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Abstract: Increased fire activity across the Amazon, Australia, and even the Arctic regions has
received wide recognition in the global media in recent years. Large-scale, long-term analyses are
required to postulate if these incidents are merely peaks within the natural oscillation, or rather
the consequence of a linearly rising trend. While extensive datasets are available to facilitate the
investigation of the extent and frequency of wildfires, no means has been available to also study
the severity of the burnings on a comparable scale. This is now possible through a dataset recently
published by the German Aerospace Center (DLR). This study exploits the possibilities of this
new dataset by exemplarily analyzing fire severity trends on the Australian East coast for the past
20 years. The analyzed data is based on 3503 tiles of the ESA Sentinel-3 OLCI instrument, extended
by 9612 granules of the NASA MODIS MOD09/MYD09 product. Rising trends in fire severity
could be found for the states of New South Wales and Victoria, which could be attributed mainly
to developments in the temperate climate zone featuring hot summers without a dry season (Cfa).
Within this climate zone, the ecological units featuring needleleaf and evergreen forest are found to
be mainly responsible for the increasing trend development. The results show a general, statistically
significant shift of fire activity towards the affection of more woody, ecologically valuable vegetation.

Keywords: burnt area monitoring; Australia; Sydney; wildfire; earth observation; mid-resolution
sensors; time series analysis; burn severity; climate zones

1. Introduction

Wildfires have always played a significant role in the evolution of various ecosystems
and are the predominant natural disturbance factor in many parts of the world. They
significantly influence ecological patterns and processes on a global scale. This includes
vegetation distribution and structure, as well as the carbon cycle [1]. While humans and
wildfires have always coexisted, changes in wildfire patterns represent an increasing threat
to human lives and property. Apart from the direct implications, wildfires have also
been found to contribute to the greenhouse effect through CO2 emissions, thus fostering
atmospheric changes on a global level [2,3]. Research has shown that forest loss has
increased substantially over the past two decades in many parts of the world, and that the
underlying dynamics are strongly linked to fire activity [4]. Several studies have discovered
changes in the frequency and size of wildfires and also in the length of the fire season,
for example, regarding the Canadian boreal forest [5] and the Western United States [6].

In recent years, large wildfires have occurred in regions formerly unaffected by fire,
such as the Arctic regions. Some regions regularly affected by fire have experienced
unprecedented large-scale fire events, such as the Australian East coast, the Brazilian
Amazonas region, or the state of California in the United States. Investigating the question
if these recent events are part of a natural oscillation, or must instead be regarded as a result
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of a long-term trend, is a crucial task in fire science. Studies usually analyze parameters
such as the frequency of occurrence, spatial extent, and burn severity of fire incidents to
derive meaningful trends [7].

To obtain insights regarding shifts in global fire activity, studies have to incorporate
multi-decadal time spans and continental-scale study areas. Global, long-term burnt area
datasets are readily available for analyses, the most widely used ones being the National
Aeronautics and Space Administration (NASA) MCD64A1 dataset [8] and the European
Space Agency (ESA) Fire_cci BA 5.1 dataset [9,10]. A third global burnt area product from
the Global Fire Emissions Database, version 4 (GFED4, [11]) is meanwhile discontinued
and is only available until 2015 [12]. A semi-automatically generated product is also
provided by the Joint Research Center of the European Commission (JRC) in the frame of
the European Forest Fire Information System (EFFIS) [13]. However, these data are only
available for Europe, Northern Africa, and the Middle East [14].

While the listed datasets all include the fire perimeter as well as the burning detection
date, they do not feature information regarding the fire severity, and thus do not allow
the derivation of trends in this regard. Yet, fire severity is a critical aspect of fire regimes,
determining fire impacts on ecosystem attributes and associated post-fire recovery [15].

The German Aerospace Center (DLR) recently published a global, long-term burnt
area dataset, which includes information regarding the burn severity, together with fire
perimeter and the burning date. This dataset is closely linked to the burnt area monitoring
service operated by DLR. It is maintained by the Department of Geo-Risks and Civil
Security (GZS) of the German Remote Sensing Data Center (DFD). The service is based
on mid-resolution Sentinel-3 Ocean and Land Color Instrument (OLCI) satellite imagery
and provides burnt area information for the region of Europe twice a day in near-realtime.
The service is fully automated and targeted at supporting rapid mapping activities and
timely post fire damage assessment throughout Europe. A quality-optimized version called
fusion product is generated after a time delay of 10 days, when additional post-event data
is available.

The recently published, global dataset is build upon this fusion product. In addition
to the data available for Europe, equivalent products are generated using the same method-
ology for North and South America, Africa, Oceania, and Asia. The methodology is briefly
described consecutively, the complete description can be found in Nolde et al. [16]. As the
dataset is based on Sentinel-3 data, it is only available since 2016, which is the year the first
Sentinel 3 satellite was launched. For this study, the data was extended using data from
the NASA MODIS MOD09/MYD09 product [17] in order to allow the derivation of trends
on a longer time scale.

The complete input dataset comprises 9612 granules of the MODIS MOD09/MYD09
product in conjunction with 3503 tiles of the OLCI instrument onboard the Sentinel-3
satellite. The area of Eastern Australia has been selected as a study region, covering the
states and territories of Queensland, New South Wales, the Australian Capital Territory
(ACT), and Victoria, respectively.

This study region is chosen because it experienced destructive burnings in the 2019/
2020 fire season, and because it also was regularly affected by wildfires in recent decades.

The year 2019 was Australia’s warmest year on record so far, with significant heat
waves occurring in January and December [18]. The national, average maximum tempera-
ture was as high as 43.6 ◦C, which is more than 1.8 ◦C above the long-term average [19].
In addition, 2019 has also been the driest year on record in Australia, caused by an extraor-
dinary strong positive Indian Ocean Dipole [20]. The nationally-averaged rainfall was 40%
below average, amounting to only 278 mm. As a consequence, the annual, cumulative
Forest Fire Danger Index reached the highest values since the beginning of the national
records in 1950 [18]. Three of the four investigated states and territories, namely, New South
Wales, the ACT, and Victoria, reside in a temperate climate zone, with dryness conditions
usually reaching moderate levels at most [21]. However, in 2019, these states experienced
severe drought conditions, with New South Wales suffering the most severe conditions
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throughout Australia. These preconditions contributed significantly to the unprecedented
fire activity in December 2019 and January 2020 [19].

This study analyses the existence of stable, wildfire related trends in this region,
focusing on fire severity.

2. Materials and Methods
2.1. Area of Interest

The chosen study region comprises the states of Queensland, Victoria, and New
South Wales together with the Australian Capital Territory (ACT). This region is vastly
heterogeneous regarding climate and vegetation cover, with a pronounced inter-annual
variability. Both Queensland and New South Wales include tropical, temperate, and arid
climate zones. Figure 1 shows the area of interest, together with the respective climate
zones and the burnt area from the 2019/2020 wildfire season. The highlighted climate zones
are the ones found to feature increasing trends regarding fire severity in this study. The
full names corresponding to the climate zone abbreviations can be found in the respective
tables in the result section. This study is prepared in a hierarchical manner. Trends are
analyzed on a state level, as well as regarding climate zones, and finally ecological units.
These are consecutively set in relation to each other.

Figure 1. The area of interest, comprising Queensland, Victoria, and New South Wales together with
the Australian Capital Territory (ACT). The climate zones are shown additionally, as well as the burnt
area for the 2019/2020 fire season. The climate zones found to feature a significant increasing trend
in this study are highlighted.

The utilized climate zone map, prepared by Beck et al. [22] following the method-
ology of Peel et al. [23], is derived using a long-term time series of weather station data
regarding monthly precipitation and air temperature. The system classifies climatic regions



Remote Sens. 2021, 13, 4975 4 of 30

into five main classes and 30 subtypes. The discrimination between classes is based on
fixed thresholds addressing the seasonality of precipitation and temperature. Climate is
recognized as the major driver of global vegetation. The classification is therefore regarded
as an empirical mapping of biome distributions around the world. Although developed in
the 19th century, it is widely used today, for example, in ecological modelling [22].

