
remote sensing  

Article

On the Potential of 3D Transdimensional Surface Wave
Tomography for Geothermal Prospecting of the
Reykjanes Peninsula

Amin Rahimi Dalkhani 1,*, Xin Zhang 2 and Cornelis Weemstra 1,3

����������
�������

Citation: Rahimi Dalkhani, A.;

Zhang, X.; Weemstra, C. On the

Potential of 3D Transdimensional

Surface Wave Tomography for

Geothermal Prospecting of the

Reykjanes Peninsula. Remote Sens.

2021, 13, 4929. https://doi.org/

10.3390/rs13234929

Academic Editor: Roberta Giuliani

Received: 16 October 2021

Accepted: 30 November 2021

Published: 4 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Geoscience and Engineering, Delft University of Technology, 2628 CN Delft, The Netherlands;
c.weemstra@tudelft.nl

2 School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK; x.zhang2@ed.ac.uk
3 Seismology and Acoustics, Royal Netherlands Meteorological Institute, 3731 GA De Bilt, The Netherlands
* Correspondence: a.rahimidalkhani@tudelft.nl

Abstract: Seismic travel time tomography using surface waves is an effective tool for three-dimensional
crustal imaging. Historically, these surface waves are the result of active seismic sources or earth-
quakes. More recently, however, surface waves retrieved through the application of seismic inter-
ferometry have also been exploited. Conventionally, two-step inversion algorithms are employed
to solve the tomographic inverse problem. That is, a first inversion results in frequency-dependent,
two-dimensional maps of phase velocity, which then serve as input for a series of independent,
one-dimensional frequency-to-depth inversions. As such, a set of localized depth-dependent velocity
profiles are obtained at the surface points. Stitching these separate profiles together subsequently
yields a three-dimensional velocity model. Relatively recently, a one-step three-dimensional non-
linear tomographic algorithm has been proposed. The algorithm is rooted in a Bayesian framework
using Markov chains with reversible jumps, and is referred to as transdimensional tomography.
Specifically, the three-dimensional velocity field is parameterized by means of a polyhedral Voronoi
tessellation. In this study, we investigate the potential of this algorithm for the purpose of recovering
the three-dimensional surface-wave-velocity structure from ambient noise recorded on and around
the Reykjanes Peninsula, southwest Iceland. To that end, we design a number of synthetic tests
that take into account the station configuration of the Reykjanes seismic network. We find that the
algorithm is able to recover the 3D velocity structure at various scales in areas where station density
is high. In addition, we find that the standard deviation of the recovered velocities is low in those
regions. At the same time, the velocity structure is less well recovered in parts of the peninsula
sampled by fewer stations. This implies that the algorithm successfully adapts model resolution to
the density of rays. It also adapts model resolution to the amount of noise in the travel times. Because
the algorithm is computationally demanding, we modify the algorithm such that computational costs
are reduced while sufficiently preserving non-linearity. We conclude that the algorithm can now be
applied adequately to travel times extracted from station–station cross correlations by the Reykjanes
seismic network.

Keywords: seismic interferometry; transdimensional tomography; surface wave dispersion; proba-
bilistic inversion; Markov chain Monte Carlo

1. Introduction

The Reykjanes high temperature geothermal system is located at the tip of the Reyk-
janes peninsula, southwest Iceland. The Reykjanes peninsula can be considered a landward
extension of the Reykjanes Ridge, making it an active volcanic zone. The heat from the
Reykjanes geothermal system is currently harvested by two 50 MWe steam turbines, which
draw from numerous wells. Most of these wells produce from depths of 2 to 2.5 km, where
temperatures are estimated to be around 280◦ [1]. Relatively recently, the 4.5 km deep
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exploratory IDDP-2 well was drilled to examine the economic potential of the production
of super critical fluids [2].

