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Abstract: Forest structure is a useful proxy for carbon stocks, ecosystem function and species diversity,
but it is not well characterised globally. However, Earth observing sensors, operating in various
modes, can provide information on different components of forests enabling improved understanding
of their structure and variations thereof. The Ice, Cloud and Elevation Satellite (ICESat) Geoscience
Laser Altimeter System (GLAS), providing LiDAR footprints from 2003 to 2009 with close to global
coverage, can be used to capture elements of forest structure. Here, we evaluate a simple allometric
model that relates global forest canopy height (RH100) and canopy density measurements to explain
spatial patterns of forest structural properties. The GLA14 data product (version 34) was applied
across subdivisions of the World Wildlife Federation ecoregions and their statistical properties were
investigated. The allometric model was found to correspond to the ICESat GLAS metrics (median
mean squared error, MSE: 0.028; inter-quartile range of MSE: 0.022–0.035). The relationship between
canopy height and density was found to vary across biomes, realms and ecoregions, with denser
forest regions displaying a greater increase in canopy density values with canopy height, compared to
sparser or temperate forests. Furthermore, the single parameter of the allometric model corresponded
with the maximum canopy density and maximum height values across the globe. The combination
of the single parameter of the allometric model, maximum canopy density and maximum canopy
height values have potential application in frameworks that target the retrieval of above-ground
biomass and can inform on both species and niche diversity, highlighting areas for conservation, and
potentially enabling the characterisation of biophysical drivers of forest structure.

Keywords: canopy height; canopy density; ICESat GLAS; forest structure

1. Introduction

Forest structure can be defined as the three-dimensional arrangement of tree compo-
nents (leaves, branches and stems), covering land areas of varying dimension. It provides
crucial information on how forest ecosystems function, advancing studies of carbon stocks
and fluxes [1]. Forest structure is a key determinant of both species and niche diversity [2],
and is an important indicator for conservation priorities [3,4]. However, our knowledge
of forest structure on a global scale is limited due to multiple factors, such as the in-
accesibility of many remote and dense forests, the inability to directly measure forest
structure on regional to global scales and constant changes to forests and land use (e.g.,
deforestation, agriculture).

Large footprint LiDAR data have been used successfully to estimate elements of
forest structure, e.g., canopy height, above-ground biomass, stand volume, canopy density
and basal area, across various biomes (e.g., [5–7]). The Ice, Cloud and Elevation Satellite
(ICESat) Geoscience Laser Altimeter System (GLAS) was a full-waveform LiDAR mission,
with the main focus being to measure ice sheet elevation. However, the mission was also
able to develop vegetation products which have been used to study forest height and
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structure across the globe [7,8]. Studies have demonstrated that ICESat GLAS canopy
density and height metrics are comparable with both airborne LiDAR and ground data in
areas of low topography [6,7]. However, issues can arise in certain conditions (e.g., leaf-off
and areas of high topography [9–11]). ICESat GLAS metrics have therefore been used to
develop products of global or regional forest canopy height [8,12,13] or canopy fractional
cover [14] and also to characterise canopy fuel loads [15] or to investigate drivers of forest
height [16].

Understanding and defining the canopy density of a forest is complex, given that
there is no true canopy density measure from in situ data. In situ estimates of canopy
density or cover have been undertaken using densitometer estimation, hemispherical
photography [17], or Terrestrial Laser Scanning (TLS) [18]. Canopy density metrics from
full-waveform LiDAR have been compared to density metrics from both ground and
discrete airborne LiDAR data [1,15,19,20], these studies calculate the canopy density value
of the full waveform LiDAR as the ratio between the energy received from the canopy and
the total energy returned.

As part of a modelling framework that relates remote sensing observations in the
microwave domain to canopy density and height, ICESat GLAS footprints have been
evaluated in Sweden to develop a relationship that explains canopy density as a function
of canopy height by Santoro et al. [21]. The aim of this study was to investigate if the
relationship found in [21] could be extended to landscapes across the globe to gather
understanding on variations in forest structure and if they can be characterised with such
an allometric model.

2. Materials and Methods
2.1. Datasets
2.1.1. ICESat GLAS

The GLAS LiDAR sensor onboard the ICESat mission carried 3 laser instruments,
operating exclusively on three 33 day sub-cycles, covering northern hemisphere spring,
summer and autumn [7]. Elliptical footprints of ∼70 m diameter were spaced 172 m along
track, although their size and ellipticity varied through time [9].