The Australian Forest Fire Danger Index [24] relies on four meteorological param-
eters, which have proven their reliability with regard to wildfire activity: temperature,
wind speed, relative humidity, and the Drought Factor, a component representing fuel
availability [25].

The latter parameter, which is strongly influenced by seasonal variations in rainfall,
has been found to be pivotal for fire occurrence, together with the vegetation structure [26].
As described by Russel-Smith et al., fire frequency as well as fire extent throughout Australia
are strongly influenced by rainfall seasonality. Fire occurrence is therefore most pronounced
in the tropics of Northern Australia, which are intensely seasonal. Rainfall positively
influences the dynamics of biomass growth, which provides the fuel for wildfire activity.
Precipitation amounts above average could be attributed to large burnings in arid, central
Australia [27].

Dryness, on the other hand, strongly increases the availability of the vegetation to
burn [28]. It could be shown that drought conditions are associated with major fires in the
forested areas of Southern Australia [29,30]. These ecosystems usually feature sufficient
litter for propagation of fire at most times. The most influential factor for fire propagation
is the availability of vegetation to burn, controlled by drought conditions and the weather
at the time of ignition [28].

2.2. Utilized Data Sources

The study utilizes the DLR-GZS burnt area dataset, which is based on mid-resolution
optical satellite data from two different sensors. First, the OLCI instrument onboard the
Sentinel-3 A and B satellites of the European Copernicus Programme [31], and second,
the MODIS instrument onboard the NASA Aqua/Terra satellites. Band information from
the red and near-infrared (NIR) domain are utilized for the retrieval of burnt area perime-
ters and burn severity estimation. Imagery of the Sentinel-3 OLCI instrument can be
retrieved via the Copernicus Open Access Hub [32] and the Copernicus online data access
website [33]. However, the available time span for OLCI data is considerably shorter than
the one regarding MODIS. Sentinel-3A was launched in 2016, with Sentinel-3B following in
2018. Therefore, the OLCI dataset is extended by imagery from the MODIS sensor for this
study. This data is available for an extended time range of more than two decades, starting
in late 1999 with the launch of the NASA Terra satellite. The sensor is designed to observe
the ocean, atmosphere, land, and ice on the Earth’s surface [34]. It features 36 discrete
spectral bands with differing spatial resolutions from 250 m to 1 km. Terra’s twin satellite,
Aqua, was launched in 2002, carrying a second MODIS instrument. This study makes use
of MODIS information provided through the MOD09A1/MYD09A1 surface reflectance
product [17], which represents a cloud-free 8-day composite of bands in the visible spec-
trum. The data are freely available from the NASA Land Processes Distributed Active
Archive Center (LP DAAC) [35]. Furthermore, thermal anomaly information derived from
the MODIS MOD14A2/MYD14A2 [36] product is used as auxiliary data. Equivalent data
is utilized from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard
the Suomi National Polar-orbiting Partnership (SUOMI-NPP) satellite [37]. Both products
are available for download on the NASA Fire Information for Resource Management
System (FIRMS) website [38].

In order to reduce the total data volume to a significant selection, only the Australian
summer months from November to February have been analyzed in this study.

Subsequent to the derivation of burnt area perimeters and the burn severity, the results
are combined with land use and land cover (LULC) data to gain insights regarding affected
vegetation classes. For this purpose, the CCI-LC (Climate Change Initiative-Land Cover)
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product from ESA is used. It provides mid-resolution land cover information on a global
scale. Moreover, land cover maps are available for each individual year, starting in 1992 [39].
To investigate the relationship between fire activity and climatic conditions, a climate zone
map based on the Köppen-Geiger classification system is utilized, published by Beck et al.,
2018 [22]. Furthermore, ecological units provided by the United States Geological Survey
(USGS) are used [40].

Two further burnt area datasets have been incorporated within this study to validate
the presented results. First, the NASA MCD64A1 dataset, featuring global burnt area
information derived from MODIS imagery, with a spatial resolution of 500 m [8]. These
data are made available by the University of Maryland [41] and has been widely utilized
in academic research, for example, for the Brazilian Savannas [42,43]. Second, a high
resolution burnt area map for the state of New South Wales is utilized, which was prepared
by the Department of Planning, Industry and Environment of New South Wales/Australia.
This dataset, named Google Earth Engine burnt area map (GEEBAM) [44], is based on
Sentinel-2 data and makes use of manually derived thresholds from aerial photography [45].
The National Indicative Aggregated Fire Extent Datasets [46], which are published by the
Australian Government, have also been taken into consideration as a reference data source.
However, the GEEBAM dataset has been found to feature a higher thematic accuracy, and is
therefore chosen as reference in this study.

Table 1 lists the complete set of available MOD09/MYD09 composites and Sentinel-3 -
OLCI scenes used for generating the DLR-GZS burnt area dataset, which this study is build
upon. Besides the number of available scenes for each time range and state, the average
number of cloud free observations per pixels is given, representing a measure of the
interpretability of the data. As the MOD09/MYD09 data are available as an eight-day
composite, the number of cloud-free observations is considerably lower when compared to
Sentinel-3. In total, 9612 MODIS MOD09/MYD09 granules from both Terra and Aqua have
been analyzed, together with 3503 OLCI scenes from Sentinel-3 A and B. This amounts to
an entirety of 13,115 scenes for the complete study time span.

Table 1. Analyzed data sources, listed separately for Queensland (QLD), New South Wales (NSW),
Australian Capital Territory (ACT), and Victoria (VIC).

Time Span Sensor Scenes
Avg. Cloud-Free Overpasses per Pixel

QLD NSW ACT VIC

2000/11–2001/02 MODIS 240 10 13 13 14
2001/11–2002/02 MODIS 240 15 15 14 15
2002/11–2003/02 MODIS 480 30 30 27 30
2003/11–2004/02 MODIS 480 30 30 27 30
2004/11–2005/02 MODIS 480 28 29 26 28
2005/11–2006/02 MODIS 484 30 30 27 30
2006/11–2007/02 MODIS 480 30 30 27 30
2007/11–2008/02 MODIS 480 30 30 27 30
2008/11–2009/02 MODIS 480 28 29 26 28
2009/11–2010/02 MODIS 480 30 30 27 30
2010/11–2011/02 MODIS 480 30 30 27 30
2011/11–2012/02 MODIS 480 30 30 27 30
2012/11–2013/02 MODIS 480 28 29 26 28
2013/11–2014/02 MODIS 480 30 30 27 30
2014/11–2015/02 MODIS 488 30 30 27 30
2015/11–2016/02 MODIS 480 30 30 27 30
2016/11–2017/02 MODIS 480 28 29 26 28

OLCI 620 33 45 36 34
2017/11–2018/02 MODIS 480 30 30 27 30

OLCI 616 35 41 30 35
2018/11–2019/02 MODIS 480 30 30 27 30

OLCI 1019 58 75 61 61
2019/11–2020/02 MODIS 480 28 29 26 28

OLCI 1248 76 91 68 71
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2.3. Burnt Area Derivation Methodology

The accurate, automatic monitoring of burnt area evolution from satellite imagery
represents a demanding task for the scientific community. This is mostly due to the spatial-
temporal variability of the state of the Earth’s surface. Inaccuracies are also introduced by
the utilized sensor and related geometrical resolution [47]. Furthermore, the presence of
clouds disturbs the derivation of meaningful surface features at reflective wavelengths [48].
Adding to the complexity inherent in optical sensor data, burnt areas are highly heteroge-
neous regarding size, shape, and spectral reflectance on the ground surface, and can thus
be difficult to differentiate from shadows cast by clouds and mountains. These circum-
stances significantly limit the possibilities for an automated approach, especially on a large
geographical scale. Many recent research activities have assessed these challenges using
Machine Learning technologies. Methodologies such as Random Forests [49], Support
Vector Machines [50], and Deep Learning classifiers [51,52] have been applied in this regard.
However, research has mainly been focused on feature detection using high resolution
satellite imagery on a small geographic scale. Due to the spatial resolution however, these
satellites inherently feature a low temporal frequency, and are thus unsuited for daily
monitoring purposes. Approaches utilizing mid-resolution satellite data, thus allowing
a high temporal coverage for an extended geographical region, usually use a time series
approach in combination with a burn-sensitive vegetation index. Thermal anomaly de-
tections are often used as auxiliary data (see [53]). However, these approaches feature a
significant amount of uncertainty. Humber et al. analyzed four global burnt area products,
and concluded that the estimates of burned area vary greatly between products in terms
of total area affected, the location of burning, and the timing of the burning [54]. In a
similar study, Padilla et al. found that the commission error ratio was above 40% and
omission error ratio was above 65% for the analyzed products [55]. Oliva et al. conducted
a study investigating if thermal anomaly data could be used as a replacement for burnt
area datasets, but found high omission and commission errors especially for grasslands,
savannas, and agricultural areas [56].

