
remote sensing  

Article

Joint Use of in-Scene Background Radiance Estimation and
Optimal Estimation Methods for Quantifying Methane
Emissions Using PRISMA Hyperspectral Satellite Data:
Application to the Korpezhe Industrial Site

Nicolas Nesme 1,2,*, Rodolphe Marion 3 , Olivier Lezeaux 2 , Stéphanie Doz 1, Claude Camy-Peyret 4

and Pierre-Yves Foucher 1

����������
�������

Citation: Nesme, N.; Marion, R.;

Lezeaux, O.; Doz, S.; Camy-Peyret, C.;

Foucher, P.-Y. Joint Use of in-Scene

Background Radiance Estimation and

Optimal Estimation Methods for

Quantifying Methane Emissions

Using PRISMA Hyperspectral

Satellite Data: Application to the

Korpezhe Industrial Site. Remote Sens.

2021, 13, 4992. https://doi.org/

10.3390/rs13244992

Academic Editors: Mi Wang,

Hanwen Yu, Jianlai Chen and

Ying Zhu

Received: 5 November 2021

Accepted: 6 December 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 ONERA, The French Aerospace Lab, Département Optique et Techniques Associées (DOTA),
31000 Toulouse, France; stephanie.doz@onera.fr (S.D.); pierre-yves.foucher@onera.fr (P.-Y.F.)

2 SPASCIA, Space Science Algorithm, 31520 Ramonville, France; olivier.lezeaux@spascia.fr
3 CEA, Direction des Applications Militaires Ile-de-France, 91290 Arpajon, France; rodolphe.marion@cea.fr
4 Institut Pierre Simon Laplace, 75005 Paris, France; claude.camy-peyret@upmc.fr
* Correspondence: nicolas.nesme@onera.fr

Abstract: Methane (CH4) is one of the most contributing anthropogenic greenhouse gases (GHGs) in
terms of global warming. Industry is one of the largest anthropogenic sources of methane, which
are currently only roughly estimated. New satellite hyperspectral imagers, such as PRISMA, open
up daily temporal monitoring of industrial methane sources at a spatial resolution of 30 m. Here,
we developed the Characterization of Effluents Leakages in Industrial Environment (CELINE) code
to inverse images of the Korpezhe industrial site. In this code, the in-Scene Background Radiance
(ISBR) method was combined with a standard Optimal Estimation (OE) approach. The ISBR-OE
method avoids the use of a complete and time-consuming radiative transfer model. The ISBR-OEM
developed here overcomes the underestimation issues of the linear method (LM) used in the literature
for high concentration plumes and controls a posteriori uncertainty. For the Korpezhe site, using the
ISBR-OEM instead of the LM -retrieved CH4 concentration map led to a bias correction on CH4 mass
from 4 to 16% depending on the source strength. The most important CH4 source has an estimated
flow rate ranging from 0.36 ± 0.3 kg·s−1 to 4 ± 1.76 kg·s−1 on nine dates. These local and variable
sources contribute to the CH4 budget and can better constrain climate change models.

Keywords: methane; industrial plume; PRISMA satellite; concentration; flow rate

1. Introduction

Climate change has become a major preoccupation for society, leading nations to de-
velop common environmental commitments, such as the Paris Agreement (2015). Methane
(CH4) is one of the greenhouse gases (GHGs) chiefly under scrutiny due to its key role
in several activity domains. Firstly, CH4 has significant explosive properties that may
result in major infrastructure damage and security issues [1]. CH4 also has an impact on
public health; inhaling high concentrations can lead to respiratory complications. CH4 also
contributes to the formation of tropospheric ozone (O3), which may have a much higher
impact in terms of respiratory and cardiovascular deaths [1–3]. Regarding the environment,
CH4 is the second most important anthropogenic GHG in terms of impact on climate and
influence on air quality [4]. There is a high concentration of carbon dioxide (CO2) in the
atmosphere, yet CH4 has a global warming potential approximately 28 times higher on
a 100-year scale than that of CO2 [5–9]. Calculations of CH4 impact on climate change
must consider indirect effects. The oxidation of CH4 in the presence of nitrogen oxides and
sunlight lead to the formation of ozone (O3) [10,11]. O3 adds approximately 38% to CH4
force [2]. Considering all these impacts, the broad social cost of methane resulting from
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one ton of emission is 50–100 times greater than that of CO2 [12]. Fortunately, CH4 has
an atmospheric lifetime of about a decade, while the CO2 lifetime is approximately a cen-
tury [10,13,14], meaning that reducing emissions will have a quicker impact for mitigating
climate change [15–17].

Nevertheless, the CH4 concentration in the atmosphere estimated by ice cores has
changed dramatically, from approximately 650 parts per billion (ppb) in the year 1000
to approximately 1700 ppb shortly before the year 2000 [18]. The highest increase in the
National Oceanic and Atmospheric Administration’s 37-year record [2] was observed in
2020, with an atmospheric concentration of 1890 ppb. The tripling of CH4 concentration in
a thousand years, as well as the increase in anthropogenic CH4 compared to natural CH4,
can be explained by human activity. Natural CH4 sources are wetlands (swamps), termites
and oceans, which are relatively time-stable [19]. Anthropogenic sources are distributed
in the sectors that followed the industrial revolution: energy (fossil fuel production, etc.),
industry, waste treatment (15 to 18% of the anthropogenic balance [20]) and agriculture
(rice farming, ruminant farming, etc.) [21]. CH4 sinks are divided into three categories [22];
the main cause of methane destruction (90% of the sinks [23]) is the oxidation of CH4 by
the hydroxyl (OH) radical in the troposphere, while absorption by soils and oxidation in
the stratosphere represent the rest of the CH4 sinks.

Improved detection and quantification of CH4 emissions would provide a better
constraint for inventories of large-scale CH4 releases into the atmosphere. Due to CH4

′s ex-
plosive properties and the limited accessibility of the source (in the case of major gas leaks),
remote sensing is a powerful tool, already validated up to quantification [24]. Satellite
sounders, such as TROPOMI (TROPOspheric Monitoring Instrument) [25] on ESA’s Sentinel-5
Precursor satellite, are suitable instruments to study CH4 emissions on a global scale [9].
However, their kilometric spatial resolution is unsuitable for mapping anthropogenic
CH4 from industry. The dimensions of an industrial plume are typically less than a few
kilometers. Detecting industrial plumes is an economic and environmental challenge.
Firstly, permanent CH4 leakage represents a loss of revenue for industries [26]. Secondly,
although large emitters dominate the industrial methane emissions budget [27], small
sources also contribute to increased CH4 emissions. Identifying a leak is always a good
step towards reducing GHG emissions. Other instruments, called imagers, have a smaller
ground pixel size than sounders. The most common are airborne imagers that provide a
ground pixel size of approximately a few meters. Airborne imagers, such as AVIRIS-NG
(Airborne Visible/Infrared Imaging Spectrometer—Next Generation) [28], can detect and
quantify industrial plumes [29]. These imagers can detect small-scale leakages on industrial
infrastructure. Once located, dedicated teams can visit the site or a campaign can focus on
certain emission points [30]. However, these airborne campaigns are expensive, difficult to
perform, and cover only a small portion of the area of interest.