Here, we utilised the GLA14 product (version 34), which provides altimetry data for
land surfaces with geodetic, atmospheric and instrument corrections applied. The wave-
form data were provided in the form of parameters from a multi-Gaussian model which
was fitted to the raw waveforms. The waveform for each of the footprints was modelled
with up to six Gaussians, as described in Hofton et al. [22]. In addition, extra parameters
are provided with the GLA14 product which are suitable for identifying footprints affected
by, for example, atmosphere, signal saturation or low signal-to-noise ratio.

2.1.2. Additional Datasets

In order to eliminate any urban or un-vegetated areas, remove any footprints that may
be affected by topography and classify the ICESat data by biophysical zones, additional
datasets were required.

The European Space Agency’s, Climate Change Initiative (CCI), Land Cover project
provides a global land cover map for 2010 [23] based on 300 m MERIS and 1 km SPOT-
VEGETATION data. The overall accuracy of this dataset is 76 percent. Despite errors of
commission and omission, which mostly affected mosaic classes (classes with multiple
vegetation types, e.g., mosaic cropland), this was considered a sufficiantly reliable product
that can be used to filter out footprints located in non-vegetated areas. The classes used to
remove non-vegetated areas were: 0-no data, 190-urban, 200-bare areas, 202-unconsolidated
bare areas, 210-water bodies and 220-permanent snow and ice.

The MODIS Vegetation Continuous Fields (VCF) dataset [24] estimates the percent
cover of woody vegetation for 2010. The dataset was generated from monthly composites
of 500 m surface reflectance data, and has been validated for various biomes and regions
(e.g., [19,25–27]). These studies show that the VCF dataset is suitable for estimating tree-



Remote Sens. 2021, 13, 4961 3 of 15

cover in the majority of regions, however, in sparsely vegetated areas such as savannas it is
less-suitable. In particular, Huang and Seigert [26] and Gao et al. [28] found issues with
identification of forest and non-forest in both North China and the Tropics, respectively.
Despite these errors of commission we removed any ICESat GLAS footprints that had a
VCF < 5.

A digital elevation model (DEM) produced by de Ferranti [29] consists of gap-filled 3
arc-seconds Shuttle Radar Topographic Mission (SRTM) elevations for regions between
60◦ N and 56◦ S. Above 60◦ N, elevations were calculated from multiple datasets (e.g.,
topographic maps, optical imagery, DEMs) which were selected according to quality for
a given region. Further details on the selection process can be found in de Ferranti [29].
Despite some inaccuracies in this dataset, reported by de Ferranti [29], an analysis of other
global DEMs by Rizzoli et al. [30] indicates that these show artefacts that could impact the
filtering of the GLAS dataset, therefore, the de Ferranti dataset was applied in this study.

2.1.3. World Wildlife Federation Ecoregions

Forest structure and composition are dependent on multiple factors, such as altitude,
temperature, precipitation and edaphic conditions [3,31,32]. Dividing the globe into regions
of similar forest structure is therefore a complex task. The World Wildlife Federation (WWF)
generated ’ecoregions’ which contain geographically distinct assemblages of species, natu-
ral communities or environmental conditions. In addition to precipitation, temperature
and spectral signatures from remote sensing, they also incorporated the geological history,
the importance of endemic genera and distinct assemblages of species [4]. The definitions
and boundaries of the ecoregions are therefore relatively subjective but lay a suitable foun-
dation for an investigation into variations in forest structure. In this product, the world’s
land masses are divided into 14 major habitat types, or biomes (Figure 1). These biomes
contain 827 ecoregions with a mean area of 164,000 km2 but ranging from the Sahara desert
(4.6 million km2) to small island ecoregions of just 6 km2.

Figure 1. Map of the distribution of WWF ecoregions categorised by biome (14) adapted from Olsen et al. [4].
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2.2. Pre-Processing

Canopy density and canopy height were estimated from ICESat GLAS waveforms by
assuming that: i, the ratio between the energy received from the canopy and the total energy
returned and ii, RH100, represent canopy density and forest height, respectively [1,15,19,20].

The ICESat GLAS dataset was filtered for various error and noise sources following
Los et al. [8] and Simard et al. [12]. As only forest footprints were of interest to this
study, footprints: (i) with only one peak (GLAS parameter i_numPk), (ii) with the MODIS
VCF < 5 [33] or (iii) categorised as ’non-vegetated’ with the CCI Land Cover product [23]
were also removed. To reduce topographic effects, filtering was computed according to
Simard et al. [12], maintaining footprints located on terrain slopes <5◦ and requiring
a correction of slope <25 percent of the RH100 before correction, with slope estimates
for each footprint derived from the SRTM DEM [29], although this may not have been
sufficient to identify all footprints affected by topography.