The methodology utilized here is based on an approach developed at DLR [16]. It is pri-
marily designed for monitoring continental-scale regions in near-real time, but can also be
invoked to perform retrospective time series analysis. The derived information comprises
burnt area perimeters, the date of detection, and the burn severity by means of the differ-
ential Normalized Difference Vegetation Index (NDVIdi f f [57], see Equations (1) and (2).
As auxiliary information, the number of detections for each burnt area pixel is available,
as well as the number of cloud-free satellite overpasses for each pixel.

NDVI =
NIR − Red
NIR + Red

(1)

NDVIdi f f = NDVIpre − NDVIpost (2)

At its core, the method exploits the synergetic effects of data from the red/NIR and
the thermal wavelengths in order to derive burnt area information. Substantial work in
this regard has been performed by Fraser et al. and Li et al. for the boreal forest of Canada
as early as the year of 2000 [58,59].

As a basis for the processing, mosaics of pre- and post-NDVI information are gen-
erated. Consecutively, the concept of Morphological Active Contours without Edges
(MorphACWE [60,61]) is used to derive accurate burnt area perimeters. The method is
closely related to Geodesic Active Contour Level Sets [62], which have been used for burnt
area derivation [63] as well as other domains, such as crop field size estimation [64].

The term Active Contour refers to a dynamical curve, which grows starting from a
set of seed pixels and converges when an optimal segmentation result is reached. For the
generation of the burnt area dataset, Active Fire locations are used as seed information. This
proceeding was shown to yield results of high geometric accuracy when inter-compared
with the JRC/EFFIS dataset [13] as well as the NASA MCD64A1 dataset [8]. The accuracy
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validation, together with the detailed description of the methodology, can be found in
Nolde et al. (2020) [16]. The methodology is schematically visualized in Figure 2.

Figure 2. Scheme of the methodology for burnt area perimeter derivation, from Nolde et al.
(2020) [16].

Figure 3 shows exemplary visualizations of the data used for the preparation of this
study. Sub-figure (a) visualizes the maximally detected burn severity regarding the mega
fire in the greater area of Sydney/New South Wales, which was active during November
and December, 2019. Sub-figure (b) shows the temporal evolution of the burn activity,
by means of detection date.
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a

b

Figure 3. (a) NDVIdi f f values regarding the mega fire in the greater area of Sydney/New South
Wales, 2019/2020. (b) Temporal evolution of the fire activity.

2.4. Validation of Burnt Area Data

The presented results are compared against the two reference datasets, NASA MCD64A1
and GEEBAM, regarding three criteria:

• True positives (TP): The total burnt area contained in the presented results as well as
the reference data, in relation to the total burnt area of the reference data.

• False negatives (FN): The total burnt area not contained in the presented results,
but contained in the reference, in relation to the total burnt area of the reference data.

• False positives (FP): The total burnt area contained in the presented results, but not
contained in the reference area, in relation to the total burnt area of the reference data.

The fourth criterion, which represents the true negatives (TN), refers to the percentage
of area neither contained in the presented results, nor in the reference data. However, as
the total size of unburnt area greatly predominates the total size of burnt area, this true
negative percentage is implicitly very close to 100 percent. This is, however, mostly due to
the size of the study region, so this measure does not represent a meaningful value for this
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kind of study. The same applies to the overall accuracy [65]. These measures have therefore
been omitted in Table 2, which shows the results of the evaluation. A more suited means of
measure is to calculate the average of the true positive percentage and the inverted false
positive percentage (false positives subtracted from 100%, named FPinv in Table 2).

The inter-comparison of the burnt area of the presented results with the burnt area of
the high resolution GEEBAM 2019/2020 data for New South Wales reveals a percentage of
overlapping area of 77%, with an error of 9%. The Jaccard index, also known as Intersection
over Union, yields a similarity of 70.8% [66]. To enable an evaluation of these numbers,
the NASA MCD64A1 dataset is equivalently checked against the same reference, yielding
71% overlap and an error of 7%. The combination of true positives and inverted false
negatives account for 84% for the presented results, and 82% for the MCD64A1 data.
The results obtained in this study regarding the 2019/2020 fire season are in accordance
with burnt area extent information published by Boer [67]. The data basis is therefore
considered to be of satisfactory accuracy.

Table 2. Inter-comparison of burnt area extent with NASA MCD64A1 and GEEBAM refer-
ence datasets.

Presented Results MCD64A1 GEEBAM
4,577,850 ha 4,176,018 ha 5,306,688 ha

presented results TP x 83.8% 77.1%
FN x 16.2% 22.9%
FP x 25.8% 9.2%
TP/FPinv x 79.0% 84.0%

MCD64A1 TP 76.4% x 71.1%
FN 23.6% x 28.9%
FP 14.8% x 7.6%
TP/FPinv 80.8% x 81.7%

GEEBAM TP 89.4% 90.3% x
FN 10.6% 9.7% x
FP 26.5% 36.8% x
TP/FPinv 81.4% 81.4% x

2.5. Trend Derivation Methodology

The trend derivation in this study is based on linear regression, whereby the slope of
the regression line represents the actual trend. The input values for the burnt area extent
analysis are the accumulated burnt area amounts per unit of investigation (state, climate
zone, or ecological unit) for each year of the analyzed time span. Regarding the burn
severity analysis, the input values are derived by averaging all values within the unit of
investigation for each respective year. The correlation coefficient indicates to what extent
the actual values are in concordance with the calculated trend line, while the RMSE (Root
Mean Square Error) illustrates the error.

Finally, the 5- and 95-percentiles (named “Perc 5” and “Perc 95” in the result tables)
represent the error margins, indicating how robust the result actually is. They are derived
through repeatedly and randomly altering the input values within the range of the RMSE,
so that the results reflect the average of a set of possible outcomes. To eliminate outliers,
the 5 and 95-percentiles are used as upper and lower limits of the yielded results.

3. Results

The consecutive sub-sections show the results of the analysis on a state-wide level,
as well regarding climatic zones and finally ecological units. These results are then set in
relation to each other. Each subsection contains a visualization of the burnt area extent for
each year within the analyzed time span, followed by the actual burn severity analysis.
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3.1. Fire Trends Regarding the States in the Study Area

Figure 4 shows the total, annual extent of burnt area for the four Australian states,
and territories of interest, regarding the time period of 2000 to 2020. The results derived
from Sentinel-3 OLCI data are depicted as a green line, while results regarding MODIS
MOD09A1/MYD09A1 data are shown in blue. As the first one of the Sentinel-3 satellites
was only launched in 2016, the analysis could only be carried out for this limited times-
pan. The red, dotted line represents the NASA MCD64A1 [8] burnt area dataset. The
latter is included as a reference, to allow an estimation of the accuracy of the presented
results. Finally, the black, dotted line is the regression line, corresponding to the MODIS
MOD09/MYD09 based results.

Figure 4. Total yearly burnt area amount in million hectares for New South Wales, Victoria, Queens-
land, and the Australian Capital Territory (ACT). MCD64A1 reference data is additionally visualized
as dotted, red line. The black, dotted line in the subplot for Queensland represents the linear
regression line.