Satellite imagers are a compromise between satellite sounders and airborne imagers.
Satellite imagers developed rapidly since 2020; however, it is important to note that two
of them are pioneers. Hyperion [31], launched in the late 2000s, detects and quantifies
industrial plumes, but the results are established with a super-emitter source [29] and the
signal-to-noise ratio (SNR of 20 [32]) of this instrument has limited further studies [33] on
weaker sources. Launched in 2016, the GHGSat-D (GreenHouse Gases Satellite) satellite
demonstrated the feasibility of detecting CH4 plumes with a spatial resolution of 50 m,
but the data are not freely accessible [34]. The new imaging satellite, PRISMA (PRecursore
IperSpettralle della Missione Applicativa) [35], launched in 2019, has a spatial resolution of
30 m and hyperspectral images are available. Recent work has demonstrated the feasibility
of using this satellite to quantify methane plumes [36–38].

In the literature, two concentration map methods are widely used: the Matched Filter-
ing (Linear Method (LM)) [23,29,39–46] and the Optimal Estimation (OE) method [37,47–50].
The first method linearizes the mathematical expression of the gas transmission, resulting
in an underestimation of the retrieved concentration. In the second method, the standard
OE approach [28] requires significant computation time due to the non-linear radiative
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transfer model computation and the number of parameters to retrieve. In this paper, we
propose a new algorithm called ISBR-OE that builds on the LM and OE approaches.

This paper focuses on the Korpezhe oil and gas field, located in a desert area of Turk-
menistan. This site was chosen because several significant emission points are present and
the background is homogeneous [36]. Based on these data, this paper first highlights the
drawbacks of the LM method widely used in the literature, resulting in an underestimation
of the retrieved concentration. Then, the second part details a new plume quantification
method, called the ISBR-OE method, that builds on the LM and OE approaches in order to
obtain results with uncertainty control and reasonable computation time. In order to under-
stand the improvement in the new method, we compared the integrated path concentration
estimated from the linear and the new methods using synthetic data and real PRISMA
data on different CH4 plumes. Furthermore, two state-of-the-art flow rate estimation
methods and a new method derived from the literature were applied to PRISMA data. We
have analyzed CH4 emission uncertainties derived from integrated path concentration
maps for the industrial area studied. All three flow rate estimation methods are based on
wind speed. Some approaches try to circumvent using this information by performing
large-eddy simulations (LES) to derive the flow rate as a function of the plume shape [51],
but these methods are not covered here.

2. Data
2.1. Hyperspectral Images

Launched in March 2019, the PRISMA satellite is equipped with hyperspectral and
panchromatic sensors. The Agenzia Spaziale Italiana’s (ASI) policy is to give access to
the data to the largest number of users, and it is easy to register on http://prisma-i.it/
index.php/en/ (last accessed on 15 June 2021) to obtain data (PRISMA Data Policy Issue
1.0 Date 20 May 2020) which can be provided with various levels of pre-processing (L0,
L1, L2B, L2C, L2D) [52]. The hyperspectral camera covers VNIR (visible/near-infrared)
and SWIR (short-wave infrared) with respectively 92 and 157 channels [35]. As this
paper focuses on CH4 quantification, only the 113 channels between 1500 and 2500 nm
are retained. Indeed, CH4 has several vibrational absorption bands at wavelengths of
approximately 1650 nm and 2350 nm (plus 3400 nm and 7700 nm in mid-wave infrared).
The CH4 monochromatic absorption of the Pacific Northwest National Laboratory (PNNL)
database [53], in ppm−1·m−1, is shown in blue in Figure 1. This quasi-monochromatic
absorption is then convolved with the PRISMA spectral response function (red line). In
this spectral range, the PRISMA satellite has a spectral sampling distance of approximately
9 nm and a spectral resolution (Full Width of Half Maximum) between 9 and 15 nm [54].
The hyperspectral camera’s spatial resolution is approximately 30 m (ground sampling
distance) and an image covers an area of 30 km × 30 km.

http://prisma-i.it/index.php/en/
http://prisma-i.it/index.php/en/
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Figure 1. Methane monochromatic absorption in ppm−1·m−1 from the PNNL database (blue line)
convolved with the PRISMA spectral response function (red line).

SNR specifications of PRISMA are described in Labate [35] and listed in Table 1. Using
the Homogeneous Regions Division And Spectral De-Correlation (HRDSDC) method,
Cogliati [55] estimated the PRISMA pixel SNR at each wavelength in the spectral dimension
(by using the adjacent wavelengths) and scene heterogeneity (by using neighboring pixels
in the same homogenous region). The results are provided in Table 1 and comply with the
instrument’s specifications.

Table 1. Signal-to-noise ratio (SNR) specifications for the PRISMA satellite according to spectral
range; requirement specifications come from Labate [35] and the observation-based specifications are
estimated in Cogliati [55].

Spectral Range (nm) Requirement [35] Estimation [55]

SNR
1500–1750 ≥200 200–400
1950–2350 ≥100 ≈100

The images analyzed here focus on an industrial area, with four identified emission
points in the west of Turkmenistan, as presented in Figure 2. These sources belong to the
Korpezhe oil and gas field (38.52◦N, 54.21◦E). One of these emission points (D panel in
Figure 2) is near a compressor station and has been identified as a strong CH4 emitter [56].
On this industrial site, we were able to recover eleven images with cloudless sky or with
few clouds between 2020/04/19 (YYYY/MM/DD) and 2021/06/22. Table 2 lists the dates
these different images were taken.
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Figure 2. The middle (black) panel displays a colored composition of PRISMA hyperspectral image (2020/06/22) of
the Korpezhe site. In this colour composition (R, G, B: 641, 546, 471 nm), the small darker areas are liquid surfaces, the
brown area is sand, and the lighter areas are rocks. Image size is 1000 × 1000 pixels at a spatial resolution of 30 m. Boxes
(B–D) (respectively green, orange and red) contain an emission point detected on a few images. Box A contains the most
observed emission point in this dataset. Images of boxes from (A) to (D) come from Google Maps and Bing Maps.

Table 2. Wind speed U10 in m·s−1 and wind direction expressed in meteorological data frame in
degrees, for the images over the Korpezhe site. All images were acquired between 7:14 and 7:24 UTC,
and a weighted average was calculated using the two closest ECMWF interpolated values.

Date Speed (m·s−1) Direction (◦)

2020/04/19 2.6 251
2020/06/22 8.9 281
2020/07/03 5.0 129
2020/07/21 3.3 137
2020/08/07 4.0 331
2020/10/10 7.9 88
2020/11/14 1.2 147
2021/02/09 2.5 67
2021/03/10 1.7 377
2021/04/14 4.3 111
2021/06/22 2.7 148

2.2. Wind Information

Using discrete (in time or in space) gas concentration measurements, wind speed and
direction are required to estimate the gas flow rate (see Section 3.4). In this paper, European
Centre for Medium-Range Weather Forecasts (ECMWF) forecasts are used. ECMWF wind
data was calculated at 00:00 or 12:00. The forecasts were then used to estimate the 10 m
wind components for each hour with a grid of 0.125◦ × 0.125◦, i.e., 13 km × 13 km. The
Korpezhe site is located between four ECMWF grid points. The wind direction is expressed
in a meteorological data frame. Angles of 0◦, 90◦, 180◦ and 270◦ correspond to wind
blowing from the north, east, south and west, respectively. Due to the grid and time
of ECMWF data, spatial and temporal interpolations had to be applied. Spatially, the
Korpezhe values were obtained by distance-weighted linear interpolation. Temporally,
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all the images of the analyzed data set were acquired at around 7:20 UTC. The 7:00 and
8:00 UTC values were used to calculate image wind speed by a weighted average. Table 2
lists the wind speed U10 and wind direction for the various PRISMA images.