For the remaining footprints, canopy height was calculated as the difference between
GLA14 parameters SigBegOff and gpCntRngOff (elevation of lowest gaussian peak in
the waveform). To estimate the canopy density from ICESat GLAS, the ratio between the
energy received from the canopy and the total energy received was calculated using the
GLA14 parameters Gamp, Gsigma and gpCntRngOff [15].

The different laser periods were reviewed for consistency. Laser 1 was used for the first
2 cycles (February–March 2003), Laser 2 for the next 5 cycles (September 2003–June 2004)
and then Laser 3 for 11 cycles (October 2004–October 2008) before Laser 2 was reinstated
for the last 3 cycles (November 2008–October 2009) [34]. A global mean canopy height and
mean canopy density was calculated for each of these 4 laser periods. Due to the complexity
of seasonal variations in phenology across the globe and the limited footprints between
March and November, no leaf-on/leaf-off filtering was applied. Following filtering, ca.
21 million footprints remained (see Supporting Information Figure S1). The combination
of the nature of ICESat GLAS imaging and the filtering described above resulted in a
heterogeneous footprint distribution: Sub-Saharan Africa and South America have the most
available footprints, and East Asia, Australia and mountainous regions have the fewest.

2.3. Methods

This study investigated the extension of the model proposed by Santoro et al. [21]
in Swedish forests to explain canopy density (i.e., a variable of horizontal structure) as a
function of canopy height (m; i.e., a variable of vertical structure):

CD = 1 − e−qh (1)

In Equation (1), canopy density (CD) is described as a function of canopy height
(h) by means of an exponential function, which is characterised by a single parameter, q.
This model was selected by Santoro et al. [21] following an analysis of functions fitted
to the ICESat GLAS observations, which revealed that the rise-to-max function was the
most robust. The analysis undertaken in Sweden demonstrated a spatial variation of
the q parameter, with values ranging from approximately 0.04 to 0.10 across the country,
which was interpreted as originating from variations in forest composition and structure.
A preliminary investigation at coarse scale was also undertaken across other biomes,
indicating the potential for Equation (1) to characterise the relationship between the two
metrics on a global scale [21].

The ICESat GLAS data were stratified according to the different WWF ecoregions.
Potential outliers were removed by calculating the logarithm of RH100 for each ecoregion
and trimming the upper and lower 5 percent. A least squares regression, between canopy
density and canopy height, was fitted using the scipy [35] Levenberg–Marquardt method
to obtain an estimate of the parameter q for each ecoregion. The mean squared error
(MSE) between the actual and predicted values of canopy density were also calculated for
each regression. Finally, the standard error (SE) of the estimated q-value was calculated



Remote Sens. 2021, 13, 4961 5 of 15

using bootstrapping, with 100 iterations per ecoregion. This was undertaken in order to
determine the minimum number of footprints required to fit the regression.

WWF ecoregions was originally conceived to contribute towards global conservation
exercises, as these describe broad ecologically meaningful areas. However, the product does
not capture localised variations within these ecoregions [36]. Over 50 percent of Sweden
is dominated by one ecoregion, but the large variation in q seen in Santoro et al. [21]
highlights that further subdivision was required. As localised variations within ecoregions
are not mapped at a global scale, the subdivision was based on a grid system.

There was a trade off in the area of this subdivision between the ability to capture
variations in forest structure whilst ensuring sufficient footprints available for each re-
gression. Therefore, a 1° grid square was selected. A union was generated between the
WWF ecoregions and a 1° × 1° grid. Meaning each grid cell was divided by the ecoregions
within it and vice versa (see Supporting Information Figure S2). Of the resulting polygons,
37 percent did not have sufficient footprints for a regression (<100, see results). These were
removed and the original underlying q-value for the ecoregion was used in place. For each
of the remaining new polygons, a q-value, MSE and SE were calculated using the same
methods as undertaken initially for the ecoregions.

Global layers of forest canopy height and canopy cover have been developed as they
can be used as predictors of above-ground biomass (AGB) or to inform on the delivery of
important ecosystem services [12,37,38]. In order to provide further information on forest
structure, the means of the top 10 percent of canopy height and canopy density values
were calculated, using the ICESat GLAS data for each polygon, after the removal of the
potential outliers described above. This provided, for the entire polygon, a representative
estimate of ’maximum’ canopy height and ’maximum’ canopy density, herein referred to
as Hmax and CDmax, respectively.

