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Abstract: Environmental monitoring using satellite remote sensing is challenging because of data
gaps in eddy-covariance (EC)-based in situ flux tower observations. In this study, we obtain the
latent heat flux (LE) from an EC station and perform gap filling using two deep learning methods
(two-dimensional convolutional neural network (CNN) and long short-term memory (LSTM) neural
networks) and two machine learning (ML) models (support vector machine (SVM), and random
forest (RF)), and we investigate their accuracies and uncertainties. The average model performance
based on ~25 input and hysteresis combinations show that the mean absolute error is in an acceptable
range (34.9 to 38.5 Wm−2), which indicates a marginal difference among the performances of the four
models. In fact, the model performance is ranked in the following order: SVM > CNN > RF > LSTM.
We conduct a robust analysis of variance and post-hoc tests, which yielded statistically insignificant
results (p-value ranging from 0.28 to 0.76). This indicates that the distribution of means is equal
within groups and among pairs, thereby implying similar performances among the four models. The
time-series analysis and Taylor diagram indicate that the improved two-dimensional CNN captures
the temporal trend of LE the best, i.e., with a Pearson’s correlation of >0.87 and a normalized standard
deviation of ~0.86, which are similar to those of in situ datasets, thereby demonstrating its superiority
over other models. The factor elimination analysis reveals that the CNN performs better when
specific meteorological factors are removed from the training stage. Additionally, a strong coupling
between the hysteresis time factor and the accuracy of the ML models is observed.

Keywords: eddy covariance; error analysis; deep learning; machine learning; CNN; SVM; RF; LSTM;
factor elimination; hysteresis; flux tower

1. Introduction

Latent heat flux (LE) is an important hydro-meteorological variable in the investigation
of climate change, hydrological cycle intensification, and plant–atmosphere interactions [1,2].
The development of reliable and long-term LE fluxes is vital for climate adaptation strate-
gies [3] as well as disaster risk reduction plans [4], and it is one of the sustainable development
goals of the United Nations initiative for global geospatial information management [5]. LE is
defined as the sum of outgoing turbulent heat fluxes in the form of transpiration from plant
canopies and evaporation from the soil surface [6]. In terms of global outgoing turbulent
heat fluxes, LE contributes the most significantly among the components of the water cycle,
as well as provides a linkage among water, energy, and the carbon cycle [7–9]. Accurate
information pertaining to LE is a prerequisite for many agro-meteorological applications, such
as water resource management, drought prediction, irrigation scheduling, and crop yield
prediction [10,11]. However, owing to spatial heterogeneity in the land surface, the accurate
quantification of LE is challenging [12,13].

Hitherto, the most accurate method for measuring LE is via eddy covariance (EC)-
based flux tower observations [14–16]. To measure high-frequency flux observations
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from sensors, the EC method relies on three-dimensional sonic anemometers as well as
infrared gas analyzers [17]. However, such high-frequency flux observations are prone to
uncertainties owing to sensor malfunction and unfavorable environmental conditions [18].
Consequently, the complete time series of ground based LE observations cannot be obtained.
Such unavailability in flux observations is more pronounced in forest ecosystems because
of their spatial heterogeneity and complex topography [19]. Additionally, quality control
procedures result in unavailable flux datasets [20]. Therefore, the gap filling of unavailable
EC-based datasets must be addressed for estimating water and energy budgets. Researchers
have used regression techniques based on available meteorological observations to fill the
gaps in flux datasets. These methods include interpolation, nonlinear regression, mean
diurnal variables, and marginal distribution sampling methods. Detailed information
regarding these methods and their limitations are available in the literature [21–24].

Considering the limitations of regression-based techniques, in recent years, researchers
have begun using data-driven gap-filling techniques based on machine learning (ML)
algorithms [25]. For example, in regard to the latent heat of evapotranspiration, Cui,
et al. [26] showed that the ML-based gap-filling method can outperform typically used
gap-filling approaches such as REddyProc [27] and ONEFlux [28]. Similarly, van Wijk and
Bouten [29] used an ML method that is the artificial neural network (ANN) to gap-fill
carbon and water fluxes at six bio-physically different flux tower forest sites, and they
demonstrated that the ANN can effectively simulate fluxes without requiring detailed
meteorological parameters. Meanwhile, Schmidt, et al. [30] used a radial-based functional
neural network to fill in missing gaps in water and carbon fluxes in urban regions and
demonstrated a significant correlation coefficient of 0.85 as compared with independent
ground-based EC observations. ML-based gap-filling methods tend to provide better
performance compared with statistical and regression techniques used to gap-fill EC, as
well as satellite-based datasets [31–33].