3. Methods

The determination of the total mass of a CH4 plume and the estimation of the source
flow rate require a plume segmentation step followed by a quantification step, which have
been implemented in the CELINE code. These two steps are based on the information
contained in the radiance spectrum of the hyperspectral image. In the CELINE code, once
the pixels affected by CH4 are identified, the observed radiance is again used to calculate
the CH4 concentration for each plume pixel.

3.1. Direct Model of Radiance as a Function of Plume Concentration

In VNIR-SWIR, the radiance measured by an imaging instrument without any gas
plume in the line of sight can be expressed as the sum of three different radiances (in
W·m−2·sr−1·µm−1) (scheme on Figure A1 in Appendix A). The first radiance, Latm, is the
atmospheric radiance without any interaction with the ground. The second one, Ldi f f ,
describes the photons that have been scattered towards the sensor after an interaction
with the ground. The last one, Ldir , represents the upwelling radiance directly trans-
mitted from the ground. Ldi f f and Ldir are both dependant on the downward solar
irradiance and the ground reflectance [57,58]. Therefore, the total measured radiance Lno pl

(in W·m−2·sr−1·µm−1) can be expressed as:

Lno pl = Latm + Ldi f f + Ldir = Latm +
REo

(
τdir + τdi f f

)
π(1− RS)

, (1)

where R is the ground reflectance, Eo the downward irradiance at ground level (in
W·m−2·µm−1), τdir the direct transmission, τdi f f the diffusive contribution, and S the
spherical albedo of the atmosphere. The total atmospheric transmission τatm is the sum of
τdir and τdi f f and can be expressed as τatm = (1 + η)τdir with η = τdi f f /τdir.

Scattering effects can be neglected in SWIR. A Radiative Transfer Model (RTM) (CO-
MANCHE [59]) was effectively used to quantify the impact of each term. A sensitivity
study was conducted to verify that additional simplifications could be made in the case of
the airborne sensor. Firstly, the (1 − RS) term can be approximated by 1 with an error of
approximately 0.05% for clear-sky observation conditions. Secondly, the diffusive contribu-
tion τdi f f is negligible compared to the direct transmission τdir(η � 1), which leads to an
atmospheric transmission τatm = τdir.

In a near-nadir viewing geometry and taking into consideration the presence of a CH4
plume in the line of sight, the atmospheric transmission when a plume is present can be
expressed as τ′dir = τdir·τCH4 with:

τCH4 = e−ρA (1+ 1
cos θ ), (2)

where ρ is the integrated line-of-sight concentration (in ppm·m), A the absorption (in
ppm−1·m−1) at the instrument wavelengths, and θ the solar zenith angle. In the following,
we replace the term of “integrated line-of-sight concentration” by the term “concentration
(in ppm·m)”. Therefore, the radiance in the presence of plume is Lpl (see scheme on
Figure A1 in Appendix A):

Lpl = Latm +
REoτdir

π
·τCH4. (3)
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Finally, between 1500 and 2500 nm, the atmospheric radiance represents less than
2% of the total radiance in clear-sky conditions. In the following, we assume that τatm is
equivalent to τdir. These reasonable hypotheses result in the following expressions:

Lno pl =
REoτdir

π
, (4)

Lpl = Lno pl ·τCH4. (5)

In specific cases where the atmospheric radiance Latm cannot be neglected, a single
RTM calculation of Latm for the whole image can be run (or derived from the image outside
the plume) and the whole image can be corrected as follow:

L∗no pl = Lno pl − Latm , (6)

where L is the measured radiance and L∗ is the corrected radiance. In this case, we assume:

L∗pl = L∗no pl ·τCH4. (7)

3.2. Plume Segmentation

The plume segmentation method consists of calculating a probability score, called
the Clutter Matched Filter (CMF) score [43,44,60], used for hyperspectral image analysis.
This technique estimates the probability of the presence of a spectral signature b (target
gas signature) in the radiance spectrum L for each pixel, considering the covariance of the
image background. Assuming that the background spectrum follows a normal distribution
with a mean background spectrum Lbkg and a covariance matrix C, the CMF method tests
the most likely hypothesis between H0 where the target gas is absent (no-plume pixel), and
H1 where the gas is present, e.g.,

H0 : L ≈ N
(

Lbkg, C
)

, H1 : L ≈ N
(

Lbkg + αb, C
)

. (8)

The CMF method estimates the value of the parameter α that is quantifying the
strength of the gas signature b in the background signal. The closer it is to the b-signal gas
signature in the image, the greater the value of α. An improvement of the CMF method,
quickly introduced by Funk [43] and widely applied in the literature, uses image clustering
as pre-processing [23,29,39–42]. Once the image is divided into K clusters (or classes thanks
to K-means algorithm), an average background spectrum and a covariance matrix are
calculated for each class. This improvement is called the Cluster-Tuned Matched Filter or
CTMF method. The expression of the CTMF score αj for pixel (x, y) among zj pixels of the
class j is:

αj(x, y) = qj·
(

L(x, y)j − Lmean,j

)
, (9)

where the optimal filter qj of the class j is expressed as [43]:

qj =
bj

TC−1
j√

bj
TC−1

j bj

, (10)

and Lmean,j is the mean radiance of the class j and Cj the class covariance matrix [61], such
that:

Lmean,j =
1
Zj

∑ iεjL(xi, yi) and Cj = ∑ iεj
(

L(xi, yi)− Lmean,j
)(

L(xi, yi)− Lmean,j
)T . (11)

The gas signature b must be homogeneous to
(

L(x, y)− Lmean,j
)

to which the optimal
filter qj is applied (Equation (9)). The observed radiance for plume pixels corresponds to
the Lpl of the direct model (Equation (5)). An important hypothesis is the approximation of
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the no-plume radiance of Equation (4) by Lmean,j to determine the expression of b (right
term of the following equation):

L(x, y)j − Lmean,j = (τCH4 − 1)Lmean,j = bj. (12)

The CTMF score results in a detection map of pixels impacted by CH4. A threshold
value of the score and morphological transformations are applied to isolate the CH4 plume
in the hyperspectral image (see Discussion in Section 5.3).

3.3. Quantification Step: Concentration

Once the mask of the plume pixels has been established, the CELINE code starts the
quantification of the CH4 plume in terms of concentration.

3.3.1. Linear Method (LM)

One of the most widely used methods for quantifying the plume concentration is
based on Equation (12). The non-linearity of the problem is the main difficulty of the
inversion. This method, which we call the linear method, uses a linearized expression for
the methane transmission. Indeed, in the first-order Taylor series approximation, we can
express τCH4 as:

τCH4 = e−ρA(1+ 1
cos θ ) ≈ 1− ρA

(
1 +

1
cos θ

)
. (13)

In this case, the Equation (12) becomes:

L(x, y)j − Lmean,j = −ρA
(

1 +
1

cos θ

)
Lmean,j = ρdj. (14)

A linear inversion gives the concentration directly as:

ρLM =

(
L(x, y)j − Lmean,j

)
C−1

j dj
T

djC−1
j dj

T . (15)

The LM is often presented as a method derived from the CTMF score (a derivative
of the Matched Filter) [27,33,46,62]. Indeed, it is possible to express the concentration as
the CTMF score divided by the optimal filter qj applied to the theoretical signal bj. When
the hypothesis of low plume concentrations is no longer valid, an underestimation of the
concentrations is observed as discussed below.