It can be seen that the results show a high correlation of burnt area extent between
the utilized DLR-GZS burnt area dataset and the MCD64A1 reference, regarding three of
the four analyzed states. For Queensland, however, this is not the case. The discrepancies
are due to differences in the methodologies: Unlike in the NASA dataset, burn sites where
the vegetation has quickly recovered are excluded in the presented data. As stated before,
wildfire is a natural phenomenon, and in many parts of Australia the regular burning
of huge areas of bush and grassland vegetation is part of the natural cycle. The affected
vegetation recovers quickly, some species do so even within a period of a few weeks. In the
case of Queensland, these areas account for the majority of the overall burnt area. In order
to confine the results to potentially harmful wildfire events, it was decided to consider
burnt area in this study only when distinctive traces of burning activity could still be
detected after a period of three weeks. This filtering is not performed for the generation of
the MCD64A1 dataset, and as a consequence, the overall burnt area for Queensland differs
considerably between the two products.
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Furthermore, the figure shows that there is no linear trend in fire extent regarding
New South Wales, Victoria, and the ACT. This is also reflected by Table 3, which lists the
respective statistics for Figure 4. The p-value, symbolizing the statistical significance, illus-
trates that there is no linear development regarding the derived trends. Complying with
the common standard, a p-value below 0.05 is regarded to represent statistical significance.
Such a low value is found in the case of Queensland, which features a robust, increasing
trend regarding the extent of wildfires over the last two decades.

Table 3. Trend statistics regarding the extent of burnt area from 2000 to 2020. Only Queensland
shows a statistically significant upward trend (highlighted in dark gray).

State Slope Corr. Coef. p-Value RMSE

New South Wales 0.054 0.31 0.18 0.962
Queensland 0.04 0.495 0.026 0.402
Victoria 0.002 0.028 0.91 0.421
ACT 0.0 −0.072 0.764 0.032

A reason for the extraordinary extent of burnt area, which is especially pronounced
for the state of New South Wales, is shown in Figure A1 in the Appendix A. The burnt area
extent is depicted for the past 20 years, sub-divided by month of the fire season. It can be
seen that the fire activity in New South Wales reached a significant level at the beginning of
November, while the main activity usually only occurs towards the end of the year. The fire
activity started several weeks earlier than usual in the 2019/2020 season.

While the figures above provide a general impression by showing the fire extents over
the past 20 years, this study focuses on fire severity, which is analyzed consecutively. The
term is defined as a measure of the degree of environmental change caused by fire [68]. It
represents a critical aspect of fire regimes, indicating the impacts on ecosystems and associ-
ated post-fire recovery [15]. The respective impact ranges from the partial consumption of
litter to the complete dieback of canopy trees [69].

Figure 5 shows the yearly trend of average burn severity for the four analyzed states
and territories. The green line depicts the severity results regarding Sentinel-3 OLCI, while
the results for the MODIS data are depicted in blue. For the latter data source, not only the
burnt areas have been investigated, but also the complete complementary area, which has
not been affected by fire. This represents a cross check, showing that the developments
in severity are not actually caused by unrelated factors such as climate, soil or moisture
related conditions. It can be seen that the states of New South Wales and Victoria feature a
general upward trend, while the development is stable or even decreasing for the ACT and
Queensland.

Table 4 shows that, even if the severity trend for New South Wales and Victoria is
increasing, the p-values are too heterogeneous for these trends to be statistically significant.
Only the slightly negative trend for Queensland can be considered robust. The results
of the cross check are listed in Table 5. The mentioned heterogeneity is addressed in the
Discussion section.

Table 4. Trend statistics regarding the mean severity of burnt area from 2000 to 2020. Queensland
features a statistically significant trend (highlighted in dark gray), while Victoria shows a trend close
to statistical significance (depicted in light gray).

State Slope Corr. Coef. p-Value RMSE

New South Wales 0.001 0.208 0.378 0.038
Queensland −0.002 −0.664 0.001 0.010
Victoria 0.003 0.423 0.06 0.037
ACT −0.002 −0.247 0.29 0.035
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Table 5. Cross check trend statistics regarding the mean decline in vegetation fitness of area unaffected
by fire, from 2000 to 2020.

State Slope Corr. Coef. p-Value RMSE

New South Wales 0.0 −0.148 0.53 0.018
Queensland 0.0 −0.044 0.85 0.038
Victoria 0.0 0.05 0.84 0.019
ACT −0.002 −0.304 0.19 0.044

Figure 5. Yearly average burn severity for the period of 2000 to 2020. The line depicted in light blue
represents the mean severity values for the burnt areas derived from MODIS MOD09/MYD09 data.
The dashed, dark blue line shows the equivalent results for areas not affected by fire. Green color is
used for Sentinel-3 OLCI burnt area results (available only since 2016). The black, dotted line is the
regression line, with respect to the MODIS burnt area results.

In order to discriminate regions which account for the rising trend in New South Wales
and Victoria, the study region is subdivided into regions which share similarities regarding
available fuel and species composition. These are consecutively analyzed equivalent to the
states. As a reasonable classification, climate zone mapping information is used. Parks et al.
could show that climatic conditions, next to fuel and weather, represent a major driver of
fire intensity [70]. As a next step, the climate zones featuring statistically relevant trends
are further subdivided into ecological units, which are provided by the United States
Geological Survey (USGS) [40]. This allows the fine-granular attribution of state-wide
trends to small scale vegetation types.

The following section analyzes the climate zones contained in the study area re-
garding their burn severity trends. For the zones featuring developments with statistical
significance, it is shown to which extent they overlap with the area of New South Wales
and Victoria.
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3.2. Fire Trends Regarding Climate Zones

Figure 6 shows, first and foremost, the exceptionality of the 2019/2020 wildfire events,
regarding the total extent of the burnings. The calculated size reaches 6.5 million hectares,
which is more than twice as high as in every other year in the analyzed time span. In
addition to the total extent, a subdivision regarding the affected climate zones is shown. For
this division, the Köppen–Geiger classification system published by Beck et al. (2018) [22]
is used. The color scheme follows the one proposed by the authors.

Figure 6. Total yearly burnt area amount in million hectares, subdivided by climate zones.

Table 6 represents a listing of all climate zones in the area of interest together with
their p-value as a measure of statistical significance. A threshold of p ≤ 0.05 is applied to
indicate the significance, the respective table row is marked in dark gray. Climate zones
featuring a p-value close to statistical significance (0.05 < p ≤ 0.1) are highlighted with
light gray color.

Table 6. Trends regarding the size of affected area for each climate zone in the area of interest. The
climate zone featuring a statistically significant trend is marked in dark gray. The one showing a
trend close to statistical significance is depicted in light gray.

Class Slope (%) Perc 5 Perc 95 Corr. Coef. p-Value RMSE Label
Csa 0.070 0.057 0.080 0.385 0.09 0.009 Temperate, dry summer, hot summer
BSk −0.053 −0.358 0.175 −0.051 0.83 0.060 Arid, steppe, cold
Cfb 3.519 0.443 7.165 0.206 0.38 0.962 Temperate, no dry season, warm summer
Am 0.004 −0.000 0.011 0.234 0.32 0.001 Tropical, monsoon

BWk 0.020 0.000 0.045 0.223 0.34 0.005 Arid, desert, cold
Csb 0.360 0.064 0.499 0.322 0.17 0.061 Temperate, dry summer, warm summer
Aw 0.883 0.675 1.449 0.307 0.19 0.158 Tropical, savannah
Cfa 3.422 3.006 4.467 0.519 0.019 0.325 Temperate, no dry season, hot summer
Dfb −0.061 −0.117 0.066 −0.142 0.55 0.024 Cold, no dry season, warm summer
Dfc −0.078 −0.123 −0.047 −0.295 0.21 0.014 Cold, no dry season, cold summer
BSh 1.494 0.741 2.058 0.325 0.16 0.250 Arid, steppe, hot

Af −0.000 −0.001 0.001 −0.022 0.93 0.000 Tropical, rainforest
BWh 0.014 −0.024 0.038 0.108 0.65 0.007 Arid, desert, hot
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Note that, apart from the temperate zones featuring dry winters and warm to hot
summers (Cwa/Cwb), all climate zones existing in the Eastern part of Australia are affected
by wildfire.