3. Results

Comparison of the global mean canopy height for each laser period indicated a drop
of over 50 percent for the last phase of Laser 2 compared to the 3 other laser periods (see
Supporting Information Table S1). For this reason, laser periods 2D-F were removed from
the dataset. Polygons with over 100 footprints had standard errors < 10 percent, whereas
lower quantities of footprints presented increasingly higher SE values (see Supporting
Information Figure S3). 100 footprints was therefore set as the threshold for including the
q-value. This was also the threshold adopted for exclusion of the polygons generated by
the union of WWF ecoregions and the 1◦ × 1◦ grid.

The model described in Equation (1) corresponded with the ICESat GLAS metrics,
despite varying patterns of the canopy density to canopy height relationship (Figure 2).
The varying dispersion of the data resulted in MSE values with a median of 39 percent and
inter-quartile range of 27–60 percent relative to the q-values obtained.

Figure 2. Least squares regression curves denoted by blue lines (extended to 60 m canopy height for comparison) for the
exemplary polygons. With (a) a low q-value (0.031), (b) a q-value close to the global mean (0.064) and (c) a high q-value
(0.131). Dots represent ICESat GLAS data as density plots with the viridis colour scale, with yellow being most dense.
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Values of the q parameter ranged from 0.019 to 0.153 across the globe. Higher q-
values indicated a rapid increase in canopy density with canopy height and were found
in dense tropical forests (means per biome > 0.075), whilst the lowest values (means per
biome < 0.055) were associated with the sparser forests in savanna and boreal regions
(Figure 3). A latitudinal trend of higher q-values in the tropics to lower values in the
pan-boreal regions and continental Australia was observed, although an increase in q-
values in the polar regions was noticed, particularly in the southern hemisphere (Patagonia,
Tasmania and New Zealand; Figure 3).

Figure 3. Map of q-values obtained. Grey represents areas with <100 ICESat footprints. Plus, a latitudinal plot of q-values
with the black line denoting the median q-value and the bars the interquartile range.

The division of q-values per biome provided further information on the variation of
this canopy height to canopy density relationship across the globe (Figure 4 and see Sup-
porting Information Table S2). At the lower end of the range, q-values for the Boreal/Taiga
and Temperate Conifer biomes exhibited similar distributions through ANOVA (p = 0.02),
with mean q-values of 0.048 and 0.051, respectively (more than 1 standard deviation from
the global mean of 0.064). The three savanna biomes exhibited mean q-values lower than
the global mean (0.054–0.062). The Tropical and Sub-Tropical (TST) savanna and TST
flooded savanna also displayed similar distributions through ANOVA (p = 0.01). At the
upper end of the range, the TST Moist Broadleaf, Mangrove and TST Dry broadleaf had the
highest mean q-values (0.076–0.083). Biomes showing large variance in the q-values were
the Mediterranean (0.35 × 10−3), Temperate Savanna (0.30 × 10−3) and all TST biomes
(>0.26 × 10−3). The Tundra biome and Montane Shrublands stood out with their small vari-
ances (0.1 × 10−3) around means (0.063 and 0.064, respectively) close to the global mean.

Figure 4. Histograms of q-values per biome, split into two figures for clarity.

Values of q were found to vary within biomes for each of the different realms (see
Supporting Information Table S3). Within the TST Savanna and Temperate Broadleaf
biomes, the highest q-values were found in the Neotropics (means of 0.081 and 0.070,
respectively), and the lowest in Australasia (means of 0.042 and 0.047, respectively). With
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the exception of the Mediterranean and Mangrove biomes, the Neotropical realm had the
highest mean q-value in every biome. This was particularly noticeable in the TST Moist
Broadleaf biome (mean of 0.088) where it is distinguished from the three other realms
where means ranged from 0.075 to 0.076. Relatively distinct distributions of q-values per
realm were observed for the Mediterranean (mean 0.0046 to 0.077), Flooded Savannas
(0.048 to 0.072) and Boreal/Taiga (0.54 and 0.43).

The spatial variation of MSE values indicated that the highest values were in temperate
regions across the Northern hemisphere and in Eastern Australia (Figure 5). The lowest
values were found in tropical regions. Variations in MSE were observed between biomes
(Figure 6), with the three temperate biomes exhibiting the highest mean MSE values
(0.037–0.042). Mid-range values (0.026–0.033) were associated with; the TST Dry Broadleaf
and TST Conifer biomes found close to the equator; the Flooded Savanna and Mangrove
biomes experiencing regular flooding; and the Montane Shrubland and Tundra biomes
characterised by extreme temperatures and poor soils. The lowest mean MSE value (0.019)
was found in the TST Moist Broadleaf biome. The bi-modal distribution within this biome
was related to geographical location: with the high MSE values (0.01–0.02) relating to
Amazonia, the Congo Basin and the island of New Guinea, whereas lower MSE values
(0.03–0.04) were located in the Indo-Malay realm, south-eastern Brazil, Central America
and coastal regions of the Afro-tropics.