3.3.2. Optimal Estimation (OE) Method

To retrieve plume concentrations, OE is also commonly used in the literature [47–49].
The aim of this method was initially to retrieve the atmospheric composition by minimizing
a cost function [24]. The standard OE approach uses iterative RTM computations to find
the smallest difference between observed and modeled radiances [48]. In this approach,
the state vector x contains all parameters that contribute to the radiance collected by the
instrument, in particular the atmospheric composition and the ground reflectance. The
inversion requires a model F(x) to fit the observed radiance y as:

y = F(x) + ε, (16)

where ε is the sum of instrument and model errors. As the forward model is non-linear, the
state vector is obtained iteratively. The Gauss–Newton solution is presented in Rodgers [24]
as:

xi+1 = xa +
(

KiS−1KT
i + S−1

a

)−1
KiS−1

(
(y− F(xi))

T + KT
i (xi − xa)

)
. (17)

In this equation, xi is the state vector at the iteration i, xa the prior estimation of the state
vector, and Sa the prior error covariance matrix. S is the covariance matrix of the image’s
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pixels and Ki =
∂F
∂x |x=xi the Jacobian matrix calculated for each iteration. This iterative

inversion is applied to each plume pixel. OE inversion provides accurate results and has
been used, for example, to determine the potential of next-generation imagers, such as
PRISMA, to detect and quantify CH4 point sources [37]. In this latter reference, the authors
use the Iterative Maximum a Posterior Differential Optical Absorption Spectroscopy (IMAP-
DOAS) algorithm [63,64] and a polynomial decomposition of the surface reflectance to
characterize the algorithm’s response to the surface type (grass, bright, dark or urban). In
this case, the forward model is expressed as:

Fh(xi) = I0(λ) exp(−A ∑ 3
n=1sn ∑ 72

l=1τn,l)∑ K
k=0akPk(λ), (18)

where I0 is the incident top-of-atmosphere (TOA) solar intensity, A the geometric air
mass factor, τn,l the default optical depth from the US Standard Atmosphere (from MOD-
TRAN [65]) for trace gas element n = [1; 3] of the state vector at vertical level l = [1; 72],
sn the scaling factor to that default optical depth optimized retrieval, Pk the kth Legendre
polynomial, and ak the coefficients optimized in the retrieval. However, iterative RTM
computations for each pixel can be time-consuming and require good knowledge of non-
retrieved parameters. In this paper, we combine the standard OE approach with a method
to reconstruct the background (see below).

3.3.3. in-Scene Background Radiance (ISBR)—Optimal Estimation Method (OEM)

The method used in this paper is based on OE and the ISBR method developed for
this study which can be referred to as ISBR-OEM. Nevertheless, the ISBR method can be
applied to other algorithms, such as LM, to result in ISBR-LM.

The ISBR method is based on three assumptions. First, the radiance observed by the
sensor in the presence of the plume can be written as Lobs = Lbkg·τCH4 (Equations (4) and
(5)). Second, the background radiance Lbkg can be rebuilt from the spectra contained in
the image itself without RTM. Finally, the reconstruction of background radiance reduces
the number of parameters to be retrieved to one, i.e., the state vector x of the standard OE
approach only comprises the plume concentration ρ. The inverse problem’s (Equation (16))
solution thus becomes:

ρi+1 = ρa +
(

KiS−1KT
i + S−1

a

)−1
KiS−1

(
(y− FISBR(ρi))

T + KT
i (ρi − ρa)

)
. (19)

The main advantage of ISBR-OEM is that, unlike in previous papers, an RTM is not
required, avoiding a complex and time-consuming step. The forward model FISBR(ρ) is
written as:

FISBR(ρ) = Lbkg·τCH4(ρ). (20)

For an in-plume pixel, background radiance cannot be obtained directly because this
would require an image taken just before the start of the emission and temporally very
close to the time of the plume image studied. Therefore, the ISBR method’s background
estimation steps are: (i) image classification using CH4 non-absorbing channels, (ii) for
each in-plume pixel, a set of no-plume pixels spectrally similar (corresponding to the same
class as the target in-plume pixel) in the area surrounding the plume are selected; (iii)
root mean square error (RMSE) is used to identify the “selected” pixel; (iv) in-plume pixel
background radiance for the CH4 absorbing channels is assumed to be the corresponding
radiance of the “selected” pixel.

The a priori concentration xa = ρLM is derived from the linear method even if the a
priori has to be independent of the observation in the standard OE approach. To limit the
share of observation in a priori knowledge, we used a prior error of 100% of the a priori
concentration in the prior error covariance SLM. The a priori concentration is also the initial
state x0. The ISBR-OEM’s solution is then expressed as:

ρi+1 = ρLM + ˆS−1
ρ KiS−1

((
y− Lbkg·τCH4(ρi)

)T
+ KT

i (ρi − ρLM)
)

. (21)
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The covariance matrix S is calculated for each class without using the pixels identified
as belonging to the plume. The a posteriori uncertainty of the retrieved concentration is
commonly defined as ˆS−1

ρ = KiS−1KT
i + S−1

LM [47,48]. This a posteriori covariance matrix is
providing a robust confidence interval for the concentration (for each plume pixel), from
which a reliable uncertainty on the flow rate is estimated.

3.4. Quantification Step: Flow Rate

Once the wind information associated with the image is available, an estimation of
the source flow rate is calculated by the CELINE code and we compare three methods of
flow rate estimation.

3.4.1. Integrated Mass Enhancement (IME) Method

The IME method is commonly used to calculate flow rates from a gas concentration
map [27,34,36,51], and it does not use wind direction. The IME method relates the flow
rate QIME to the plume’s total mass IME (in g), the wind speed U (in m·s−1) and the
characteristic size of the plume L (in m) as:

QIME =
U
L

(
ΣCplume·Aplume

)
=

U
L
·IME = FIME·U, (22)

where ΣCplume is the concentration of the plume-pixel (in g), and Aplume the surface of the
plume (in m2). The characteristic size of the plume L is defined as the square root of the
plume surface area [37]. FIME is the IME factor (in g·m−1) similar to a mass per unit length
of the following methods.

3.4.2. Cross-Sectional Flux (CSF) Method

The CSF method was developed to be efficient computationally and conceptually
simple to estimate a source’s ozone and aerosol flow rates [66]. This method is commonly
used in the literature to estimate gas flow rates [7,67–70]. The product of the mass per unit
length mul CSF (or line density) by the wind speed U results in a flow rate value q at each
distance d of the source as followed:

q(d) = mul CSF(d)·U(d). (23)

To obtain the source’s flow rate Q (in g·s−1), an average of q(d) is calculated over a
distance range from the source. In our study, the wind speed grid is larger than the image
dimension. The wind speed U (in m·s−1) is assumed to be constant in the entire image.
Averaging q(d) is the same as averaging mul CSF(d) (in g·m−1). Then, Q is defined as:

QCSF =< mul CSF(d) >D · U, (24)

where < >D is the mean operator between the source point and the distance D.
Estimating the principal wind direction is a critical point of the CSF method. The mass

per unit length mul CSF(d) is effectively obtained by summing the mass present on a slice
perpendicular to the wind direction.