Owing to the current advancements in high computational technology, state-of-the-art
deep-learning-based algorithms have been exploited and have demonstrated promising
results in various fields, such as pattern recognition, acoustics, image understanding,
and natural language processing [34,35]. On theoretical point of view, there is a key
difference between ML and deep-learning methods. ML is a field of artificial intelligence
that uses algorithms which parse and learn from the dataset to make informed decisions
by minimizing the human interventions. The basic ML methods tend to become better at
what they are assigned to do; however, they still need guidance or adjustments in case
of inaccurate predictions. This limitation is addressed by a deep-learning-based method,
which itself is a subfield of ML; however, it mimics the human brain-like mechanism that
develops algorithms that is based on multi-layered perceptron or “artificial neural network,”
which enables intelligent decision-making without human interventions. Recently, deep-
learning-based models have been extended to gap-fill satellite-based datasets and EC-based
flux observations [36]. For example, Nguyen and Halem [37] used two deep learning
models, i.e., the feed forward neural network and long short-term memory (LSTM), to gap-
fill EC-based flux observations. Additionally, Huang and Hsieh [38] used two deep learning
algorithms, i.e., a deep neural network and LSTM, compared them with three ML models,
and showed that the performances of all five models were consistent with gap-fill EC-based
flux observations. Although only a few researchers have used deep learning algorithms
for gap-filling EC-based datasets, the most recently developed deep learning algorithms
have not been evaluated for gap-filling EC-based flux tower observations. Therefore, the
main objectives of this study are to (1) investigate the accuracy of two deep-learning-based
models (e.g., convolutional neural network (CNN) and LSTM), and two ML techniques
(SVM and RF) to gap-fill EC-based LE observations in a temperate East Asian forest
ecosystem, and (2) evaluate the effects of factor elimination and hysteresis on the accuracy
of the four abovementioned ML models. We integrated a two-dimensional hysteresis in the
CNN model, in which we considered multiple input factor hysteresis using datasets that
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were curated into a two-dimensional image under a moving-window framework, thereby
evaluating their accuracy for the gap filling of EC-based flux tower datasets.

2. Materials and Methodology
2.1. Study Area and Datasets

This study was conducted within the extent of the Korean peninsula (33◦ N–44◦ N
latitude, 124◦ E–132◦ E longitude) in Asia (Figure 1), which is the most populous continent
in the world with fragile ecosystems and heterogeneous landscapes. The selected study
regions are experiencing accelerated hydrological cycles owing to the recent increase in
temperature as well as global warming effects. Such accelerated hydrological cycles and
warming effects are more pronounced in arid regions of the continent. Additionally, we
selected one forest site, Seolmacheon (SMC), which is registered in the AsiaFlux regional
research network (http://asiaflux.net, last accessed date: 2 December 2021). Table 1 shows
the detailed geographical characteristics of selected forest sites in East Asia, i.e., the region
that is frequently afflicted with extreme floods during the monsoon season (June to August)
and drought during the summer period (March to May) owing to seasonal variations.
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Figure 1. Geographical location and land cover map of study area; one flux tower site in South Korea.

Table 1. Characteristics of study area, including field and meteorological information (www.asiaflux.net/, Last accessed
date: 2 December 2021).

Site

Location
Study
Period

Elevation
(Measurement

Height) 1

(m)

Canopy
Height 2

(m)

Vegetation
Type

Mean Annual
Temperature

(◦C)

Mean Annual
Precipitation

(mm)
References

Country Latitude/Longitude
(◦N/◦E)

Seolmacheon
(SMC)

South
Korea 37.94/126.96 2008 293 (19.2) 15.0 Mixed

forest 10.4 1332 [39]

1 Flux tower measurement height. 2 Average vegetation canopy height obtained from in situ dataset.

http://asiaflux.net
www.asiaflux.net/
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To investigate the accuracies of the four ML-based models for gap filling LE fluxes, we
selected one EC-based flux tower site. For training and assessment, we selected half-hourly
datasets that are downloadable for free from a micro-meteorological regional research
network from the AsiaFlux regional research network website under a fair-usage policy.
To measure the turbulent heat fluxes, the flux towers were equipped with infrared gas
analyzers (LI-COR, LI-7500, Lincoln, NE, USA), three-dimensional sonic anemometer
(CSAT3, Campbell Sci., Inc., Logan, UT, USA), as well as hygrometers with open-path
observational systems. It is noteworthy that the measurement dataset from the EC system
was recorded using data loggers (CR3000, Campbell Sci., Inc., Logan, UT, USA), which
were installed at the base of the flux tower.

2.2. Methodology
2.2.1. ML Models

ML models are data-driven techniques that use the correlation and internal trends in
the input datasets and apply classification and regression to fill the missing gaps in the
dataset. In the current study, we adopted four (CNN, SVM, RF, and LSTM) ML techniques,
in which two (CNN and LSTM) were deep learning models. In the four abovementioned
models, we used the grid-search technique to obtain the hyper-parameters, for which the
details are mentioned in Huang and Hsieh [38].

2.2.2. CNN

We implemented a CNN using Python programming language by exploiting PyTorch,
which is an open-source ML library developed by Facebook’s AI research group [40].
PyTorch-based CNN models have been implemented in natural language processing and
computer vision; however, to the best of our knowledge, PyTorch-based CNNs have
not been applied for gap-filling EC fluxes. We preferred PyTorch because of its ease of
integration with other systems owing to its low dependencies and beginner-friendly user
experience [41]. Previous researchers have used only one-dimensional CNNs similar
to the RNN to gap-fill EC-based datasets owing to its capability in managing sequence
datasets [38]. In this study, we updated the current one-dimensional CNN and converted it
into a two-dimensional CNN. The important contribution of the current two-dimensional
CNN is that it implements a two-dimensional multivariate CNN model, which we used to
represent data as a two-dimensional image that can consider two sequences simultaneously
(i.e., multiple input factors as the width parameter and multiple time sequences (hysteresis)
as the height parameter). Because a two-dimensional CNN considers input factors as an
image, we used min–max normalization [42] to scale the datasets. In fact, this approach
has been corroborated by other researchers—they recommended data normalization as
it accelerates the learning process [43]. The framework of a two-dimensional CNN is
shown in Figure 2. We integrated an activation function (ReLU), which has been proven to
effectively avoid gradient vanishing. Additionally, we implemented an improved optimizer
(e.g., Adam), which enabled us to efficiently process a greater number of hyper-parameters.
Moreover, to avoid overfitting, we incorporated a regularization and dropout approach [36].
More details regarding the CNN model are available in [26,44,45].
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2.2.3. SVM