Figure 5. Map of mean squared error (MSE) values (plotted as MSE relative to the q-value in percent) with 1◦ grid results
overlain on the ecoregion results. Areas in grey have no regression due to lack of available footprints.

Figure 6. Frequency distributions of MSE per biome, split into two figures for clarity.

A zonal distribution of q-values was observed when comparing with the CDmax and
Hmax values (Figure 7). The lowest q-values (blue dots) were found in the forests with
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lower CDmax values for each Hmax value, or higher Hmax values for each CDmax value. The
highest q-values (pink and brown dots) were found in the forests which reach CDmax at the
lowest Hmax. The tallest, densest forests therefore were not necessarily associated with the
highest q-values. For each range of q-values, a distinct pattern of CDmax and Hmax values
was observed. As q increased, these patterns shifted, with CDmax and Hmax increasing with
q until CDmax values were reached (CDmax > 0.96). Above this point, there was a trend of
decreasing Hmax with increasing q: for CDmax > 0.96, a negative correlation of q to Hmax
was observed (p < 0.01, n = 897).

Figure 7. Maximum canopy height and canopy density values for each 0.02 range of q-values.

Furthermore, in certain biomes, variations in CDmax and Hmax values were observed
for each realm (see Supporting Information Table S3). In the TST Savanna biome, the
Neotropical realm had the highest CDmax values at the lowest Hmax, whereas Australasia
had sparser forests for each Hmax value. The Neotropics also demonstrated these high
CDmax values for lower Hmax values in the TST Dry Broadleaf, with the Indo-Malay
Realm having generally taller forests for each CDmax value. The Mediterranean biome had
different forest structure characteristics for each realm, with 82 percent of Australasian
polygons having a CDmax < 0.65, whereas the Palearctic had only 6 percent of polygons
below 0.65. The Australasian polygons with higher CDmax values were taller than the
Palearctic polygons with similar CDmax values. In the Desert biome this pattern of low
CDmax in Australasia was again observed. Investigating CDmax and Hmax values led to
further understanding of the q parameter. For example, in the Montane Shrublands and
Tundra biomes, low Hmax values were observed (77 percent < 10 m and 90 percent < 15 m,
respectively), alongside CDmax values close to the global mean (means of 0.72 and 0.77,
respectively). These canopy density values in relation to canopy height resulted in q-values
close to the global mean.

4. Discussion

The model described by Equation (1) was able to capture the relationship between
canopy density and height (Figure 2) for biomes across the globe, despite the dispersion of
the height and canopy density values in some biomes (particularly temperate). The single
parameter (q) of the allometric model captured spatial variations in forest structure and
corresponded with CDmax and Hmax values across the globe (Figure 7). This combination
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of q, CDmax and Hmax provided understanding of the development of forest structure in
different regions of the globe. For example, a high q-value with low Hmax would indicate
dense thickets and shrubs, whereas a similar q-value for higher Hmax would indicate a
forest with dense canopy that closes quickly as the forest grows.

Analysis of the SE demonstrated the impact of the number of footprints available
for the regression on the precision of the q-value obtained (see Supporting Information
Figure S3). The quantity of available footprints is affected by the filtering applied but
also influences the selection of layers used to group the ICESat footprints. The nature of
the ICESat GLAS imaging pattern and the filtering applied (removal of un-vegetated and
mountainous areas) biased the quantity of footprints available for the regression towards
areas of continuous forest cover and particularly impacted the quality of the regression
in regions of savanna or tundra. The removal of footprints in mountainous areas was
inevitable due to the adverse impact of slope on the ICESat data, but this also resulted
in the elimination of large areas of natural/semi-natural forest from the analysis (e.g.,
in Indonesia).

WWF ecoregions were selected as a broad characterisation of multiple biophysical
variables that may influence forest structure. However, localised variations of these vari-
ables within ecoregions are not available on a global scale. In an attempt to capture some
of these localised variations, a 1° grid was applied as a compromise to the number of
footprints available for a regression. Analysis of the potential factors contributing to these
localised variations indicate that they may be better captured with the use of alternative
layers, such as altitude, temperature, precipitation, geology or a wilderness layer. This was
not possible in this analysis due to the relatively sparse sampling of ICESat GLAS and the
additional filtering applied.