3.4.3. Rings Decomposition of Mass (RDM) Method

The local wind direction in the case of industrial plumes is not easy to estimate. Turbu-
lence effects or the presence of obstacles (buildings, etc.) create variations in wind direction
over very short timescales. In order to avoid this variability, a method independent of
wind direction was developed during this work and based on a flow rate retrieval algo-
rithm developed by SPASCIA society (see authors affiliation). After selecting the source
pixel, the RDM method calculates the sum of the mass inside successive concentric rings
(with the source point as centre) to obtain the mass per unit length mul RDM(d) as a func-
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tion of the distance to the source. As previously, after spatial averaging of mul RDM(d), a
multiplication by the wind speed leads to the RDM flow rate QRDM as:

QRDM =< mul RDM(d) >D · U. (25)

The radius of the rings is an input parameter. Choosing a small step (30 m or 1 pixel
between successive rings) brings this method closer to the CSF method, while a step size
covering the entire plume results in a calculation comparable to the IME method. The step
has an impact on the uncertainty associated with the measurement.

4. Results
4.1. LM versus ISBR-OEM

LM is the most common plume concentration quantification method. However, trans-
mission linearization results in an underestimation of the retrieved concentration, especially
for high concentration values. In order to illustrate this effect, we used a reflectance image
using a land surface reflectance database and standard atmospheric parameters to create a
radiance image (using the formula in Section 3.1) with a synthetic plume of known concen-
tration (see Figure A3 in Appendix C) added to an atmospheric signal. The background
reference signal corresponds to a standard atmosphere of MODTRAN code (mid-latitude
summer atmospheric profiles and concentrations) [65]. This image is then processed by LM
and ISBR-OEM. The results are plotted in Figure 3; the true and retrieved ISBR-OEM con-
centrations are shown as a function of the retrieved LM concentration. This particular graph
compares the real case (PRISMA) and the synthetic case. The reflectance used in Figure 3a
is based on the reflectance spectrum of a brick material (ECOSTRESS JPL Spectral Library
at https://speclib.jpl.nasa.gov/ [71,72], last accessed on 25 January 2021) with synthetic
noise according to PRISMA SNR (SNR of 150 at 2300 nm), while Figure 3b is based on a real
reflectance map from a SWIR image over an industrial site [73]. The synthetic concentration
curves (in red) are above the first bisector, meaning an underestimation of the concentration
obtained with the LM as expected [73]. The higher the synthetic concentration, the higher
the underestimation. Concerning ISBR-OEM (blue dashed line), the synthetic concentration
is perfectly retrieved in the simple reflectance map case, and retrieval is fairly similar to
the simulation for the real reflectance map despite scene heterogeneity and the interclass
variability.

Figure 3. Plume concentration (synthetic in red and by ISBR-OEM in blue) as a function of the plume concentration obtained
by LM. A noise brick reflectance map is used to compare the inversion method results to the synthetic (a); a real reflectance
scene is used and the result of the inversion for a PRISMA image is plotted in green points (b).

https://speclib.jpl.nasa.gov/
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In the test cases, the ISBR-OEM-retrieved concentration is equal to the input synthetic
concentration, and the gap between ISBR-OEM and LM increases with concentration. The
test cases give confidence in the results for the real case; the gap between ISBR-OEM and
LM concentrations is almost the same with a real PRISMA image (green dots in Figure 3b)
corresponding to the 2020/07/21 plume. As before, LM concentrations are lower than
ISBR-OEM concentrations with the PRISMA image.

Figure 4 corresponds to a spatial comparison of the plume concentration maps for
the 2020/07/21 PRISMA image using LM (Figure 4a) and ISBR-OEM (Figure 4b). The
absolute difference between ISBR-OEM and LM concentrations is shown in Figure 4c. The
difference between the two methods is less significant in the low concentration parts than
in the more concentrated parts of the plume. Nevertheless, the spatial smoothness of the
plume with LM seems more realistic than with ISBR-OEM. This is mainly because in case of
non-convergence of the OE, the concentration values are set to 0. The highest concentration
pixel has a mass difference of 30%, which can be significant in terms of the estimated total
mass emitted by the source and thus the flow rate. LM can be used up to a maximum
concentration of approximately 6000 ppm·m to be less sensitive to underestimation (and
for a signal sufficiently higher than the SNR). The analysis in terms of total mass and flow
bias is presented for two plumes in Section 4.3.

Figure 4. (a) Concentration map obtained by LM for the 2020/07/21 PRISMA image. (b) Concentration map obtained
by ISBR-OEM for the same image. (c) Difference between both concentrations (b) − (a)). The black arrows indicate the
emission point and the red arrows indicate the wind direction. The color bar is cut off at 10,000 ppm·m for (a) and (b) whose
maximum is 15,000 and 20,000 ppm·m, respectively. For (c), the color bar is cut off to a maximum difference at 2000 ppm·m.

As the concentration map of the real plume is unknown, comparison between real
and retrieved concentrations must be replaced by a comparative study of the measured
and estimated radiances. Figure 5a represents (in red) the instrument-measured radiance
for the highest concentration pixels near the source (approximately 20,000 ppm·m for
the 2020/07/21 plume) for the wavelengths zoomed from 2000 to 2500 nm. The other
colors portray LM and ISBR-OEM (green and blue, respectively) results, while other lines
represent different types of radiance: the dashed lines represent the estimated background
radiances Lbkg used in the method, and the solid lines represent the instrument-estimated
radiances calculated using the retrieved concentration value. The Lbkg LM, i.e., the mean
radiance of the class, is close but not equal to the Lbkg ISBR−OEM obtained by the ISBR
method. When these spectra are used to estimate the radiance with the associated retrieved
concentration (respectively 16,000 ppm·m for LM and 20,000 ppm·m for ISBR-OEM),
the ISBR-OEM spectrum is closer to the measured radiance than the LM spectrum. The
residuals of the two methods are shown in Figure 5b. The residual’s associated norm is
0.32 W·m−2·sr−1·µm−1 for the ISBR-OEM case compared to 0.39 W·m−2·sr−1·µm−1 for
the LM case. The ISBR-OEM residual’s associated norm is closer to the expected noise
value in this spectral range for PRISMA data. This noise is estimated to be around 0.25 in
the CH4 absorption bands. ISBR-OEM avoids any linearization of the gas transmission.
Using an estimation of the background radiance that varies for each pixel reduces residuals.
The CH4 signature has been largely suppressed in the residuals.
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Figure 5. (a) Observed radiance (red) and background radiances (dashed lines) for linear (green)
and hybrid (blue) methods, estimated radiances (solid lines) with LM (green) and ISBR-OEM (blue)
retrieved concentrations. (b) Difference between observed and estimated radiances for both cases.

Furthermore, ISBR-OEM benefits verification values from the standard OE approach,
such as the degree of freedom or the χ2 value. Examples are shown in Figure 6 for
the 2020/07/21 PRISMA image. In the case of a state vector with one parameter, the
concentration in this study, the degree of freedom can be interpreted as the share of
the retrieved concentration coming from the measurement and independent to a priori
information. This parameter must tend towards unity to ensure that the inversion is not
over constrained by the a priori. Figure 6a shows a degree of freedom of approximately
0.99 in the most concentrated area and higher than 0.5 in the rest of the plume. The χ2

value corresponds to the normalized mean square deviation between the observed and
the modelled radiances for each wavelength. A χ2 value close to unity means a correct
estimation of retrieval uncertainty. Figure 6b shows a few pixels between 0.5 and 1, which
can be interpreted as a small overcorrection, while a few others near the plume head are
insufficiently corrected (χ2 > 1). Nevertheless, the results remain close to unity which
gives confidence to inversion results. In addition, the standard OE approach estimates
a posteriori uncertainty [47]. For each plume pixel, retrieved concentration uncertainty is
obtained in ppm·m, which can provide an estimation of the accessible concentration range.
The a posteriori uncertainty for the plume in Figure 6 has an average value of approximately
350 ppm·m.