The table shows that only one climate zone satisfies the p-value condition for statistical
significance (Cfa: Temperate, no dry season, hot summer). The respective correlation
coefficient lies in the moderate range, even if the RMSE (Root Mean Square Error) shows
a considerable oscillation around the regression line. The column “Slope (%)” shows the
actual inclination of this line, given in percent. This value represents the actual trend.
For this climate zone, the yearly rate is 3.4%, indicating a considerable increment in fire
size over recent years.

As can be seen in Figure 7, robust trends regarding fire severity can be derived
for two climate zones. First, the temperate zone featuring dry and hot summers (Csa),
and second, the arid desert zone featuring cold conditions throughout the year (BWk).
The first one shows an inclination of 0.42% per year on average, the second one features a
value of 0.11%. The zone of arid steppe with year-round cold conditions (BSk) shows the
second largest positive trend inclination, but features a p-value just above the threshold for
statistical significance.

Figure 7. Trends regarding fire severity for each climate zone. The lengths of the bars visualize the
strength of the trend. The bars for climate zones featuring a statistically significant trend are drawn
with a thick, black border. A gray border is used to identify trends close to statistical significance.
The horizontal, black lines represent the error margins.

Table 7 lists the severity trend for each climate zone.
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Table 7. Trends regarding fire severity for each climate zone, given in percent of increase/decrease.
Climate zones featuring a statistically significant trend are marked in dark gray. The one showing a
trend close to statistical significance is depicted in light gray.

Class Slope (%) Perc 5 Perc 95 Corr. Coef. p-Value RMSE Label
Csa 0.415 0.251 0.631 0.457 0.043 0.046 Temperate, dry summer, hot summer
BSk 0.188 0.169 0.229 0.418 0.07 0.023 Arid, steppe, cold
Cfb 0.187 0.147 0.325 0.317 0.17 0.032 Temperate, no dry season, warm summer
Am 0.113 0.018 0.219 0.209 0.38 0.030 Tropical, monsoon

BWk 0.111 0.080 0.135 0.566 0.009 0.009 Arid, desert, cold
Csb 0.108 −0.033 0.209 0.123 0.61 0.050 Temperate, dry summer, warm summer
Aw 0.066 −0.022 0.188 0.126 0.6 0.030 Tropical, savannah
Cfa 0.064 −0.039 0.157 0.108 0.65 0.034 Temperate, no dry season, hot summer
Dfb 0.040 −0.059 0.160 0.07 0.77 0.033 Cold, no dry season, warm summer
Dfc −0.040 −0.107 −0.009 −0.117 0.62 0.020 Cold, no dry season, cold summer
BSh −0.053 −0.116 0.016 −0.17 0.47 0.017 Arid, steppe, hot

Af −0.059 −0.093 −0.041 −0.285 0.22 0.011 Tropical, rainforest
BWh −0.069 −0.198 0.055 −0.109 0.65 0.036 Arid, desert, hot

In order to verify that the trends depicted in the above figures and tables are actually
connected to fire occurrence, instead of being a general phenomenon or an effect by a cause
not investigated, a cross-check has to be performed. Figure A2, which is located in the
Appendix A, shows severity trends for each climate zone, where only areas are considered
that have not been affected by fire. As can be expected, no general trend of increased
fire severity is observable. In fact there is a generally negative development, indicating
a general increase in vegetation fitness. The p-values and the correlation coefficients are
generally low, meaning that there is no connection between vegetation fitness and the
progression of years in these unaffected areas..

Table A1, which can be found in the Appendix A, shows the statistical information
regarding the cross-check.

3.3. Fire Trends Regarding Ecological Units

In order to draw conclusions regarding the vegetation types causing the increasing
severity trends in some of the climate zones, the analysis is also carried out on the basis of
ecological units. These units feature a higher spatial and thematic resolution, and are thus
better suited for analyses on a smaller scale.

For the incorporation of ecological units, the Global Ecological Land Units global
dataset provided by the United States Geological Survey (USGS) [40] is used. The ecological
units are a combination of bioclimate region, landform type, surficial lithology, and land
cover information [71], and allow for a very high thematic resolution. This results in more
than 3600 different units covering the area of interest. In order to reduce the number of
units to be analyzed to an appropriate level, a subset is generated from the original data
in a preceding step. This subset contains all ecological units which were affected by the
2019/2020 burnings and covered more than 1% of the burnt area. Furthermore, it comprises
all ecological units covering more than 1% of the area of interest.

Figure 8 shows the analysis results of the total burnt area extent development, regard-
ing the ecological units. It can be seen that the three most prominent units (1750, 1529,
and 1664) feature either needleleaf or evergreen forest, which has not been the case in for-
mer years. Statistically significant results can, however, only be derived for the class of “Hot
Wet Mountains on Non-Carbonate Sedimentary Rock with Mostly Needleleaf/Evergreen
Forest” (2268). The statistical results are found in Table A2 in the Appendix A.
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Figure 8. Total yearly burnt area amount in million hectares, subdivided by ecological units.

Figure 9 shows the severity trends regarding ecological units, equivalent to the climate
zone analysis above. Similar to the burnt area extent analysis, stable trends can be derived
for two classes featuring either needleleaf or evergreen forest. These classes are “Hot
Wet Mountains on Non-Carbonate Sedimentary Rock with Mostly Needleleaf/Evergreen
Forest (2268)” and “Warm Wet Mountains on Metamorphic Rock with Mostly Needle-
leaf/Evergreen Forest (1652)”. Two further units feature p-values close to statistical signifi-
cance, and are thus worth being considered: “Warm Semi-Dry Plains on Unconsolidated
Sediment with Mostly Cropland (1712)” and “Hot Moist Plains on Unconsolidated Sed-
iment with Grassland, Scrub, or Shrub (2529)”. All respective statistical information is
found in Table A3 in the Appendix A.
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Figure 9. Trends regarding fire severity for the most affected ecological units. The lengths of the bars
visualize the strength of the trend. The bars for ecological units featuring a statistically significant
trend are drawn with a thick, black border. A gray border is used to identify trends close to statistical
significance. The horizontal, black lines represent the error margins.

The increasing burn severity for some classes can be linked to a higher degree of
combustion. Other reasons include the higher amount of combustible biomass, the concern
of younger, healthier vegetation, or the exposure of different vegetation types.

The cross-check, conducted for areas which have not been affected by fire, shows
the expected, generally negative trend. The derived fire severity trends presented above
are therefore demonstrably caused by wildfire activity. Figure A3 shows the trend for
each ecological unit. All respective statistical information is found in Table A4 in the
Appendix A.

Figure 10 shows a section of the two ecological units with a statistically significant
increase in fire severity during the analyzed time span. The figure represents a detailed
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view of the North-Eastern part of New South Wales, where these two ecological units
overlap with the area affected by the 2019/2020 wildfires.

Figure 10. Ecological units featuring a statistically significant severity trend, overlapping 2019/2020
wildfire locations in northern New South Wales.

3.4. Combination of Results from Different Levels

Table 8 lists how much area of New South Wales and Victoria is covered by the relevant
climate zones. Features are considered relevant if they show a trend matching or being
close to statistical significance regarding burn extent or severity. Two of these zones—BSk
and Cfa—cover significant portions of the two states.
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Table 8. Percentage of area covered by relevant climate zones, regarding New South Wales
and Victoria.

Climate Zone
Area Portion (%)

Label
NSW VIC

BWk 3.8 3.3 Arid, desert, cold
BSk 17.9 36.7 Arid, steppe, cold
Csa 0.16 1.6 Temperate, dry summer, hot summer
Cfa 19.1 1.9 Temperate, no dry season, hot summer

Table 9 lists, equivalent to Table 8, how much of the area of the relevant climate
zones is covered by relevant ecological units. It can be seen that unit 1712 covers 36.3%
of the area of the BSk climate zone in New South Wales, and even 52.3% of this zone in
Victoria. However, this unit contains mostly cropland, and thus the fire activity has to be
attributed in large part to agricultural burnings. While it is interesting to note that the burn
severity rises on agricultural areas, this study targets the activity of potentially harmful
wildfires, and is thus not concerned with controlled, anthropogenic fires. Ecological unit
1712, and with it the BSk climate zone, is therefore considered largely irrelevant for this
study. The remaining zone is Cfa, which features a temperate climate with hot summers,
and without a dry season. Unit 2268, “Hot Wet Mountains on Non-Carbonate Sedimentary
Rock with Mostly Needleleaf/Evergreen Forest”, shows the highest trends of all analyzed
ecological units, both regarding fire extent and fire severity. The unit features an increasing
trend of 0.26% on annual average regarding extent, and 0.39% regarding burn severity.
Both trends are shown to be robust, indicated by their statistical significance. A similar
trend can also be seen for unit 1652, “Warm Wet Mountains on Metamorphic Rock with
Mostly Needleleaf/Evergreen Forest”, which shows an increasing burn severity of 0.2% on
annual average.