4.1. Biomes

This section investigates the varying patterns of q-values found within and between
biomes. Please refer to Supporting Information Table S3 where a distribution map of each
biome is provided together with a histogram of q-values per realm and scatterplot of the
CDmax and Hmax values.

Characterised by low variations in annual temperature and high levels of rainfall,
with high species richness [39], TST Moist Broadleaf forests are multi-layered and rapidly
attain a closed canopy, producing the highest mean and maximum q-values of all biomes
(see Supporting Information Table S2). The higher q-values noted in the Neotropics (see
Supporting Information Table S3) align with the higher canopy fractional cover values [14]
found in this realm and may be attributed to structural differences compared to other
realms including a greater quantity of epiphytes (e.g., bromeliads).

TST Dry Broadleaf forests experience warm temperatures year-round and long dry
seasons which can last several months. These dry periods cause shedding of the leaves of
deciduous trees allowing the development of a thick underbrush as sunlight reaches the
understorey [40]. The Neotropics have the most diverse of the TST Dry Broadleaf forests,
particularly in southern Mexico and Brazil, which may explain their higher q-values (see
Supporting Information Table S3). The Neotropical forests also reach higher CDmax values
at lower Hmax values compared to the other 3 realms (see Supporting Information Table S3).
The Indo-Malay realm is characterised by sparser forests in each Hmax range. This may
be due to anthropogenic activities—for example, the replacement of the multi-storied
native sal (Shorea robusta) native woodlands with teak (Tectona grandis), and the conversion
through intensive grazing of habitats into scrub and savanna woodlands [41].

The many small, isolated regions that characterise the TST Conifer biome meant that
the majority of the polygons were not included due to a lack of ICESat GLAS footprints.
The results for this biome were therefore only representative of Central America. Despite
being representative of this limited geographical area, this biome had the largest variance
in q-values indicating a wide spread of forest structures in this biome, which may be caused
by disturbance regimes such as epizootics, windthrow and fire [42].
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The Temperate Broadleaf and Mixed Forests biome displayed a different distribution
of q-values for each realm (see Supporting Information Table S3). This may be due to a
large number of endemics specific to certain ecoregions. In the frequency distribution
of q-values for the Australasian realm (see Supporting Information Table S3) the peak of
higher values can be related to pockets of dense forest in Tasmania and on the North Island
of New Zealand, whereas the lower values relate to the inclusion of urban and agricultural
areas in the human-modified regions of South Eastern Australia. In the Neotropics, the
higher q-values (mean of 0.070) may be attributed to the dense understorey of bamboo,
ferns and evergreen angiosperms (Arroyo M.T.K. et al., 1996). The highest mean MSE
value (0.042) found in this biome was attributed to the effect of phenology described by
Pang et al. [9] and the pattern of ICESat GLAS imaging during the northern hemisphere
summer. In addition, the higher mean MSE values in the Palearctic and Nearctic realms
(0.041 and 0.040, respectively) may be attributable to high levels of anthropogenic activity,
with these regions being some of the most densely populated outside of India. MSE values
across all realms may also be influenced by high beta diversity (the ratio between regional
and local species diversity), with large numbers of local endemics in many ecoregions [43].

Some of the highest levels of forest biomass are found in the Temperate Conifer biome,
which consist of species such as pine (Pinus), cedar (Cedrus), fir (Abies) and redwood
(Sequoia) with this often leading to the establishment of a distinct overstorey layer and an
understorey of grasses, ferns and forbs. The second highest mean MSE in this region (0.039)
may again be due to the heterogeneous nature of disturbances such as fire, windthrow and
epizootics. Despite the high biomass, this biome has the 2nd lowest mean q-value (0.051)
potentially relating to the slow regeneration of late-successional species [44].

The Boreal and Taiga regions are dominated by evergreen (Abies, Picea and Pinus) and
deciduous (Larix) needle-leaved species with some deciduous broadleaved trees, mainly
Birch (Betula) and Poplar (Populous) [45,46]. The lowest mean q-value found in this biome
was attributed to slow regeneration of mature forests and the challenging climatic and
edaphic conditions. The higher q-values in the Nearctic compared to the Palearctic may
be due to the milder mean annual temperature, and the predominance of Larix in Eastern
Siberia which are taller and have sparser canopies than the evergreen species dominating
the Canadian ecoregions [47].