In the current study, an SVM was established using the E1071 package in the R pro-
gramming environment; the package provides multiple functions that are suitable for both
static and probabilistic algorithms. The SVM function of the E1071 package is accompanied
by a robust interface that enables the efficient and reliable implementation of the SVM. The
SVM was originally developed for linear datasets; however, when certain kernels (e.g., sig-
moid, radial basis function, and polynomial) are used, it can integrate higher-dimensional
datasets with high flexibility. To implement the SVM, we adopted the grid-search method,
which is used to estimate hyper-parameters such as kernel functions. The kernel function
adopted in the current study included the radial basis function; however, the eps-regression
type was used to achieve the best gap-filling accuracy. More details regarding the SVM
model are available in [46,47].

2.2.4. RF

To construct the RF, we used the Scikit-learn package using the Python programming
language, in which we progressively increased the number of decision trees from 10 to
500. To avoid overfitting, we allowed the Scikit-learn package to automatically select
the maximum depth of the tree. It is noteworthy that to achieve the best computational
efficiency, we considered a maximum of four features in the current study. More details
regarding the RF are available in [48].

2.2.5. LSTM

LSTM is a deep-learning-based improved recurrent neural network that yields improved
results in predicting mid- to long-term events compared with other ML models [49]. In the
current study, an LSTM model was implemented using the Python programming language,
which exploited PyTorch [50,51]. To retain long-term memory, the LSTM model uses memory
cells that consist of three different gates: forget, input, and output gates. The forget gates are
critical because they define whether the data being retained is valuable. The unnecessary
data are discarded, whereas the most valuable data are stored and subsequently used for
forecasting in the next round. This process of discarding and retaining the most valuable
information was implemented using a sigmoid function filter. The other two gates, i.e., the
input and output gates, determine if the next input dataset is valuable as an output memory
cell or neuron. In addition to the three gates mentioned above, a candidate gate, which
defines the magnitude of the neurons, is used. The LSTM model implemented in the current
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study comprises three hidden layers, and each hidden layer contains 4 to 32 neurons [38].
Furthermore, it is noteworthy that both the LSTM and CNN models adopted in the current
study can manage multiple variables as well as the hysteresis of each input factor at a specified
time stamp. More details regarding the LSTM model are available in [49–52].

2.3. Training of ML Models

To investigate the accuracy of the four ML models for gap filling LE fluxes, we acquired
a one-year (i.e., 2008) dataset with 30 min intervals in the current study; therefore, we
trained four models by incorporating only key meteorological factors that directly affected
LE turbulence, such as wind speed (U), relative humidity (RH), net radiation (Rn), air
temperature (Ta), friction velocity (u*), and surface temperature (Ts). Researchers have
considered four meteorological factors (i.e., Ta, RH, Rn, and U) for gap-filling LE fluxes [38].
However, it is noteworthy that Ts and u* directly affect LE fluxes as well [53]. Therefore,
in addition to the four factors used in the previous study, we integrated two additional
key meteorological factors (i.e., Ts and u*) to investigate their effect on the accuracy of
gap-filling models.

Moreover, a strong hysteresis between EC-based LE and Rn has been reported in
the literature [54,55]; however, its effect on the accuracy of gap filling using various ML
models has rarely been investigated across temperate forest biomes. Meanwhile, key
meteorological factors such as U, RH, Ta, u*, and Ts exhibit a hysteresis relationship
with LE [56]. Considering this stronger hysteresis relationship, it is speculated that if we
integrate all the above-mentioned hysteresis relationships into the processing pipeline,
then the accuracy of gap-filling can be improved. In fact, this was partially achieved by
Huang and Hsieh [38] who improved the accuracy of LE gap filling by incorporating only
two factors (e.g., Rn and Ta) into its processing pipeline without considering the other four
key meteorological factors, i.e., U, RH, u*, and Ts. Considering this research gap, we added
six key hysteresis factors (e.g., Rn, Ta, U, RH, u*, and Ts), which significantly affected the
accuracy of LE, to further investigate their effects on the accuracy of LE gap-filling.