Table 9. Percentage of area covered by relevant ecological units, regarding New South Wales
and Victoria.

Ecological Zone

Area Portion (%)

LabelNSW VIC

BSk Cfa BSk Cfa

1372 - 0.1 - -
Warm Wet Hills on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1652 - 0.9 - -
Warm Wet Mountains on Metamorphic Rock
with Mostly Needleleaf/Evergreen Forest

1712 36.3 1.4 52.3 3.7
Warm Semi-Dry Plains on Unconsolidated Sediment
with Mostly Cropland

2268 - 2.9 - -
Hot Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2373 - 2.4 - -
Cool Dry Mountains on Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2529 - - - -
Hot Moist Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2902 - - - -
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

Apart from the agricultural area, all units located within this climate zone featuring
increasing severity trends contain needleleaf or evergreen forest.

This development is also discernible in Figure 11, which shows the affected vegetation
types and the respective size in hectares for each of the four exposed states and territories,
regarding the period of 2000 to 2020. Yearly land cover information of the ESA CCI-LC
(Climate Change Initiative—Land Cover) dataset ([39]) has been used in order to derive the
present vegetation types for each respective year. For New South Wales and Victoria, it can
be seen that forests represent the predominantly affected vegetation type of the burnings in
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2019/2020. The presented figures and statistics indicate that ecologically valuable, woody
vegetation is increasingly affected in the study area.

Figure 11. Total yearly burnt area amount in million hectares for each state, subdivided by land
cover type.

4. Discussion

While the inter-annual variability in fire activity complicates and in some cases pro-
hibits the derivation of statistically significant trends, several expressive conclusions could
be drawn for some of the investigated climate zones and ecological units.

Steady increases regarding burn severity could be found for the climate zones BSk and
Cfa, which cover significant parts of New South Wales and Victoria. These development
could be traced back to several ecological units, residing inside these climate zones. One of
those, number 1712, is mostly characterized by agricultural activities and thus considered
less relevant. The other ones, located within the Cfa climate zone, indicate pronounced
increases in burn severity regarding needleleaf/evergreen forest. This is supported by a
time series study of land use/land cover information. In general, the results show that
woody vegetation is increasingly affected in New South Wales and Victoria.

Equivalent conclusions have been drawn by Tran et al., who analyzed fire severity
for Victoria [15] regarding the period of 1987 to 2017. The authors furthermore stated that
the consequences for ecosystem dynamics might be critical, as temperate forests usually
adapted to fire could be damaged irreversibly through higher severity burnings.

Several points need to be taken into account regarding the methodology of this study:
First, note that the inter-comparison of the analyzed classes is only possible in a limited

manner. The measure of fire severity has a very different expressiveness between arid,
tropical and savannah land cover classes, for example. Hammill et al. also found that
determining fire severity from satellite imagery for sedge-swamp or heath surface cover is
only possible with lower accuracy compared to forests and woodlands [72]. Results are
therefore distorted when study areas cover different ecosystem types, meaning that the
robustness of the results increases with rising homogeneity of the study area. While the
effect of mixed signals cannot be fully eliminated in a large-scale study, it can be mitigated
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by analyzing regions of homogeneous climatic conditions or fine-scale ecological regions,
as it is done here.

Second, the derivation of burnt area perimeters as well as the assessment of burn
severity rely heavily upon the NDVIdi f f . This index has been utilized in numerous inves-
tigations, and was validated in a variety of studies, for example [73–75]. The index has
been used for decades to assess fire severity, and is also actively used today. For instance, it
was recently utilized by Mathews et al. as well as Storey et al. to analyze the burn severity
of the wildfires in California in 2020 [76,77]. Tran et al. 2020 investigated indices which
are commonly used to assess fire severity, regarding the study area of Victoria/Australia.
They identified the NDVI as one of the optimal spectral indices for mapping fire severity,
regarding the forest types of this study area [15,75].

Another index frequently utilized is the Normalized Burn Ratio (NBR), which is
similar the NDVI but relies on the NIR and Short Wave Infrared (SWIR) band combination
instead of red and NIR in case of the NDVI. This index could be shown to perform similar
to the NDVI regarding high severity fires, but was superior regarding fire events featuring
rather low severity [78]. The reason that the DLR burnt area dataset does not utilize the
NBR is that this dataset is primarily based on the Sentinel-3 OLCI instrument, which does
not feature a band in the SWIR domain. The MODIS instrument does have a SWIR band,
however. This one is only available at at a reduced resolution of 500 m, though, opposed to
250 m regarding the red and NIR band. For the conduction of the study, it was decided to
utilize the MODIS bands equivalent to the ones available in Sentinel-3 OLCI. This allows a
homogeneous methodology at the best available spatial resolution.

Apart from rule-based approaches based on spectral indices, methodologies from
the domain of Machine Learning are increasingly used in wildfire science. Collins et al.
(2018) [79] used a Random Forest classifier for the determination of burn severity classes,
and found a higher detection accuracy compared to index-based approaches. This pro-
ceeding, however, requires preceding steps of careful selection and preparation of training
data, as well as the actual training of a Neural Network regarding the area of interest
and input data to be used. A comprehensive overview of the requirements is given by
Collins et al. (2020) [80]. The methodology invoked for the DLR dataset has been designed
to be applicable with a variety of optical sensors, and to be operational globally without a
preceding training step.

Third, the analyzed time period covers only the months from November to February
for each analyzed year, which is the time span the majority of the disastrous burnings
happened in the 2019/2020 fire season. The confinement to a subsection of the available
input data became necessary because of the massiveness of the complete dataset, which
could not have been processed within a reasonable time frame. However, this time range
was found to be representative for the fire season regarding the state of Victoria by Tran et al.
(2020) [15]. Still, this confinement represents a sub-optimal precondition, as important
differences in the seasonality of fire across the study area might be ignored.

Fourth, developments regarding burn severity are dependent on different input factors,
and can easily be misinterpreted. These developments can be caused by shifts in the affected
vegetation coverage. Woody vegetation features a higher biomass amount compared to
shrubland, which will result in a higher severity value when burnt. Furthermore, the spatial
extent regarding affected land cover types plays a crucial role, since it proportionally
influences the resulting average value. An increase in area of affected woody vegetation can
be overcompensated by an even higher increase in area of affected shrubland vegetation.

Finally, it has to be stated that the analyzed time span of 20 years is rather short,
with respect to gaining sufficient insight into climate related, long-term developments.
This limitation is due to the availability of suitable satellite imagery of the MODIS and
OLCI sensors. The available data time range does not allow conclusions regarding the
question whether dramatic fire events occur more frequently than in earlier decades. For
future studies, it is therefore planned to also incorporate data of the Advanced Very High
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Resolution Radiometer (AVHRR) optical satellite sensor [81], which would allow to perform
analysis based on a time series covering more than 40 years.

5. Conclusions

The pronounced, inter-annual variability in fire activity together with the spatial
dynamics of wildfires often prohibits the derivation of statistically significant trends. The
majority of the dramatic burnings occurring mostly in New South Wales and Victoria in
the 2019/2020 fire season must be regarded as an exception. However, several meaningful,
robust trends regarding fire severity and extent could be derived for some of the affected
area, mostly located in the coastal area of northern New South Wales.

