 98.49£191 9396+£3.53  95.78 £2.99 96.88 + 3.44 97.89 £ 2.00

[ | 87.29+4.01 89.37+3.57 68.77+11.85 80.59+10.50 91.24+10.35 88.63+563  90.77 £6.38 92.30 £ 5.07 93.99 £ 8.42

90.524+391 9370+1.09 7433+490 81.09+877 9419+721 9028+6.15 9236 £5.72 93.63 £ 6.53 96.85 £ 5.56

[ ] 99.42+0.52 99.92+0.12 8238+11.29 87.65 + 4.66 9838 £219 9559+£7.88  97.54 £4.08 96.85 + 6.34 98.96 + 1.85

98.51+0.67 98.124+0.75 84.60+8.03 87.10+7.72 97.88+2.17 9445+7.71 9790+ 3.16 97.42 + 3.86 98.83 £ 1.55

[ ] 92264251 90.62+7.17 81.74+7.58  84.48 +8.40 96.88+7.94 9297 +6.87  94.69 +6.02 94.28 £5.18 96.67 £7.26
57.38+10.00 63.624+9.53 67.821+542 7856 +6.13 82.27+£10.23 82.314+4.92 8246 +4.99 85.07 £ 8.89 86.53 £ 6.53

92194+5.09 92.69+4.83 73.064+10.22 84.53 +9.32 9553 +£4.36 91.224+491 9298 +3.49 95.48 £2.51 95.43 £ 3.50

Table A4. Detailed semi-supervised classification results (mean =+ standard deviation) on the Indian Pines dataset (N = 25).

N Class EMP-CNN  MCNN-CP LP LapSVM EMP-LapSVM PL AROC-DP Mix-PL CL-MixPL
OA (%) 91.78 4222 92744+149 58124+133 6127 +127 85.09 £2.34 92.874+230 9230+1.72  93.124+3.28 93.33 £2.29

AA (%) 94954120 96.19+0.74 67.861+1.27  71.60 & 1.64 90.57 £ 1.43 95354+1.26 9555+0.77 9537 +1.27 95.74 £1.11
Kx100 90604252 91.714+1.69 5273+1.40 56.26 +1.46 83.07 £ 2.61 91.83+2.62 91204195 92124271 92.35 £ 2.61
100.0£0.00 100.0+0.00 86.30+10.34 88.31+11.63 98.18 £ 2.80 99.004+3.00 100.04+0.00  98.50 +3.20 100.0 + 0.00

[ ] 80.86£7.85 88.62+3.78 3190517  40.10 £ 4.65 79.24 £ 3.76 83.79+6.37 8536+330 84.28 £6.57 86.62 £+ 5.90

[ ] 91.794+4.89 90.33+4.92 4232+6.27 50.78 +7.29 84.04 £+ 4.62 90.59+£7.37 89.28+5.67  90.96 +7.20 90.23 £7.45
98.424+2.03 99.254+0.92 63.26+6.25 68261 10.47 92.61 £7.07 98.45+1.62 99.25+1.26 98251154 99.47 £0.88

[ | 90.89+6.28 95671289 79284495  78.79 +3.89 86.59 £2.98 89.86 547 91.98+3.07  89.93 & 547 91.51 £4.71

[ | 98.13+1.94 97.85+1.61 85.64+4.07 84.50+5.19 90.28 £ 5.56 98.60+2.12 9559+ 1426 98.63+2.13 96.04 + 3.62

25 [ ] 100.0£0.00 100.0£0.00 9276 +6.54 9292 +4.71 94.87 £ 5.16 100.0£0.00  100.0£0.00  100.0 £ 0.00 100.0 = 0.00
100.0£0.00 9995+0.14 80.95+324 8599 £+ 3.15 99.78 £+ 0.38 100.0£0.00  100.0£0.00  100.0 £ 0.00 100.0 = 0.00

100.0£0.00  100.0£0.00 69.50£20.91 87.00 £ 14.0 100.0 & 0.00 100.0£0.00  100.0£0.00  100.0 £ 0.00 100.0 & 0.00