Only a few researchers have integrated the hierarchy and existing trend of the variable
under consideration to further improve the accuracy of gap-filling techniques, such as in
neural network models [57,58]. Therefore, incorporating the contextual information of
the variable being used for gap filling to render the four ML smarter appear promising.
Hence, we added LE hysteresis in the four ML models in the current study to render them
contextually aware to further investigate their effect on the accuracy of the gap-filling
technique. The list of all input factors used to train the four ML models in the current
study is presented in Table 2. Among all the input combinations shown in Table 2, we
investigated the best input combination for the four ML models and then assessed their
accuracy based on a comparison with independent ground-based flux tower observations.
It is noteworthy that, among all the EC datasets used in the current study, 80% of the
datasets was used for training, 10% for validation, and 10% for testing the accuracy of the
four ML models. In order to test the accuracy of gap-filling results, we used only original
flux tower datasets in order to maintain a fair comparison. In order to test the accuracy of
our updated two-dimensional CNN model along with the other three models (LSTM, RF,
and SVM) to predict the gaps, we used the available 7 months of high-quality dataset for
training, and we eventually predicted latent heat fluxes for only one month (i.e., August
2008). This one month of latent heat flux was finally compared with ground-based flux
tower observations. This adopted approach is explained as follows: based on four models,
if input data contains large missing values, we cannot accurately train our models. If
we cannot accurately train our models, then it implies that we cannot achieve accurate
gap-filling results. For a model to perform accurate gap-filling, high-quality input data is
required, and it is advantageous for learning if it does not contain large missing values.
Moreover, after performing gap filling, to check whether our gap-filled results are accurate
or if it is reasonable to use those gap-filled results, we need an indicator for evaluation,
and that is called the true value or in situ ground-based value. This is the reason that the
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true/test value used in the current study also has no missing value, which is significantly
important in order to maintain a fair comparison. It means that models with high ratings
can then be expected to perform accurate gap fillings in case of real gaps when we do not
have true ground-based values. This adopted approach also provides a fair comparison of
our gap-filled results with reference to in situ ground-based flux tower observations. In a
nutshell, the one-year flux tower dataset used in this study is of high quality and did not
have significant gaps that enabled us to assess the accuracy of our gap-filling method with
full confidence. Statistically, the total number of sample numbers used for training was
10,610 30-min timescale latent heat flux observations, and the total number of missing gaps
that we predicted was 1104 30-min timescale latent heat flux observations.

Table 2. List of input variables for training machine learning models.

Input Factors Abbreviations Definitions

Meteorological factors

U(t) Wind speed at time t (m/s)
RH(t) Relative humidity at time t (%)
Rn(t) Net radiation at time t (Wm−2)
Ta(t) Air temperature at time t (◦C)
U*(t) Friction velocity at time t (m/s)
Ts(t) Surface temperature at time t (◦C)

Hysteresis factors

U(t − x)

Wind speed at time t − x
(where the variable x is a multiplier and

represents 30 min before time t)
For CNN model x = 2, 6, 12, 18, 24
For LSTM model x = 1, 3, 6, 9, 12

RH(t − x)
Relative humidity at time t − x

For CNN model x = 2, 6, 12, 18, 24
For LSTM model x = 1, 3, 6, 9, 12

Rn(t − x)
Net radiation at time t − x

For CNN model x = 2, 6, 12, 18, 24
For LSTM model x = 1, 3, 6, 9, 12

Ta(t − x)
Air temperature at time t − x

For CNN model x = 2, 6, 12, 18, 24
For LSTM model x = 1, 3, 6, 9, 12

U*(t − x)
Friction velocity at time t − x

For CNN model x = 2, 6, 12, 18, 24
For LSTM model x = 1, 3, 6, 9, 12

Ts (t − x)
Surface temperature at time t − x
For CNN model x = 2, 6, 12, 18, 24
For LSTM model x = 1, 3, 6, 9, 12

LE (t − x)

Latent heat flux at time t − x
For CNN model x = 2, 6, 12, 18, 24
For LSTM model x = 1, 3, 6, 9, 12
For SVM model x = 1, 2, 3, 4, 5, 6
For RF model x = 1, 2, 3, 4, 5, 6

3. Performance Metrics

To validate the accuracy of the four ML models based on a comparison with inde-
pendent flux tower observations, we selected five statistical indicators: the mean absolute
error (MAE), root mean square error (RMSE), coefficient of determination (R2), Pearson’s
correlation (R), and normalized standard deviations (σn), which are expressed as follows:

MAE =
1
N

N

∑
i=1
|Si − Oi| (1)
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RMSE =

√
∑N

i=1(Si −Oi)
2

N
(2)

R2 =

 ∑N
i=1
(
Si − S

)(
Oi −O

)√
∑N

i=1
(
Si − S

)2
√

∑N
i=1
(
Oi −O

)2

2

(3)

R =
∑N

i=1
(
Si − S

)2(Oi −O
)2√

∑N
i=1
(
Si − S

)2
√

∑N
i=1
(
Oi −O

)2
,−1 ≤ R ≤ +1 (4)

σn = σmodel/σin−situ (5)

where S denotes the modeled value, O is the ground-based observations, O is the mean
ground-based observed value, and S is the mean modeled observations. The subscript i
represents the number of samples, whereas N indicates the total number of samples used in
the current study. Meanwhile, σn indicates the standard deviation, in which the subscript n
denotes “normalized”. In addition to the four above-mentioned statistical performance
metrics, we performed a time-series analysis and used a Taylor diagram to compare the
four ML models comprehensively [59]. The Taylor diagram is a robust tool that has been
used extensively in atmospheric research to compare the performances of multiple models
using a single diagram by exploiting both σn and R in a two-dimensional space. It is
noteworthy that the RMSE exaggerates the extreme uncertainties in the model predictions
in contrast with the MAE, thereby resulting in significant errors [33,60].