Two different climate zones have been found to be responsible for the rising burn
severity trends in New South Wales and Victoria. The trends within the BSk zone, which is
defined by cold, arid steppe conditions, is mostly due to fire activity in the ecological unit
1712, which contains mostly cropland. The fire activity in this zone is therefore attributed
mainly to agricultural burnings, which are not examined in this study. The coastal Cfa
climate zone, featuring temperate conditions with hot summers and without a dry season,
however, was shown to be increasingly affected by potentially harmful wildfires. The rising
trends of fire extent and severity could be traced back to several ecological units. All these
units, except for one which is used agriculturally, share the characteristic of being covered
by needleleaf/evergreen forest. While the extensive burnings of the 2019/2020 fire season
clearly are exceptional, some of the fire activity took place in these forested areas, and is
thus regarded to be in parts connected to a steady, long-term upward trend in fire extent
and severity.

It is concluded that the forested regions of the Australian East coast residing within the
Cfa climate zone (temperate, no dry season, hot summer) will most likely be increasingly
affected by wildfire activity in the future. Specifically, this refers to the area covered by,
first, ecological unit 2268 (Hot Wet Mountains on Non-Carbonate Sedimentary Rock with
Mostly Needleleaf/Evergreen Forest), which features a mean annual increase of 0.26% in
fire extent and 0.39% in fire severity. Secondly, this addresses the area covered by ecological
unit 1652 (Warm Wet Mountains on Metamorphic Rock with Mostly Needleleaf/Evergreen
Forest), which shows a mean annual increase of 0.25% in fire extent and 0.22% regarding
fire severity.

The DLR-GZS burnt area dataset, on which this study is based, could be shown to be a
valuable asset for wildfire related studies, such as burn severity time series analysis. To the
knowledge of the authors, it is the only large-scale, decadal burnt area dataset including
detailed burn severity information to this point.
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Appendix A

Figure A1. Burnt area extent in million hectares for the investigated states over the past two decades,
sub-divided by month of the fire season. The figure illustrates the usual distribution of fire activity
throughout the fire season.

;

Figure A2. Cross-check regarding fire severity for each climate zone, given in percent of in-
crease/decrease. The length of the bars visualizes the strength of the trend. The horizontal, black
lines represent the error margins.
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Table A1. Cross-check regarding fire severity for each climate zone.

Class Slope (%) Perc 5 Perc 95 Corr. Coef. p-Value RMSE Label

Csa −0.038 −0.093 −0.010 −0.141 0.55 0.015 Temperate, dry summer, hot summer
BSk 0.028 −0.030 0.047 0.158 0.51 0.010 Arid, steppe, cold
Cfb −0.077 −0.148 0.022 −0.135 0.57 0.032 Temperate, no dry season, warm summer
Am −0.218 −0.447 −0.018 −0.142 0.55 0.087 Tropical, monsoon

BWk 0.008 −0.052 0.053 0.048 0.84 0.010 Arid, desert, cold
Csb 0.116 0.061 0.152 0.292 0.21 0.022 Temperate, dry summer, warm summer
Aw −0.037 −0.216 0.156 −0.029 0.9 0.072 Tropical, savannah
Cfa 0.012 −0.051 0.061 0.028 0.91 0.025 Temperate, no dry season, hot summer
Dfb −0.079 −0.167 −0.009 −0.109 0.65 0.041 Cold, no dry season, warm summer
Dfc −0.096 −0.235 0.201 −0.111 0.64 0.050 Cold, no dry season, cold summer
BSh −0.038 −0.102 0.057 −0.072 0.76 0.030 Arid, steppe, hot

Af −0.129 −0.395 0.030 −0.079 0.74 0.094 Tropical, rainforest
BWh −0.035 −0.085 0.027 −0.125 0.6 0.016 Arid, desert, hot

Figure A3. Cross-check regarding fire severity for each ecological unit. The lengths of the bars
visualize the strength of the trend. The horizontal, black lines represent the error margins.
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Table A2. Trends regarding the burnt area size for each ecological unit in the area of interest. The
ecological unit featuring a statistically significant trend is marked in dark gray. Ecological units
showing trends close to statistical significance are depicted in light gray.

Class Slope (%) Perc 5 Perc 95 Corr. Coef. p-Value RMSE Label

2268 0.263 0.150 0.373 0.456 0.04 0.029
Hot Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1712 0.058 0.028 0.089 0.418 0.07 0.007
Warm Semi-Dry Plains on Unconsolidated Sediment
with Mostly Cropland

2529 0.108 0.029 0.229 0.17 0.47 0.036
Hot Moist Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

1705 −0.064 −0.132 0.050 −0.1 0.68 0.037
Warm Semi-Dry Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

1664 0.652 0.265 0.998 0.357 0.12 0.098
Warm Wet Mountains on Acidic Plutonics
with Mostly Needleleaf/Evergreen Forest

1628 0.184 0.063 0.294 0.329 0.15 0.030
Warm Wet Mountains on Acidic Volcanics
with Mostly Needleleaf/Evergreen Forest

1606 0.072 −0.015 0.160 0.189 0.42 0.021
Warm Wet Mountains on Acidic Plutonics
with Grassland, Scrub, or Shrub

1734 0.095 0.038 0.150 0.371 0.10 0.013
Warm Wet Mountains on Non-Acidic Volcanics
with Mostly Needleleaf/Evergreen Forest

1652 0.253 0.116 0.394 0.38 0.09 0.035
Warm Wet Mountains on Metamorphic Rock
with Mostly Needleleaf/Evergreen Forest

1750 1.581 0.567 2.503 0.336 0.14 0.255
Warm Wet Mountains on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

730 0.108 −0.103 0.321 0.109 0.64 0.056
Cool Wet Mountains on Acidic Plutonics
with Mostly Needleleaf/Evergreen Forest

712 −0.161 −0.417 0.095 −0.136 0.56 0.068
Cool Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1529 1.097 0.275 1.968 0.264 0.26 0.231
Warm Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

752 −0.023 −0.311 0.274 −0.017 0.94 0.079
Cool Wet Mountains on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2601 0.759 0.132 1.083 0.248 0.29 0.171
Hot Semi-Dry Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2480 0.105 0.058 0.153 0.279 0.23 0.020
Hot Semi-Dry Hills on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2373 0.231 0.111 0.355 0.38 0.09 0.032
Cool Dry Mountains on Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2902 0.068 0.015 0.083 0.405 0.08 0.008
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

2621 0.050 0.030 0.093 0.273 0.24 0.010
Hot Semi-Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2711 4.196 −0.001 0.002 0.259 0.27 0.000
Hot Dry Plains on Unconsolidated Sediment
with Bare area

2586 0.106 0.043 0.165 0.313 0.18 0.018
Hot Semi-Dry Hills on Mixed Sedimentary Rock
with Grassland, Scrub, or Shrub

2606 0.003 −0.006 0.018 0.072 0.76 0.002
Hot Semi-Dry Plains on Mixed Sedimentary Rock
with Sparse Vegetation

1845 0.222 0.074 0.359 0.3 0.19 0.040
Warm Moist Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2614 0.019 0.012 0.031 0.337 0.15 0.003
Hot Semi-Dry Plains on Mixed Sedimentary Rock
with Grassland, Scrub, or Shrub

1372 0.151 0.066 0.232 0.378 0.10 0.021
Warm Wet Hills on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2822 4.034 −0.003 0.001 0.061 0.8 0.000
Hot Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2784 −0.000 −0.007 0.004 −0.06 0.8 0.000
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Sparse Vegetation

1849 −0.019 −0.028 −0.007 −0.307 0.19 0.003
Warm Semi-Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2727 0.146 0.092 0.277 0.255 0.28 0.032
Hot Semi-Dry Hills on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

2791 0.008 0.007 0.033 0.085 0.72 0.005
Hot Dry Plains on Unconsolidated Sediment
with Swampy or Often Flooded Vegetation

1394 0.024 −0.103 0.140 0.045 0.84 0.031
Warm Wet Hills on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest
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Table A3. Trends regarding the fire severity for each ecological unit in the area of interest. Ecological
units featuring statistically significant trends are marked in dark gray. The ones showing trends close
to statistical significance are depicted in light gray.