[ ] 87.75+4.33 9298+5.08 61.58+7.58  60.81 +5.43 86.82 + 3.81 85.67+£6.03 88.69+5.52  85.16 £ 571 86.96 £ 5.66
92514+545 87.794+3.82 55304584 5553 +4.01 78.82 £ 6.77 95124521 91.03+4.21  95.81 +5.08 95.73 £5.17

[ ] 86.31 £6.53 90.56 £2.33 39.49+4.26  43.06 £7.25 83.10 + 5.44 92.87 £4.82 90.57£254  93.39 = 4.86 90.71 £ 4.19
99.93+0.21 99.41+142 93224207 9342+3.11 97.46 £ 0.94 99.83+0.37 99.88+0.36  99.89 +0.34 100.0 & 0.00

[ ] 97.95+3.78 98.82+1.83 76.00+8.64  79.62+8.09 89.93 £8.17 9759 +£2.11 98.81+0.78 97.60 +2.12 96.94 £ 2.53
95.59+£4.25 98104292 33.66+3.73  44.90 & 7.45 89.82 £ 3.19 96.54+3.66 99.10+1.26  96.46 +3.59 98.74 £ 2.00
99.13+1.16  99.67+0.66 96.30+3.41  91.60 4 5.44 97.58 & 3.51 97.734+227 9918+1.10 97124239 98.94 £ 0.97
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Table A5. Detailed semi-supervised classification results (mean + standard deviation) on the Houston dataset (N = 25).

N Class EMP-CNN  MCNN-CP LP LapSVM EMP-LapSVM PL AROC-DP Mix-PL Mix-PL-CL
OA (%) 92.05+0.82 93.44+099 79.86+0.88  82.30 & 1.04 86.52 & 1.24 9339+133 93484115 93.77+£095 9418 +0.82

AA (%) 92.86+0.76 9453+£098 80374085 8255+ 1.18 87.54 & 1.24 9423+128 94434116 9475+0.89 9498 + 0.86

Kx 100 91.42+089 9291+107 78224094 80.86 + 1.13 85.43 + 1.34 9286+1.44 9295+124 9327 +1.02  93.71+0.89
90.86+539 91904562 9415+456 9442 +4.26 92.58 + 4.72 93054399 91964511 9143+530 91.85+473

- 87254823 97.15+241 9570+1.64 94.38 +£2.90 95.13 £2.34 8723 +£891  94.66 +5.64 85.33 + 8.43 88.51 £ 7.70

[ ] 98744096 9933045 98144130 97.27 +2.02 97.86 4+ 2.19 9953+ 0.66 9895+0.66 99.71+£0.34  99.82 +0.19
94144228 98.65+171 97.104£2.69 9596 + 3.26 92.03 4+ 3.28 9536 +507 96594291 97.46+3.02  97.72+233

[ | 98.75+1.13 99.94-+0.18 96.65+124  96.62 & 1.09 97.59 + 1.75 99.61+£0.69 99724075 99.82+£0.55  99.80 + 0.55

”s [ | 93134502 98.07+3.88 95334276  93.12 +3.02 96.95 + 3.07 9554+421 97284387 9694+393  96.87 +4.00
[ ] 85424302 8581+421 71254558 77.62+6.82 84.94 + 3.26 91.86+441 89324167 91.64+3.08  91.95+321
82424306 79.82+579 65.64+419 6537 +8.14 75.27 + 4.68 79.65+682 80.04+681 83.18+560  81.97 + 540

9048 +3.76 87.50+£533 66.94+3.89 74.87 + 6.84 80.51 + 3.80 92.66 £5.88  91.96 £4.00 9498 +2.78 95.56 + 3.08

[ | 97.69+£259 9690221 74524393  80.49 +5.65 86.56 = 6.10 99.07+1.05 96494775 98.09+£230 9750 +395
93434320 96394260 67.87+359  72.00 % 3.75 79.13 + 3.20 96.05+263 93934398 96154229  97.03 +1.99

- 90.25+498 89.27+4.15 5747 £5.50 62.59 + 6.42 67.76 + 7.25 89.80 £5.89  89.99 +4.89 89.10 + 6.43 91.05 + 5.10
92304386 97.23+£282 28414502 39.92 4 841 70.69 =+ 4.74 94214523 95614349 97434161 9510+ 454

[ ] 99.76 £0.50 100.0-£0.00 97.074+229 9532+ 4.30 96.55 + 2.41 99.92+0.16 100.0£0.00 100.0 £0.00  99.95 + 0.15
98194270 100.0£0.00 99.33+072  98.33 % 1.00 99.58 + 0.59 100.0+£0.00 99924019 9998 +0.05  99.98 + 0.05

Table A6. Detailed semi-supervised classification results (mean + standard deviation) on the Salinas dataset (N = 25).