4. Results and Discussion
4.1. Optimal Input Combination for Training ML Models

For the generation of an optimal input combination for training the two deep-learning-
based models (CNN and LSTM) and two ML-based models (SVM and RF), we adopted an
iterative approach as a function of MAE. To generate an optimal input combination, we
used six meteorological factors (i.e., U, RH, Rn, Ta, U*, and Ts), as well as seven hysteresis
factors (i.e., U, RH, Rn, Ta, U*, LE, and Ts) and iteratively conducted the experiment on
various time scales, as mentioned in Table 2, in order to minimize the MAE. Based on those
iterative experiments, we generated more than 25 input and hysteresis combinations, and
the combination that yielded the least MAE was our optimal input combination for the
four abovementioned models, and we presented this optimal input combination in Table
3. Our findings, as shown in Table 3, suggest that hysteresis contributed significantly to
the establishment of an optimal input combination for the four ML-based models used in
the current study. Our results further implied that integrating hysteresis factors in forest
ecosystems can potentially improve the accuracy of gap filling using the four ML-based
models. Our results were consistent with the findings of Cui, et al. [54] who investigated EC-
based flux tower observations and discovered a similar hysteresis phenomenon between
LE and environmental factors such as Rn, U, Ts, and Ta. It is noteworthy that to generate
an optimal input combination, the two deep-learning-based models (e.g., CNN and LSTM)
required a significant number of input factors compared with the two ML-based models
(e.g., the SVM and RF), as shown in Table 3.
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Table 3. Optimal input combinations for LE turbulent heat fluxes using two deep learning models (CNN and LSTM) and
two machine learning techniques (SVM and RF) in SMC forest site.

Country Site Name Model Name Optimal Input Combinations

South
Korea

Seolmacheon (SMC)
forest site

CNN U(t), RH(t), Rn(t), Ta(t), U*(t), Ts(t), U(t − 2), RH(t − 2), Rn(t − 2),
Ta(t − 2), U*(t − 2), Ts(t − 2), LE(t − 2)

SVM U(t), RH(t), Rn(t), Ta(t), U*(t), Ts(t), LE(t − 1)
RF U(t), RH(t), Rn(t), Ta(t), U*(t), Ts(t), LE(t − 1)

LSTM U(t), RH(t), Rn(t), Ta(t), U*(t), Ts(t), U(t − 3), RH(t − 3), Rn(t − 3),
Ta(t − 3), U*(t − 3), Ts(t − 3), LE(t − 3)

4.2. Statistical Comparison of Gap Filling Based on ML Models

A comprehensive analysis of our results is presented in this section, which comprises
four main subsections. In the first subsection, we present our investigation involving more
than 25 hysteresis and input combinations using four models (e.g., CNN, SVM, RF, and
LSTM), as well as the estimation of the mean averaged model performances, as presented
in Figure 3. The results show that the MAEs for all the four models investigated were
in the acceptable range (37.50 to 40.22 Wm−2), which is corroborated with the previous
study [38]. It is noteworthy that despite requiring fewer input datasets (Table 3), the SVM
model outperformed all other models with an MAE value of 37.50 Wm−2, followed by the
CNN, which is the second-best model for gap filling, with an MAE value of 38.91 Wm−2.
Based on the mean average model performance, the ranking of the four models from the
best to the worst is as follows: SVM > CNN > RF > LSTM.
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In this second subsection, we assess the accuracy of the four models (e.g., CNN,
SVM, RF, and LSTM) using an optimal input combination. In terms of optimal input
combinations, the statistical performance metrics of the individual models are presented
in Figure 4a, which shows that all four models’ uncertainties were in an acceptable range,
with MAE, RMSE, and R2 values of 36.3–39.3 Wm−2, 54.7–57.3 Wm−2, and 0.75–0.79,
respectively, which is corroborated with the previous study [38]. Additionally, Figure 4a
shows that the model performances of the two deep-learning-based models (CNN and
LSTM) were similar. Moreover, the uncertainties of the two ML-based models (SVM and
RF) were consistently similar to each other (Figure 4a). The inherent model physics of
the two ML models and the two deep-learning-based models were similar, as their model
uncertainties exhibited similar trends.
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In terms of individual model performances, the SVM model followed by the CNN
and RF performed better in gap filling the LE fluxes compared with the remaining models,
whereas the accuracy of LSTM was low compared with that of the other models used
in this study. Considering the individual model performances based on optimal input
combinations, we discovered only a marginal difference among the accuracies of the CNN,
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SVM, and RF models (Figure 4a). In terms of individual model performance, the ranking
of the models from best to worst was as follows: SVM > RF > CNN > LSTM. Although our
results showed only a marginal difference among the performances of the four models, we
further investigated their accuracies by comparing their group means using a widely used
statistical tool, i.e., the analysis of variance (ANOVA) [61]. The ANOVA tests the equality of
at least three group means, and statistically significant results signify that at least one group
means is different. It is noteworthy that the basic assumption in the ANOVA is that the
distributions within groups are normally distributed; therefore, results from the ANOVA
are acceptable if the dataset adheres to its basic assumptions of normality. Therefore, prior
to conducting the ANOVA, we verified the normality of our dataset using the Shapiro–Wilk
normality test [62], which indicated that our dataset was not normally distributed. To test
the ANOVA on datasets that are not normally distributed, a better version of the ANOVA
is required. Hence, we selected the bootstrap version of the one-way ANOVA for trimmed
means (i.e., 20%); the number of selected bootstrap samples was 2000, and we obtained
statistically insignificant results (p-value = 0.28), which indicates that all group means were
similar. Therefore, the ANOVA test implied that the performances of the four models
differed marginally.