The boreal/taiga biome and temperate conifer biomes have matching distributions of
q-values through ANOVA (p = 0.02), which may be attributed to the slow regeneration of
the coniferous species present in these biomes. However, the effect of the warmer climate
on the temperate conifer biome is highlighted when comparing the Hmax and CDmax values
(see Supporting Information Figure S4).

Characterised by low levels of rainfall, between 90 and 150 cm per annum, vegetation
composition in the TST Savanna is driven by the variability in soil moisture, fire regimes and
herbivory [48]. Each realm has a distinctive pattern of q-value distribution (see Supporting
Information Table S3), which is matched by a clear distinction in the patterns of Hmax and
CDmax for each realm (see Supporting Information Table S3). The highest values, found in
the Neotropics, relate to the Cerrado and Llanos regions with complex habitats, gallery
forests and tropical dry forests. The Afro-tropics are comprised of the miombo and mopane
woodlands whereas Australasian TST Savannas consist of eucalypt woodlands with tall
but sparse vegetation. The lower q-values and CDmax values in the Australasian realm
may also be related to the greater prevalence crown fires (often of higher severity than the
ground fires more prevalent in the Neo- and Afro-tropical realms). Despite these distinctive
distributions between realms, within realms the alternative stable states evident in TST
Savannas [14,48] were not observed, potentially due to alternative definitions of tropical
forest and savannas being used.

The regions of Temperate Savanna are generally treeless landscapes with the exception
of riparian or gallery forests along rivers and occasional clusters of trees [49]. The natural
flora has largely been replaced by agriculture, which influences both the number of foot-
prints available for the regression and the quality of that regression. The highest q-values
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(mean of 0.075) found in the Neotropics were driven by Cortaderia selloana (Pampas grasses)
and the dense thorny shrubland or ‘espinal’ forests of Argentina. High q-values in the
Nearctic were directly linked to the ‘California Central Valley Grasslands’ ecoregion, which
is described by intensive agriculture, these q-values therefore relate more to cultivated
woody vegetation (e.g., orchards) rather than natural vegetation.

In the Mediterranean biome, the second largest variance and bimodal distribution
of q-values, was linked to the difference in the q-values in Australasia compared to the
Palearctic (see Supporting Information Table S3). The low CDmax values in the Australasian
Mediterranean related to the mallee regions which are often affected by repeated fires and
coppiced growth [50], whereas the increased precipitation supporting the denser and taller
forests of the Southwest Australia Woodlands ecoregion [51] was highlighted by higher
CDmax values. In contrast, the Palearctic Mediterranean regions have higher CDmax values
for lower Hmax values.

Characterised by cold temperatures and poor soils, the Montane Shrublands and
Tundra regions have low Hmax values, but CDmax values close to the global mean resulting
in q-values close to the global mean. Ninety-seven percent of the Montane Shrublands
polygons are located in the Afro-tropics where the triple-canopied forests may explain
these canopy density values [52]. In the Tundra biome, the canopy density values are
explained by the pockets of subalpine forests of species such as mountain hemlock (Tsuga
mertensiana), alpine fir (Abies lasiocarpa), lodgepole pine (Pinus contorta), black and white
spruce (Picea glauca and P. mariana) and aspen (Populous tremuloides). As well as the closed
forests of Sitka spruce (P. sitchensis) and western hemlock (Tsuga heterophylla) in lower
elevations [53].

The highest q-values in the Flooded Savanna biome were found in the Neotropics
(mean of 0.072) where the denser forests of the Everglades and the Pantanal are located
(see Supporting Information Table S3). The Palearctic has the lowest q-values (mean of
0.048), with the higher values from the realm being found around the Nile delta. The
Mangrove biome presented a higher mean q-value (0.079) which was attributed to rapid
canopy closure following colonisation and growth.

In the deserts, high temperatures and water availability were limiting but where these
were more favourable (e.g., near oases, shaded areas, river-beds), the density of vegetation
was greater. The q-values obtained are characteristic of these oases with little variation
between each of the realms except in Australasia which has lower CDmax values relating to
vegetation around the billabongs (see Supporting Information Table S3).

4.2. Maximum Canopy Density and Canopy Height Patterns

Height is used as a proxy for biomass in the development of AGB products in many
regions of the globe. The distribution of CDmax and Hmax values varies with the q parameter
(Figure 7). The decreasing Hmax values for CDmax >0.96 may be due to a saturation of the
GLAS signal in dense forests [54], although there may also be an influence of the pattern
of canopy density values within the polygon: polygons at the lower range of Hmax for
CDmax >0.96 (e.g., Hmax <30) tend to have canopy density values across the full range of
possible values, whereas polygons with higher Hmax values (e.g., Hmax >40) tend to have
limited ranges of canopy density values (approx. 0.6–0.98).