Figure 6. (a) Degree of freedom map for the 2020/07/21 image. The values tend towards 1.0; the
a priori concentration is not dominant in the inversion step. (b) χ2 map for the same image. The
average χ2 values are close to 1.0.
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4.2. Overview of the Concentration Map

Here, only ISBR-OEM results are provided and discussed. Of the eleven images in
the dataset, nine show a plume corresponding to source A (Figure 2), while the plume
corresponding to source D is only seen in two images. Source B and C plumes are seen
only once.

Independently of the sources and dates, thirteen plumes were detected. Focusing
on the plume head, the plume from source A on the 2020/07/21 image, used as an
illustration in the previous sections, shows the highest concentration with a maximum pixel
of approximately 20,000 ppm·m. The maximum concentration values for each detected
plume are listed in Table 3. To summarize, three plumes are marked for source A. Sources
B and D each have one plume that appears significant, while the source C plume is less
intense.

Table 3. Maximum concentration (in ppm·m) for each plume detected as a function of the source.
Seven of the thirteen plumes have a maximum concentration above 10,000 pmm·m.

Date Source Concentration Max (ppm·m)

2020/04/19 A 10,700
2020/06/22 A 4790
2020/06/22 D 4920
2020/07/03 A 10,520
2020/07/21 A 20,010
2020/08/07 A 16,300
2020/08/07 C 6790
2020/10/10 D 14,320
2020/11/14 B 11,940
2021/02/09 A 6570
2021/03/10 A 5470
2021/04/14 A 7470
2021/06/22 A 15,390

For illustration, Figure 7 shows plume concentrations maps on the four sources.
Plumes not presented in Figures 4b and 7 are shown in Figure A2 of Appendix B. A mask
delimiting the plume contours was applied. These masks including the whole plume are
called “full” masks. It is possible to see on this figure, especially on the plume of source D,
estimation errors due to the terrain.

Indeed, these sources are distributed in a desert with roads and bright sand banks.
The dispersion of a gas by wind advection and turbulence leads to a progressive decrease
of the concentration as a function of the distance from the source. However, we observe
a small local disturbance in this variation when the plume is covering road pixels. This
disturbance is larger over a bright sand bank corresponding to high CTMF values (false
alarms), probably due to the intra-class variability or “confuser” pixels that lead to a
poor reconstruction of the background signal (see Discussion Section 5.4). The case of the
2020/10/10 image corresponding to source D illustrates the consequence of the presence
of bright sand banks. The rectangle and the ellipse on the D source plume correspond to
overestimated concentration areas and are linked to the presence of bright sand banks. If
not considered, these artefacts have an impact on the estimation of the average mass and
consequently on the estimation of the flow rate.
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Figure 7. The background of this figure is a PRISMA RGB image. The color scale represents the
concentration maps (in ppm·m) for the four sources obtained from PRISMA images (source A:
2021/06/22, source B: 2020/11/14, source C: 2020/08/07, source D: 2020/10/10). The red rectangle
and ellipse highlight an overestimation of the concentration linked to the presence of bright sand
banks.

4.3. Mass per Unit Length or Wind Normalized Flow Rate Analysis

This section presents results for the flow rate quantification methods presented in
Section 3 in terms of mean mass per unit length < mul > and FIME. The mean mass per unit
length corresponds to the flow rate normalized by the wind speed (Section 2.2). The results
are detailed in the case of ISBR-OEM retrieval and then compared to the LM retrieval. To
analyze these methods, the most stable plumes were focused on. A stable plume must
be as close as possible to a Gaussian plume, which settles in a constant emission regime
and for which the mass spatial distribution follows a Gaussian model [74,75]. Thus, this
analysis is based on two plumes of source A from the 2020/07/21 and 2021/06/22 images,
shown respectively in Figures 4 and 7, and respectively referred to as P1 and P2 below.

The CSF and RDM methods are first considered. Figure 8 shows the spatial evolution
of the mass per unit length of P1 as a function of the distance d to the source (located at
d = 0) for the CSF and RDM methods shown in a bold line. The mass per unit length
mul(d) is obtained by summing the mass present on a slice of the plume (perpendicular to
the wind direction for CSF and in the ring for RDM). The areas in blue (CSF method) and
with orange dots (RDM method) correspond to the sum of a posteriori uncertainties from
the OE approach. These uncertainties do not include the loss mass due to the detection
threshold, which increases with the distance to the source. The CSF and RDM methods
provide equivalent results as shown in Figure 8, but the RDM method does not use the
wind direction estimation.
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Figure 8. Spatial evolution of the mass per unit length for the Cross-Sectional Flux (CSF) and Rings
Decomposition of Mass (RDM) methods for the plume P1. The a posteriori error allows an uncertainty
range to be calculated by summing the retrieved concentration and the a posteriori error map.

The mean of the mass per unit length is calculated from these curves, and in order
to minimize the errors due to the ground artefacts presented in Section 4.2, two masks
have been established. The “small” mask covers the immediate environment of the source
with an extension of 1400 m (excluding the road pixels or bright sand banks) and the “full”
mask includes most of the concentration (see Figure 7). These masks have a direct impact
on the mean of the mass per unit length and the associated uncertainty. The < mul >
uncertainty is lower with the small mask than with the full mask. Indeed, the associated
uncertainty varies from 21.8 (23.4) g·m−1 to 36.8 (39.9) g·m−1 for the CSF (RDM) method
from the small to the full mask, respectively. For the IME method, the uncertainty varies
from 181.5 to 455.2 g·m−1 with the small and the full mask, respectively. As shown in
Table 4, FIME values are more than the double of CSF and RDM values due to the fact that
the effective wind values to be considered are higher for the last two methods than for IME
(see Section 5). The other cases are listed in Tables A1 and A2 in Appendix D.

Table 4. Estimation of the wind normalized source flow rate corresponding to plumes P1 and P2 using ISBR-OEM retrieved
concentration and CSF, RDM or IME flow rate estimation methods.

Plume Mask <mul CSF>
(g·m−1)

<mul RDM>
(g·m−1)

FIME
(g·m−1)

Total Mass
(kg)

Number of Plume
Pixels

P1 Small 617.0 ± 21.8 635.5 ± 23.4 1443.0 ± 181.5 1258.4 ± 158.3 845
P1 Full 727.0 ± 36.8 746.8 ± 39.9 1572.7 ± 455.2 3271.3 ± 946.7 4807
P2 Small 533.1 ± 16.1 558.4 ± 17.2 1222.2 ± 114.1 720.4 ± 67.3 386
P2 Full 548.4 ± 27.1 552.9 ± 28.4 1146.2 ± 324.6 2106.6 ± 596.5 3753

There is a difference in the estimated mean of the mass per unit length between the
full and small masks, but the difference is relatively minor compared to the difference in
surface area between the two masks (see number of pixels in the table). This means that the
mean of the mass per unit length is relatively stable regardless of the area considered. It is
therefore preferable to use the small mask for the flow rate estimation because the errors
due to certain background elements are minimized.

Table 5 is the equivalent of Table 4 when using the concentration obtained with the
LM for flow rate estimates. The relative differences between the flow rate estimates from
ISBR-OEM and LM concentrations (for the three flow rate methods) are equal to the relative
difference between the plume total mass from the ISBR-OEM and the LM presented in
Table 6). Here, this bias is estimated to be 16% (for P1) and 7% (for P2) in the case of a
concentrated mask, and drops to 7% (for P1) and 4% (for P2) with the “full” mask.
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Table 5. Estimation of the wind normalized source flow rate corresponding to plumes P1 and P2 using LM retrieved
concentration and CSF, RDM or IME flow rate estimation methods.