Although the subsurface below the Reykjanes peninsula has been the subject of various
geophysical surveys (e.g., [3,4]), resolution remains an issue. In addition, the uncertainty
of the recovered (best) models is often not estimated. In this study, we therefore investigate
the potential of three-dimensional probabilistic surface wave inversion for the purpose
of imaging the Reykjanes peninsula in general, and the Reykjanes geothermal system in
particular. It should be understood that this is a feasibility study: we limit ourselves to
probabilistic inversions of synthetic travel times. In a follow-up study we will draw from
the experience obtained in this study. This follow-up paper will hence involve probabilistic
inversion of travel times extracted from field-data-derived surface wave responses.

Surface wave responses can be retrieved from recordings of ambient seismic noise
(e.g., [5]). This process is often referred to as seismic interferometry, and hence the retrieved
responses are usually referred to as ’interferometric responses’ [6]. Specifically, seismic
interferometry dictates that, by averaging cross correlations of ambient seismic noise
over a sufficient amount of time, receivers can be turned into so-called virtual sources.
This is a pairwise process: the Earth’s response to one of the two receivers (the virtual
source) is recorded by the other receiver. By applying this procedure, pairwise, to all
stations constituting an array of seismic surface stations, surface wave responses between
all seismic stations will be retrieved. In practice, not all station couples yield interferometric
surface wave responses of sufficient quality (for details regarding interferometric surface
wave retrieval from recordings of ambient seismic noise see, for example, Kästle et al. [7]).

Interferometric techniques may well play an important role in the future of geothermal
exploration (e.g., [8]). In particular, this applies to tomographic travel time inversions:
contrary to travel time tomography exploiting earthquake signals, the spatial sampling by
the interferometric ray paths does not suffer from either a limited number of earthquakes
or an irregular distribution of these earthquakes [3]. In addition, Rayleigh (and Love)
waves have a depth-dependent sensitivity to subsurface velocity. This sensitivity varies
as a function of frequency, with lower frequencies being more sensitive to the deeper
subsurface and higher frequencies more sensitive to the shallower structure [9,10]. It is
this frequency-dependent depth dependence that enables the three-dimensional approach
proposed in this study.

The interferometric travel times between the different stations of a seismic array can
serve as input to a tomographic inverse problem (e.g., [11,12]). Surface wave tomography
is a well-known and popular method to obtain the Earth’s seismic velocity distribution.
Many of the existing tomographic algorithms and inversion methods rely on first-arrival
travel times [13–15]. Ref. Martins et al. [3] uses a two-step linearized tomographic inversion
method to recover the 3D surface wave velocity of the Reykjanes Peninsula. The first step
involves recovering frequency-dependent 2D maps of phase velocities using a linearized
tomographic inversion method assuming straight rays. In the second step, they run
separate frequency-to-depth inversions [9,10].

Conventional linearized or gradient-based iterative tomographic inversion schemes
(e.g., [3,16,17]) usually do not include a detailed assessment of the uncertainty [18]. In
addition, such schemes require an (a-priori) prescribed cell size, which does not account
for spatial variations in sampling (i.e., a non-uniform ray coverage). Moreover, these
methods require a proper regularization to account for the ill-conditioned nature of the
inverse problem [17,19]. The transdimensional hierarchical Bayesian method introduced
by Bodin et al. [20] overcomes these two limitations. The transdimensional method is a
Bayesian inference method that relies on reversible jump Markov chains (rj-McMC) [21], in
combination with a Voronoi partitioning. The number of Voronoi cells is allowed to vary
between steps of the Markov chain, and is in fact one of the parameters that is estimated. It
is this specific feature of the algorithm that causes the solution to be “transdimensional”.
The ensemble of velocity models visited by the transdimensional Markov chain asymptoti-
cally approaches the posterior probability density function (henceforth simply ‘posterior’).
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The method is purely data-driven and requires minimal assumptions regarding the model.
Compared to the aforementioned linearized and iterative inversion schemes (which keep
the spatial model parameterization fixed), the method is particularly flexible: it dynam-
ically adapts to a non-uniform data coverage without requiring the use of any arbitrary
regularization (e.g., damping or smoothing).