Although the ANOVA test indicated the equality of group means as well as their
statistical significance, it did not identify mean pairs that were statistically significant. To
test the significance of individual model pairs, we conducted robust post-hoc tests, such
as the Hochberg and Bonferroni tests [63,64]. The post-hoc tests showed that our results
were not significant statistically, with a p-value ranging from 0.42 to 0.76 among all pairs of
models. Therefore, the post-hoc tests revealed that the means of all four models were the
same, indicating their similar performances.

Since the above-mentioned analysis revealed a similar performance among four models,
we further scrutinized their suitability for the gap filling of flux tower observations by
visualizing the distribution of predicted LE using a Boxplot analysis, and the results are
presented in Figure 4b. The results revealed that the 2D-CNN better captured the distribution
of observed LE in terms of mean, median, and inter-quartile ranges. The mean and median
values of predicted LE by 2D-CNN were 98.67 Wm−2 and 54.22 Wm−2, respectively, which
is closer to observed flux tower observations with values of 101.14 Wm−2 and 56.35 Wm−2,
respectively (Figure 4b). The observed flux tower measurements showed the largest variations
in predicted LE, which was closely approximated by the 2D-CNN implemented in the current
study. Specifically, the peak values of predicted LE by 2D-CNN outperformed SVM, RF, as
well as LSTM estimations. On the other hand, the distribution of predicted LE by SVM, RF, and
LSTM were found to be closer to each other with their mean and median values in the range
of 85.54–91.88 Wm−2 and 37.80–49.60, respectively, indicating their similar performances.
Overall, based on inter-comparison, our 2D-CNN model tended to slightly outperform SVM,
RF, and LSTM models for the gap filling of flux tower observations.

In this third subsection, we analyze the temporal trend of ML-based predicted LE
fluxes based on a comparison with ground-based flux tower observations. Hence, we
conducted a time-series analysis, as presented in Figure 5. The results showed that all
four models captured the temporal trend of predicted LE turbulent heat fluxes accurately,
with larger values around peak sun hours and lower values during nighttime when the LE
fluxes were lower, owing to the unavailability of net radiation. Our results agreed well with
those published previously [65]. Additionally, Figure 5 shows that the CNN performance,
in terms of capturing the temporal trend of LE fluxes, was the best compared with all the
other models (R~0.87). This is attributable to the tendency of the CNN to integrate the
optimum number of input factors when training the model. Additionally, we improved
the CNN model in the current study and integrated into it a two-dimensional hysteresis,
thereby enabling it to extract the features of each input factor and those of the multivariate
hysteresis; this might have contributed to its better performance compared with those of
all the other models in capturing the temporal trend of LE fluxes.
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In this fourth subsection, we further scrutinize the performances of the four models
(i.e., CNN, SVM, RF, and LSTM) used in the current study. Hence, we employed a Taylor
diagram, and the results are presented in Figure 6. These results show that the σn and
R values of the CNN (0.86 and 0.87, respectively) were the most similar to the observed
ground-based values, followed by those of the SVM (0.81 and 0.87, respectively), LSTM
(0.84 and 0.86, respectively), and RF (0.80 and 0.87, respectively) in current study. The
main finding was that the performances of the four models differed marginally; however,
with better σn values that were more similar to the ground-based observations, the two-
dimensional CNN model adopted in the current study performed the best in gap filling LE
fluxes, as shown by the Taylor diagram.

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 6. Taylor diagram showing performances of two deep learning models (2D−CNN and LSTM) 

and two machine learning techniques (SVM and RF) in SMC forest site. 

4.3. Investigation of Robustness of Models 

As presented in Section 4.1, we generated an optimal input combination for training 

the four models based on more than 25 total combinations that were obtained using six 

meteorological factors (i.e., U, RH, Rn, Ta, U*, and Ts), as well as seven hysteresis factors 

(i.e., U, RH, Rn, Ta, U*, LE, and Ts) on various time scales. Considering the malfunctioning 

of EC-based sensors as well as low-cost equipment in developing countries, a significant 

number of meteorological datasets are unavailable, which hampers the generation of op-

timal input combinations. This scenario highlights the necessity to identify a robust model 

that affords improved accuracy even after the loss of the optimal combination or when 

multiple input datasets required for an optimal combination are unavailable. Therefore, 

in this section, we analyze the robustness of the four models when the optimal combina-

tion is lost. First, we analyze the effect of factor elimination on the accuracy of two deep 

learning models (CNN and LSTM) and two ML learning techniques (SVM and RF) in the 

SMC forest site. We iteratively removed the meteorological factors (i.e., U, U*, Ts, Ta, RH, 

and Rn) from the training process and examined their effects on the accuracy in gap filling 

LE fluxes. The results are presented in Table 4, which shows that the accuracy of the two 

deep learning models (CNN and LSTM) consistently improved after specific meteorolog-

ical factors were removed during the training stage. For example, after removing U* from 

the analysis, the results, as shown in Table 4, showed that the performance of the CNN 

improved significantly, where the MAE and RMSE improved from 37.90 and 56.0 Wm−2 

to 37.34 and 55.85 Wm−2, respectively. Our results showed that the performances of the 

CNN and LSTM can be improved significantly by removing inappropriate meteorological 

Figure 6. Taylor diagram showing performances of two deep learning models (2D−CNN and LSTM)
and two machine learning techniques (SVM and RF) in SMC forest site.