Figure 7 and Supporting Information Table S3 demonstrate the variations in the CDmax
values for Hmax values between and within biomes and realms. The CDmax and Hmax
values explained the underlying forest structures influencing the q parameter obtained.
For example, across Australasia, low q-values were associated with forests with both low
CDmax and Hmax, whereas in the Palearctic lower q-values were found in forests with low
CDmax values in relation to Hmax values above the global mean.

The pattern of q-value distribution across CDmax and Hmax values demonstrates how it
could be used to inform on forest structure and improve biomass retrieval. Hansen et al. [2]
also highlight that structure can be used as a proxy for both species and niche diversity,
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particularly when coupled with disturbance patterns and maximum potential height and
canopy density for given biophysical variables.

Tao et al. [16] applied GLAS data to demonstrate that moisture availability is a key
determinant of forest canopy height, with canopy height increasing with P-PET (annual
precipitation minus annual potential evapotranspiration) to a peak at approximately 680
mm of P-PET and then decreasing. Similarities were found between q and the P-PET
map of [16]: lower q-values in areas of low P-PET (e.g., across Russia and Canada), and
increasing q-values with increasing P-PET (e.g., in the tropics, Tasmania, New Zealand and
southern Chile). However, q-values did not decrease with P-PET values > 980 mm in the
tropics, potentially due to the higher canopy density in these regions [14].

5. Conclusions

Our work investigated the feasibility of applying a simple allometric model to sub-
divisions of forest canopy height and canopy density metrics from ICESat GLAS LiDAR
footprints. The allometric model described in Equation (1) captured variations of forest
structure across biomes, realms and ecoregions, with biomes in TST latitudes providing
the strongest fit to the model. Densely populated temperate regions (broadleaf, conifer and
savanna) with more heterogeneous landscapes were characterised by higher MSE values.
The pattern of the relationship between q-values and CDmax and Hmax values highlights
the necessity for considering the effects of both canopy height and canopy density when
estimating forest biomass. The combination of q, CDmax and Hmax also has the potential to
inform on both species and niche diversity highlighting areas for conservation and allowing
the expansion of the development of a Structural Condition Index by Hansen et al. [2] to a
global scale.

Filtering of the ICESat GLAS footprints provided a heterogeneous sampling of the
globe. However, sufficient footprints remained across areas of woody vegetation, except in
regions with high topography. The combination of WWF ecoregions and a 1◦ grid does
not capture all the factors influencing species composition and growth rates. In particular,
no allowance was made for moisture availability, altitude, soil type or anthropogenic
influences. Localised variations could not be captured due to the quantity of available
footprints for the regression. Investigation into the influence of alternative drivers of the
canopy density to canopy height relationship should be possible with NASA’s Global
Ecosystem Dynamics Investigation (GEDI) data: the increased quantity of data, denser
spatial sampling, smaller footprint dimension and sampling throughout the year will
allow for a division into leaf-off and leaf-on data, and potentially reduce the effect of
topography and allow more localised drivers to be captured. The ability to use spaceborne
LiDAR to capture and model the relationship of canopy height to canopy density across the
globe opens opportunities for improvement of AGB mapping and change detection. The
European Space Agency’s CCI Biomass project has already incorporated this allometric
model into their AGB retrieval algorithm following the methods in Santoro et al. [21].

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
rs13244961/s1, Figure S1: Map of distribution of ICESAT GLAS footprints after filtering, represented
as number of footprints per 1o grid square. Areas in grey have no footprints, Figure S2: An ecoregion
demonstrating the union generated with the 1o grid. Black dots represent ICESat GLAS footprints for
the entire ecoregion. Areas in white use the underlying ecoregion q value which is calculated from
all the ICESat GLAS footprints shown. Areas in grey are where the ecoregion has been subdivided
by grid square, here the q value has been calculated using only the footprints within that grid square
and ecoregion, Figure S3: The influence of the number of footprints per polygon on the Standard
error obtained. X axis is limited to 500 footprints for clarity, Figure S4: Maximum canopy density
and maximum height values per realm for the Temperate Conifer and Boreal/Taiga biomes, Table S1:
Global mean canopy height and canopy density for each laser period of ICESat GLAS. Table S2:
Descriptive statistics of the allometric parameter (q) and Mean Squared Error (MSE) for each biome.
Table S3: Table with, for each biome: histogram of q values per realm, scatterplot of maximum CD
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and maximum height per realm and map of distribution per realm. The realm colours are maintained
across each row.
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