Class Slope (%) Perc 5 Perc 95 Corr. Coef. p-Value RMSE Label

2268 0.385 0.269 0.499 0.589 0.006 0.030
Hot Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1712 0.326 0.177 0.453 0.385 0.09 0.045
Warm Semi-Dry Plains on Unconsolidated Sediment
with Mostly Cropland

2529 0.314 0.251 0.360 0.519 0.019 0.029
Hot Moist Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

1705 0.283 0.232 0.413 0.341 0.14 0.044
Warm Semi-Dry Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

1664 0.271 0.063 0.480 0.277 0.236 0.054
Warm Wet Mountains on Acidic Plutonics
with Mostly Needleleaf/Evergreen Forest

1628 0.262 0.100 0.429 0.318 0.171 0.045
Warm Wet Mountains on Acidic Volcanics
with Mostly Needleleaf/Evergreen Forest

1606 0.234 0.056 0.404 0.269 0.251 0.048
Warm Wet Mountains on Acidic Plutonics
with Grassland, Scrub, or Shrub

1734 0.224 0.052 0.407 0.259 0.269 0.048
Warm Wet Mountains on Non-Acidic Volcanics
with Mostly Needleleaf/Evergreen Forest

1652 0.224 0.120 0.326 0.45 0.046 0.025
Warm Wet Mountains on Metamorphic Rock
with Mostly Needleleaf/Evergreen Forest

1750 0.179 −0.038 0.418 0.161 0.498 0.063
Warm Wet Mountains on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

730 0.173 −0.012 0.378 0.179 0.450 0.055
Cool Wet Mountains on Acidic Plutonics
with Mostly Needleleaf/Evergreen Forest

712 0.163 −0.069 0.393 0.148 0.533 0.062
Cool Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1529 0.158 −0.053 0.374 0.158 0.504 0.057
Warm Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

752 0.142 −0.076 0.344 0.145 0.543 0.056
Cool Wet Mountains on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2601 0.127 0.113 0.265 0.212 0.37 0.034
Hot Semi-Dry Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2480 0.114 −0.029 0.298 0.176 0.46 0.037
Hot Semi-Dry Hills on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2373 0.107 −0.004 0.213 0.217 0.357 0.027
Cool Dry Mountains on Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2902 0.061 −0.004 0.225 0.089 0.71 0.039
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

2621 0.056 −0.060 0.138 0.113 0.64 0.028
Hot Semi-Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2711 0.035 0.005 0.062 0.259 0.27 0.007
Hot Dry Plains on Unconsolidated Sediment
with Bare area

2586 0.031 −0.106 0.057 0.05 0.83 0.036
Hot Semi-Dry Hills on Mixed Sedimentary Rock
with Grassland, Scrub, or Shrub

2606 0.022 −0.022 0.128 0.054 0.82 0.024
Hot Semi-Dry Plains on Mixed Sedimentary Rock
with Sparse Vegetation

1845 0.017 −0.152 0.199 0.023 0.924 0.045
Warm Moist Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2614 0.010 −0.121 0.066 0.019 0.94 0.033
Hot Semi-Dry Plains on Mixed Sedimentary Rock
with Grassland, Scrub, or Shrub

1372 0.005 −0.174 0.194 0.007 0.977 0.046
Warm Wet Hills on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2822 −0.018 −0.019 0.006 −0.094 0.69 0.011
Hot Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2784 −0.028 −0.122 0.074 −0.066 0.78 0.025
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Sparse Vegetation

1849 −0.078 −0.140 0.047 −0.15 0.53 0.029
Warm Semi-Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2727 −0.118 −0.185 0.037 −0.211 0.37 0.031
Hot Semi-Dry Hills on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

2791 −0.123 −0.298 −0.087 −0.22 0.35 0.031
Hot Dry Plains on Unconsolidated Sediment
with Swampy or Often Flooded Vegetation

1394 −0.231 −0.457 −0.009 −0.218 0.355 0.059
Warm Wet Hills on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest
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Table A4. Cross-check regarding fire severity for each ecological unit in the area of interest.

Class Slope (%) Perc 5 Perc 95 Corr. Coef. p-Value RMSE Label

2268 −0.052 −0.259 0.163 −0.053 0.824 0.057
Hot Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1712 0.012 −0.006 0.039 0.081 0.73 0.008
Warm Semi-Dry Plains on Unconsolidated Sediment
with Mostly Cropland

2529 −0.004 −0.267 0.124 −0.003 0.99 0.070
Hot Moist Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

1705 −0.007 −0.055 0.062 −0.034 0.89 0.012
Warm Semi-Dry Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

1664 −0.040 −0.204 0.118 −0.055 0.818 0.042
Warm Wet Mountains on Acidic Plutonics
with Mostly Needleleaf/Evergreen Forest

1628 −0.060 −0.190 0.073 −0.099 0.679 0.034
Warm Wet Mountains on Acidic Volcanics
with Mostly Needleleaf/Evergreen Forest

1606 −0.066 −0.154 0.022 −0.166 0.484 0.022
Warm Wet Mountains on Acidic Plutonics
with Grassland, Scrub, or Shrub

1734 −0.110 −0.257 0.030 −0.159 0.501 0.039
Warm Wet Mountains on Non-Acidic Volcanics
with Mostly Needleleaf/Evergreen Forest

1652 −0.126 −0.328 0.099 −0.125 0.600 0.057
Warm Wet Mountains on Metamorphic Rock
with Mostly Needleleaf/Evergreen Forest

1750 −0.113 −0.303 0.075 −0.13 0.586 0.050
Warm Wet Mountains on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

730 −0.136 −0.309 0.032 −0.171 0.469 0.045
Cool Wet Mountains on Acidic Plutonics
with Mostly Needleleaf/Evergreen Forest

712 −0.182 −0.383 0.002 −0.2 0.397 0.051
Cool Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

1529 −0.119 −0.317 0.073 −0.134 0.573 0.050
Warm Wet Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

752 −0.100 −0.248 0.048 −0.148 0.533 0.038
Cool Wet Mountains on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2601 −0.044 −0.109 0.055 −0.089 0.71 0.028
Hot Semi-Dry Plains on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2480 0.000 −0.137 0.102 0.001 1.0 0.033
Hot Semi-Dry Hills on Unconsolidated Sediment
with Grassland, Scrub, or Shrub

2373 −0.058 −0.262 0.134 −0.061 0.799 0.055
Cool Dry Mountains on Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2902 −0.047 −0.121 −0.049 −0.112 0.64 0.024
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

2621 −0.054 −0.193 0.092 −0.093 0.7 0.033
Hot Semi-Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2711 −0.013 −0.051 0.036 −0.062 0.8 0.012
Hot Dry Plains on Unconsolidated Sediment
with Bare area

2586 0.021 −0.087 0.141 0.042 0.86 0.029
Hot Semi-Dry Hills on Mixed Sedimentary Rock
with Grassland, Scrub, or Shrub

2606 −0.090 −0.250 0.047 −0.109 0.65 0.047
Hot Semi-Dry Plains on Mixed Sedimentary Rock
with Sparse Vegetation

1845 −0.088 −0.237 0.059 −0.123 0.605 0.041
Warm Moist Mountains on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2614 −0.050 −0.147 0.094 −0.086 0.72 0.033
Hot Semi-Dry Plains on Mixed Sedimentary Rock
with Grassland, Scrub, or Shrub

1372 0.011 −0.173 0.195 0.014 0.954 0.048
Warm Wet Hills on Mixed Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest

2822 −0.025 −0.071 0.037 −0.096 0.69 0.015
Hot Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2784 −0.096 −0.196 0.024 −0.167 0.48 0.032
Hot Semi-Dry Plains on Non-Carbonate Sedimentary Rock
with Sparse Vegetation

1849 −0.012 −0.035 0.008 −0.093 0.7 0.007
Warm Semi-Dry Plains on Unconsolidated Sediment
with Sparse Vegetation

2727 0.001 −0.040 0.054 0.002 0.99 0.031
Hot Semi-Dry Hills on Non-Carbonate Sedimentary Rock
with Grassland, Scrub, or Shrub

2791 −0.261 −0.350 −0.164 −0.319 0.17 0.044
Hot Dry Plains on Unconsolidated Sediment
with Swampy or Often Flooded Vegetation

1394 −0.167 −0.346 0.013 −0.194 0.413 0.049
Warm Wet Hills on Non-Carbonate Sedimentary Rock
with Mostly Needleleaf/Evergreen Forest
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