Remote Sens. 2021, 13, 4976 13 of 19

4.3. Investigation of Robustness of Models

As presented in Section 4.1, we generated an optimal input combination for training
the four models based on more than 25 total combinations that were obtained using
six meteorological factors (i.e., U, RH, Rn, Ta, U*, and Ts), as well as seven hysteresis factors
(i.e., U, RH, Rn, Ta, U*, LE, and Ts) on various time scales. Considering the malfunctioning
of EC-based sensors as well as low-cost equipment in developing countries, a significant
number of meteorological datasets are unavailable, which hampers the generation of
optimal input combinations. This scenario highlights the necessity to identify a robust
model that affords improved accuracy even after the loss of the optimal combination
or when multiple input datasets required for an optimal combination are unavailable.
Therefore, in this section, we analyze the robustness of the four models when the optimal
combination is lost. First, we analyze the effect of factor elimination on the accuracy of
two deep learning models (CNN and LSTM) and two ML learning techniques (SVM and
RF) in the SMC forest site. We iteratively removed the meteorological factors (i.e., U,
U*, Ts, Ta, RH, and Rn) from the training process and examined their effects on the
accuracy in gap filling LE fluxes. The results are presented in Table 4, which shows that
the accuracy of the two deep learning models (CNN and LSTM) consistently improved
after specific meteorological factors were removed during the training stage. For example,
after removing U* from the analysis, the results, as shown in Table 4, showed that the
performance of the CNN improved significantly, where the MAE and RMSE improved
from 37.90 and 56.0 Wm−2 to 37.34 and 55.85 Wm−2, respectively. Our results showed
that the performances of the CNN and LSTM can be improved significantly by removing
inappropriate meteorological factors from the analysis and selecting only meteorological
factors that significantly affect the variable being considered for gap filling. By contrast, the
two ML-based models (SVM and RF) exhibited the opposite trend, in which their accuracy
in gap filling deteriorated significantly after factor elimination. For example, the results
presented in Table 4 show that, after removing U* from the analysis, the performance of
the SVM deteriorated significantly, and the MAE and RMSE deteriorated from 36.3 and
55.9 Wm−2 to 38.32 and 58.82 Wm−2, respectively. Therefore, our results suggest that the
strengths and weaknesses of ML-based models, as well as the optimal input factors, must
be considered to obtain the best gap-filling accuracy. Moreover, it is important to mention
the change of feature importance after removing specific factors. Therefore, based on our
analysis the changes of feature importance from high to low should be indicated as follows:
RN > Rh > u* > Ta > u > Ts.

We further investigated the effect of factor elimination on the accuracy of gap filling
by plotting the percentage improvement for all four models used in the current study. The
results are presented in Figure 7. As shown in Figure 7a–e, the CNN model consistently
demonstrated favorable performance after a specific factor was eliminated from the anal-
ysis, with a 0.82–2.11% improvement in the MAE. It is noteworthy that, as presented in
Figure 7f, the performances of all four models deteriorated significantly after the Rn factor
was removed from the analysis, for which the deterioration percentage values ranged
between −5.76% and −16.87%. This result is reasonable, because Rn is highly correlated
with LE [66]; therefore, if Rn is omitted from the gap-filling processing pipeline, then the
performance will be degraded. Hence, our results showed that selecting highly correlated
factors can significantly improve the accuracy of gap filling.
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Table 4. Factor elimination analysis and accuracy of two gap-filling deep learning models (CNN and
LSTM) and two machine learning techniques (SVM and RF) upon the loss of optimum combination
in the forest site. MAE and RMSE expressed in units of Wm−2. Bold values represent the best
performing statistics.

Factors Included Factors Eliminated Models MAE RMSE R2

u*, Ts, Ta, Rh, RN u
CNN 37.54 55.96 0.76
SVR 38.46 57.14 0.76
RF 38.11 56.74 0.75