Plume Mask <mul CSF>
(g·m−1)

<mul RDM>
(g·m−1)

FIME
(g·m−1)

Total Mass
(kg)

Number of
Plume Pixels

P1 Small 531.9 547.9 1244.0 1084.8 845
P1 Full 694.6 713.4 1512.7 3146.4 4807
- - - - - - -

P2 Small 497.7 521.4 1141.2 672.6 386
P2 Full 525.8 530.0 1098.8 2019.4 3753

Table 6. Relative differences between results obtained with the ISB-OEM and the LM.

Plume Mask Relat. Dif.
CSF (%)

Relat. Diff.
RDM (%)

Relat. Diff.
IME (%)

Relat. Diff.
Total Mass (%)

Relat. Diff. Total Mass
Uncertainty with ISBR-OEM

(%)

P1 Small 16.0 16.0 16.3 16.0 12.6
P1 Full 4.7 4.7 4.0 4.0 24.3
- - - - - - -

P2 Small 7.1 7.1 7.1 7.1 9.3
P2 Full 4.3 4.3 4.3 4.3 28.3

5. Discussion
5.1. Source Wind Normalized Flow Rate Estimation

We have shown that the ISBR-OEM can correct biases on pixel-to-pixel concentrations
compared to a linear inversion. Tables 4–6 show, in a real case, the impact of the correction
of this bias on the mass per unit length. This is smaller (5%) if all detected pixels are used
for flow rate estimation. This value is directly related to the bias on the total mass included
in the study mask. However, we have also seen that the uncertainty on the total mass
increases when using a larger mask. It increases from 12.6% and 9.3% to 24.3% and 28.3%
for P1 and P2, respectively. There is therefore a strong interest in using a “small” mask to
reduce the uncertainties on the mass per unit length. In this case, it becomes necessary to
correct the bias that can become greater than the uncertainty.

5.2. Wind Information and Flow Rate Estimation

Wind information and effective wind estimation uncertainties remain critical points
for flow rate estimation. In this paper, ECMWF forecasts are used to derive the wind
direction and wind speed. Due to spatial and temporal sampling of these forecasts, an
interpolation was performed on the Korpezhe site.

Regarding the direction, when estimating the flow rate using the CSF method, we
found, depending on the case, a significant difference between the wind direction given by
the forecast, and that given by the main direction of the plume as seen in the images. As
such, the plume direction used in this method was determined from the images themselves.

The wind speed U is derived from the 10 m ECMWF wind components. The spatial
and temporal averaging and a 50% random error (1–69% for some authors [46]) added
to the forecast derived values resulted in low confidence in the value of U [36]. Other
authors suppose a 1.5 m·s−1 standard deviation in the wind speed [7,76]. In addition,
the value used to calculate the flow rate is an effective wind speed, and a function of the
10 m wind speed. In the literature, authors used fluid dynamics simulations to calibrate
the relationship between the 10 m wind speed and the effective U involved in plume
dispersion [7,27,34,37,68,76]. Large-eddy simulation methods were used to determine the
relationship, which depends on the flow rate estimation method, instrument specifications,
and measurement conditions. The various expressions for U, according to the 10 m wind
speed U10, bring uncertainty to the wind speed value. For example, regarding GHGSat-D,
Varon (2018) [68] proposes Ue f f IME = α logU10 + 0.6 m·s−1 with α between 0.9 and 1.1
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and Ue f f CSF = 1.47 U10 m·s−1. For the same instrument, Varon (2019) [34] uses Ue f f IME =

log(U10)+ 0.5 m·s−1 for the IME method and Ue f f CSF = 1.5 U10 m·s−1 for the CSF method.
For PRISMA, LES expresses effective wind speed as Ue f f IME = 0.34 U10 + 0.44 m·s−1 [36].
Considering U10 = 3 m·s−1, the effective wind speed can vary from 2.05 to 2.37 m·s−1 for
the IME method and is approximately 7.4 m·s−1 for the CSF method. Figure 9 represents
the flow rate estimation for source A and uncertainties for each method in nine images
from 2020 to 2021 with the ISBR-OEM retrievals.

Figure 9. Temporal evolution of source A’s flow rate for the three methods: CSF (blue), RDM (orange)
and IME (red). The points of the three colors represent the flow rate obtained with the mean mass per
unit length and the mean effective wind (average of all the Ue f f calculated with U10 from Table 2).
This mean effective wind speed can be interpreted as the wind value assuming no uncertainty. The
areas in blue, in orange dotted and in red correspond to the uncertainty on the mean mass per unit
length and the same mean effective wind speed. The arrow error bars cover maximum flow rate
value uncertainty. They are calculated by combining the uncertainty on the mean mass per unit
length and the extremes of Ue f f derived from U10 ± 1.5 m·s−1.

The flow rate obtained with the three methods are of the same order of magnitude
with lower values for the IME method (around 30% lower than CSF). Taking only into
account the uncertainty on the mean mass value and considering a perfect estimation
of the effective wind speed, the uncertainty is reasonable as shown by the blue, red and
orange (dotted) areas. The associated uncertainties are about 122, 135 and 196 g·s−1 for
the CSF, RDM and IME methods, respectively. However, effective wind speed uncertainty
has a significant impact on these values. Adding this U uncertainty results in the error
bar value in Figure 9 that becomes rather large (863, 903 and 691 g·s−1 with the same
order). Nevertheless, considering all these uncertainties, an overlap appears between IME
and CSF flow rate estimates. The uncertainties are consistent with each other. If only one
value of the source flow rate were to be given, an average of the retrieved values should
be calculated because, statistically, the true value of the flow rate must lie between the
retrieved values (range that contains the uncertainties of both estimation methods).

The effective wind is the largest source of uncertainty. The use of better quality
wind products associated with the measurement should be feasible and would reduce the
uncertainty associated with the estimated source flow value [77]. In the event that such
wind products are not available, it is also possible to use methods that circumvent the need
for wind speed information by using LES, providing a more robust uncertainty [51].

5.3. Manual Intervention

The eye is a very powerful tool to identify an area of interest to focus on. In the
algorithm set up to shift from a hyperspectral image to a map of plume concentration and
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then flow rate, some steps require manual checking. This is the case for the definition of the
plume contour in the detection part and then the selection of an area of interest to translate
the concentration map into a flow rate. Selecting a plume area is a common problem in the
literature [38,78]. Monitoring methane emissions using satellite images has the advantage
of a short revisit time and global coverage of the Earth. Manually adapting processing
to each image is not optimal for high-frequency or large-scale monitoring. These manual
operations can be removed by optimizing the algorithm, which should be possible.

5.4. Overestimation Area

In some images and for some areas, an overestimation of the methane concentration
was identified over specific areas in the desert region under study. This may be related to
the presence of transport infrastructure as well as to spatially homogeneous sand banks
with higher reflectance. Overestimations like this should not occur due to the classification
that correctly groups these pixels into specific classes. A possible explanation is that,
even if these pixels are grouped into a class, the step for reconstructing the background
radiance using similar pixels around the source has limitations. If a few pixels of the
same class surround the plume, then the most similar pixels selected may not be spectrally
ideal. Further investigation is required to determine the cause of this local overestimation.
However, some authors have shown that the surface reflectance features in SWIR can lead
to unexpected retrieved results [79]. For example, calcium carbonate has already been
identified as a “confuser”, meaning a source of errors in plume concentration [64].