N Class EMP-CNN  MCNN-CP LP LapSVM EMP-LapSVM PL AROC-DP Mix-PL CL-MixPL
OA (%) 9495+246 96.17+098 84.13+1.19 86.12 + 1.96 9193 £1.71 9597 £2.25 96.18 £1.72 96.69 + 0.71 97.00 £ 0.85

AA (%) 9824+0.80 98374037 91914044 92.01+1.01 95.18 + 1.10 9849+082 98.63+£044 98824022 9891+ 0.30

Kx 100 94404270 9564+085 8240+130 8459 +2.15 91.02 + 1.91 9553 +248 95764134 9633078  96.67 + 0.94
99.994+0.03 100.0+0.00 98.07+1.04 97.04 + 1.87 99.24 + 0.60 99.894+022 100.04+0.00 100.0 £0.00  100.0 = 0.00
- 98.79 £2.60 99.92+0.19 99.56 £0.37  96.99 £+ 1.59 97.95 + 2.51 97.00£546 99.52 +1.78 99.02 + 1.39 98.67 + 2.67
[ ] 99.97+0.08 99.99+£0.02 95574+3.00 9429 +3.21 99.59 + 0.45 99.83+027 99374104 99944017 9992 +0.17
99.89 £0.31 9943 +0.42 9896+ 1.41 98.86 + 0.86 99.02 £ 1.00 99.96 £0.13  99.94+0.14 99.974 £0.10 99.96 + 0.07

[ | 99.13+0.73 9738204 95414237  95.03 & 2.01 96.25 + 2.71 99.12+1.04 99.10£1.00 99.07+£1.02  99.50 + 0.56

[ | 100.0£0.00 99.98+0.12 9936032  98.27 £ 0.97 98.60 & 1.10 100.04£0.00  100.0£0.00  100.0 £0.00  100.0 & 0.00

25 [ ] 99.80+£0.39 99.94+0.12 99384038  96.88 & 3.71 97.74 + 245 100.0£0.00 99554096 99.95+0.05  100.0 & 0.01
79714111 88554307 58834724 70.19 +9.31 82.59 - 5.53 8416+952 84894490 87194288  89.03+328

9993 +£0.20 100.0£0.00 95.61+1.38 95.85 + 2.14 97.98 +£1.28 99.93+£0.20  100.0 £0.00 100.0 £ 0.00 100.0 £ 0.00

[ | 99.98+0.06 99.09+£098 8646+2.36 8537 & 4.36 95.64 + 2.34 99.95+0.09 99.85+0.17 99.88+£0.17  99.99 + 0.02
99.85+0.16 99.97£0.06 93.51+2.25 93.10 + 2.59 96.05 + 2.69 99.86 £0.14  99.88 £0.10 99.91 +0.13 99.88 + 0.14

- 99.95+0.12 99.78 £0.52  99.56 £ 0.53 99.47 + 1.02 100.0 £ 0.00 100.0£0.00  100.0 £ 0.00 99.99 + 0.02 100.0 £+ 0.00
99.73+0.60 100.0£0.00 96894195 97.71 4+ 1.65 97.77 + 1.52 99.9940.03 99.89+£023 99934012  99.99 + 0.03

[ ] 99.87+£021 9970039 92954280  92.96 + 3.66 9291 +3.26 9945+1.06 99.884£022 99.86 027  99.89 +0.26
9531+243 91.35+5.08 62.89+5.20 64.97 +£7.42 79.42 + 4.63 96.80 £3.55  96.26 £+ 2.58 99.37 £ 2.05 95.76 £+ 3.13

99.95+0.13 98.86+1.01 9752+1.41 95.14 + 3.05 92.04 + 5.66 99.92£024 99.94+0.14 99.99 + 0.02 99.95 + 0.09
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