LSTM 38.18 57.37 0.74

u, Ts, Ta, Rh, RN u*

CNN 37.34 55.85 0.76
SVR 38.32 58.82 0.76
RF 38.23 57.32 0.74

LSTM 39.01 57.85 0.73

u, u*, Ta, Rh, RN Ts

CNN 37.09 55.85 0.76
SVR 37.21 57.34 0.78
RF 37.35 55.80 0.75

LSTM 38.63 58.08 0.73

u, u*, Ts, Rh, RN Ta

CNN 37.76 56.41 0.76
SVR 36.90 55.86 0.77
RF 37.32 55.87 0.75

LSTM 40.70 60.13 0.71

u, u*, Ts, Ta, RN Rh

CNN 37.05 55.54 0.76
SVR 39.01 58.71 0.77
RF 38.22 56.74 0.74

LSTM 44.16 63.83 0.68

u, u*, Ts, Ta, Rh RN

CNN 40.02 61.05 0.71
SVR 40.07 62.18 0.75
RF 42.54 62.80 0.69

LSTM 42.97 64.88 0.67
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Figure 7. Accuracy of two deep learning models (2D−CNN and LSTM) and two machine learning
techniques (SVM and RF) upon the loss of optimum combination based on factor elimination.
Eliminated factors include (a) wind speed, (b) friction velocity, (c) surface temperature, (d) air
temperature, (e) relative humidity, and (f) net radiation. Positive values indicate improvement in
model accuracy by reduction in MAE; similarly negative values indicate performance degradation.
All units are in percentage.
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We further examined the effect of the hysteresis time factor on the accuracy of the two
deep learning and two ML-based models based on the MAE as the performance metric. The
results are presented in Figure 8, which show that the MAE values increased significantly
as the hysteresis time factor increased for all four models investigated. Therefore, to reduce
the uncertainties and achieve the best gap-filling accuracy, our results suggest using only
those hysteresis time factors that are closer to value being gap-filled.
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Here it is important to highlight the limitations as well as future prospects of this study.
As explained previously in detail, LE is most directly related to surface and prevailing
hydro-meteorological conditions. Due to our study site being located in a mixed forest
biome, where information regarding the seasonal changes of leaf area index (LAI) might
also be helpful to improve the accuracy of gap-filling when we integrate it during training
stage. While the seasonal changes of LAI are more pronounced in rotational cropland and
grassland ecosystems compared to a forest ecosystem, integrating this information can still
be helpful to improve the accuracy of gap filling. With the monsoon climate, there are also
significant seasonal differences in precipitation, which may also play a role in improving
the accuracy of gap filling. However, we have not used LAI and precipitation information
in the current study on purpose, and the reason is explained as follows: it is noteworthy to
reiterate that, in the current study we acquired a one-year (i.e., 2008) dataset with 30-min
intervals, which was downloaded from the AsiaFlux regional research network website
(www.asiaflux.net/, last accessed date: 2 December 2021) for the Seolmacheon forest site
in the Republic of Korea. The downloaded dataset did not have LAI information, and
due to the malfunctioning of the instrument, the full year precipitation dataset was also
missing. This was the reason that we could not use LAI or precipitation information in the
current study. Moreover, as demonstrated in Section 4.3, one of the objectives of the current
study was to use the least number of input factors to achieve the best gap-filling accuracy.

www.asiaflux.net/
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Therefore, we used only available datasets and devised a methodology to achieve the best
gap-filling accuracy in the current study. Therefore, in future studies, the researchers are
suggested to integrate LAI and precipitation information in order to investigate its impact
on the accuracy of gap-filling.

5. Conclusions

In this study, we investigated the accuracy of two deep-learning-based models (CNN
and LSTM) and two ML techniques (SVM and RF) for gap filling EC-based LE observations.
To train the four ML-based models, we used six meteorological factors (i.e., U, RH, Rn, Ta,
U*, and Ts) and seven hysteresis factors (i.e., U, RH, Rn, Ta, U*, LE, and Ts) on various time
scales and based on more than 25 input and hysteresis combinations. Subsequently, we
selected an optimal input combination that yielded the best model performance. In terms
of the optimal input combinations, the statistical performance metrics of the individual
models showed that the uncertainties of all four models were within the acceptable range,
with MAE, RMSE, and R2 values of 36.3–39.3 Wm−2, 54.7–57.3 Wm−2, and 0.75–0.79,
respectively. The SVM model performed the best, followed by the RF and CNN in gap
filling LE fluxes, whereas the accuracy of LSTM was low compared with all other models
used in this study. Considering the above-mentioned individual model performances
using optimal input combinations, our results indicated a marginal difference among the
accuracies of the SVM, CNN, and RF models; in fact, this was supported by robust ANOVA
and post-hoc tests. In terms of performance, the ranking of the models from best to worst
was as follows: SVM > RF > CNN > LSTM. Our results further revealed that the hysteresis
factor contributed significantly to establishing an optimal input combination for the four
ML-based models used in the current study. It is noteworthy that the two deep-learning-
based models required more input factors as compared with the two ML-based models,
revealing its data-intensive approach.

Although the performances of all four models differed marginally, based on time-series
analysis and Taylor diagram analysis, the two-dimensional CNN model implemented in
the current study outperformed all the other models, such as the SVM, RF, and LSTM,
in gap filling LE fluxes. Moreover, to extend the usability of our results to data-sparse
regions, we investigated the relationship of models’ robustness upon losing their optimal
input combination. Unlike the three above-mentioned models, we discovered a consistent
improvement in the accuracy of the 2D-CNN after removing specific meteorological factors
during training, with a 0.82–2.11% improvement in the MAE for all five factors.

As the hysteresis time factor increased, the accuracy of the four models resulted in a
significant increase in the MAE. These analysis results provide useful guidelines to policy
makers for selecting an appropriate hysteresis factor to achieve the best gap-filling accuracy.
Furthermore, the extensive analysis conducted in the current study provides a benchmark
to achieve better gap filling of EC-based flux tower observations. The two-dimensional
CNN model adopted in the current study can be extended to similar application areas, such
as satellite remote sensing, to generate high-quality temporally continuous observations for
a wide range of climatological and agro-meteorological applications, including improved
environmental monitoring, by selecting the optimum model demonstrated in the current
study. Based on the guidelines provided in the current study, reliable and long-term
geospatial datasets can be generated, which will benefit climate adaptation strategies,
disaster risk assessment plans, and the sustainable development of geo-spatial information.
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