6. Conclusions

This paper shows a quantitative analysis of CH4 plumes from an industrial site in
the Turkmenistan desert based on PRISMA hyperspectral images at a spatial resolution of
30 m.

In open literature, a linear method based on CTMF score is used, providing a CH4
concentration for each pixel in the hyperspectral image. However, this method uses a CH4
transmission linearization that results in an underestimation of gas concentration. The
proposed ISBR-OEM is divided into two steps. The first is the detection for which the
CTMF score and standard image processing are used to delineate the plume. Detecting
the plume’s boundaries is required to perform the next step of quantification on a reduced
area of the image, therefore improving efficiency. The plume quantification step is divided
into two parts: plume concentration mapping and source flow rate estimation. Instead of
using a RTM in OE, a radiance expression is developed from an estimation of background
radiance and CH4 transmission. ISBR-OEM uses an a priori concentration map derived
from the map obtained by LM. ISBR-OEM has two advantages. In addition to having a
relatively fast computing time (no RTM), a posteriori uncertainty and verification values
(such as the degree of freedom) can be studied. The a posteriori uncertainty map provides
a precise and controlled framework of uncertainty on the retrieved concentration value.
We detected thirteen plumes in the eleven PRISMA satellite images acquired over the
Korpezhe site from 2020 to 2021. Four sources were identified, and the major source (Source
A, Figure 2) is seen in nine images, with the stronger plume associated with a surface area
of 432 km2 and a total mass of approximately 3.2 Tg, and with the highest concentration
for a pixel with 20,010 ppm·m. In this paper, three flow rate estimation methods were
compared against each other with consistent results given the associated uncertainties. A
sensitivity study was conducted on the impact of the mask applied to the concentration
map and on the use of a threshold value for this map. For source A, the higher flow rate
was estimated at 3.9 ± 1.7 kg·s−1 using the CSF method, 4.0 ± 1.8 kg·s−1 using the RDM
method and 2.6 ± 1.3 kg·s−1 using the IME method. The lower flow rate for the nine
plumes was approximately 0.45 ± 0.35 kg·s−1 using the CSF method, 0.47 ± 0.35 kg·s−1

using the RDM method, and approximately 0.36 ± 0.3 kg·s−1 using the IME method. It
has been shown that the ISBR-OEM reduces flow rate bias from 4% (plume P1) to 16%
(plume P2).
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The largest source of uncertainty in flow rate remains the effective wind speed es-
timation, which is responsible for more than 75% of the total uncertainty in the total
budget error. Without wind uncertainty, the higher flow rate for source A was estimated at
3.9 ± 0.2 kg·s−1 using the CSF method and 2.6 ± 0.4 kg·s−1 using the IME method.
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Appendix A

Figure A1. Scheme of the radiances according to the direct model. The term ETOT describes the
total solar irradiance received at the target pixel. It takes into account the direct and diffusive
irradiances and the irradiance resulting from the ground–atmospheric coupling and can be written
as ETOT = E0/(1− RS).
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Appendix B

Figure A2. Concentration maps (in ppm·m) for the other plume detected. 1: 2020/04/19 source A. 2:
2020/06/22 source A. 3: 2020/07/03 source A. 4: 2020/08/07 source A. 5: 2021/02/09 source A. 6:
2021/03/10 source A. 7: 2021/04/14 source A. 8: 2020/06/22 source D.

Appendix C

Figure A3. Concentration map of the synthetic plume (in ppm·m) used in the Section 4.1.
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Appendix D

Table A1. Estimation of the wind normalized source flow rate in cases where the small mask is used.

Date Source <mul CSF>
(g·m−1)

<mul RDM>
(g·m−1)

FIME
(g·m−1)

Masse Max
(kg)

Total Mass
(kg)

Number of
Plume Pixels

2020/04/19 A 339.6 ± 16.4 339.9 ± 17.1 629.7 ± 81.5 6.33 224.3 ± 29.0 141

2020/06/22 A 140.7 ± 16.8 148.1 ± 19.0 338.9 ± 80.1 2.83 102.2 ± 24.2 101

2020/06/22 D 131.7 ± 16.1 128.4 ± 17.1 298.6 ± 95.2 2.91 154.1 ± 49.2 296

2020/07/03 A 204.6 ± 19.4 232.0 ± 23.9 392.0 ± 75.2 6.22 104.5 ± 20.0 79

2020/07/21 A 617.0 ± 21.8 635.5 ± 23.4 1443.0 ± 181.5 11.91 1258.4 ± 158.3 845

2020/08/07 A 653.5 ± 29.6 666.1 ± 31.8 1357.0 ± 200.9 9.64 1039.5 ± 153.9 652

2020/08/07 C 182.5 ± 22.4 183.0 ± 25.4 297.8 ± 82.2 4.01 76.8 ± 21.2 74

2020/10/10 D 413.2 ± 17.8 458.0 ± 20.4 666.4 ± 85.1 8.46 247.3 ± 31.6 153

2020/11/14 B 732.6 ± 39.3 781.4 ± 42.3 1185.5 ± 227.0 7.06 703.2 ± 134.6 391

2021/02/09 A 209.2 ± 26.8 209.2 ± 26.4 305.4 ± 70.8 3.89 56.5 ± 13.1 38

2021/03/10 A 177.1 ± 28.8 186.9 ± 33.0 334.7 ± 121.4 3.23 100.9 ± 36.6 101

2021/04/14 A 121.6 ± 22.1 121.7 ± 24.0 199.6 ± 73.8 4.42 40.2 ± 14.8 45

2021/06/22 A 533.1 ± 16.1 558.4 ± 17.2 1222.2 ± 114.1 9.10 720.4 ± 67.3 386

Table A2. Estimation of the wind normalized source flow rate in cases where the full mask is used. The dashes represent
cases without “full” masks due to plume spread.

Date Source <mul CSF>
(g·m−1)

<mul RDM>
(g·m−1)

FIME
(g·m−1)

Mass
Max (kg)

Total Mass
(kg)

Number of
Plume Pixels

2020/04/19 A - - - - - -

2020/06/22 A - - - - - -

2020/06/22 D - - - - - -

2020/07/03 A 208.4 ± 24.7 198.0 ± 26.1 486.6 ± 142.7 6.22 237.7 ± 69.7 265

2020/07/21 A 727.0 ± 36.8 746.8 ± 39.9 1572.7 ± 455.2 11.91 3271.3 ± 946.7 4807

2020/08/07 A - - - - - -

2020/08/07 C 381.3 ± 33.3 392.3 ± 36.5 642.3 ± 185.2 4.01 411.9 ± 118.8 457

2020/10/10 D 530.4 ± 24.7 539.1 ± 25.7 1157.4 ± 207.4 8.46 1035.2 ± 185.5 889

2020/11/14 B 1022.3 ± 56.0 1170.3 ± 64.0 1580.5 ± 547.2 7.06 2668.3 ± 923.8 3167

2021/02/09 A 179.9 ± 28.3 179.9 ± 28.5 382.7 ± 137.4 3.89 145.7 ± 52.3 161

2021/03/10 A 157.0 ± 23.7 157.1 ± 25.9 368.7 ± 148.9 3.23 197.9 ± 79.9 320

2021/04/14 A 116.3 ± 24.0 156.2 ± 27.4 323.0 ± 178.3 4.42 192.3 ± 106.2 394

2021/06/22 A 548.4 ± 27.1 552.9 ± 28.4 1146.2 ± 324.6 9.1 2106.6 ± 596.5 3753
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