The transdimensional method was used successfully by Bodin and Sambridge [11] to
obtain 2D Rayleigh-wave velocity maps of Australia. Galetti et al. [22] further generalized
the method by making it fully non-linear; that is, ray paths are updated at each step of
the Markov chain in their case. The method has recently been applied successfully to the
British Isles [23]. Similar to the aforementioned study by Martins et al. [3], Young et al. [18]
and Galetti et al. [23] use a two-step scheme to recover the 3D surface wave velocity
structure. In the latter studies, however, the frequency-dependent 2D maps of phase
velocity are obtained using a 2D transdimensional approach. Additionally, the obtained
(laterally varying) dispersion curves are inverted using a 1D transdimensional approach.
Still, however, the two-step procedure results in a collection of spatially varying 1D velocity
models. These velocity models are subsequently interpolated to build a 3D velocity
structure of the subsurface.

More recently, Zhang et al. [24] showed that the two-step transdimensional inversion
scheme is not optimal in the sense that information is lost. Consequently, they proposed a
one-step 3D transdimensional approach that uses a 3D discretization of the subsurface using
a Voronoi polyhedral parameterization. The approach has a computational cost comparable
to the two-step transdimensional approach, but preserves valuable information and results
in a more accurate velocity structure and a better interpretive uncertainty estimation [24].

In this study, we investigate the potential of the one-step 3D probabilistic inversion
method [24,25] to recover the 3D velocity structure beneath the Reykjanes peninsula,
southwest Iceland. Specifically, we focus on the ability to use interferometric surface wave
responses retrieved from ambient noise recorded by an array of stations on and around
this Peninsula (the array is hereafter referred to as the RARR; [26]). The RARR was a dense
seismic deployment consisting of 83 continuously recording stations (Figure 1). As can be
seen in Figure 1, the station distribution of the RARR is non-uniform, that is, the station
coverage is dense in one area while it is sparse in other areas. A non-uniform distribution of
stations implies that the achievable velocity resolution can be expected to vary significantly
across the region covered by the seismic array, that is, higher in the regions that are more
densely covered by stations and lower where station density is low. The transdimensional
method uses a model parameterization using Voronoi cells in conjunction with a reversible-
jump Markov chain Monte Carlo algorithm to account for the variable station coverage. As
such, the method dynamically adapts itself to both data density and underlying velocity
structure [11].

Surface wave dispersion curves (i.e., phase velocities or frequency-dependent travel
times) have been extracted from surface wave responses retrieved using seismic inter-
ferometry by cross-correlation (e.g., [26,27]). Although our final objective is to apply the
3D probabilistic inversion scheme to these dispersion curves, this study is limited to the
synthetic dispersion curves. That is, we specifically aim to understand and showcase
the potential of the proposed inversion scheme for the RARR’s station configuration in
combination with the frequencies for which surface wave responses could be retrieved
(0.1–0.5 Hz). The dispersion curves extracted from the field data will be inverted in a
follow-up paper, and we will benefit from the findings presented here.

As shown in Figure 1, the station’s elevation varies between approximately −0.2 km
and 0.2 km. Based on a previous study by Martins et al. [3], we can assume a minimum
velocity of 2 km/s. For the range of frequencies considered (0.1–0.5 Hz), the minimum
wavelength would then be 4 km. This implies that the minimum wavelength is more than
ten times larger than the elevation variation. We therefore ignore the station’s elevation in
the rest of this study.
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To investigate the potential of this one-step 3D transdimensional method, we generate
synthetic frequency-dependent travel times between the station locations of the RARR.
Specifically, we prescribe various 3D block model velocity distributions. The frequency-
dependent travel times, derived from phase velocity data, are then used as input for the
one-step 3D transdimensional algorithm. We find that the algorithm recovers the velocity
structure reasonably well for the RARR configuration within the desired frequency range.
However, the method is computationally demanding. Therefore, we modify the algorithm
by updating ray paths occasionally, instead of doing this at each step of the Markov chain.
A simple test is designed to decide on the update level efficiently. The effect of (the
computational) grid size on forward modeling errors and how to choose an appropriate
size are also discussed.

Figure 1. Geographical locations of 83 seismic stations of the RARR. The left and bottom axes indicate spherical coordinates,
whereas the right and the top axes display UTM coordinates. Stations locations are depicted as colored triangles. Colors
indicate the elevation of the corresponding station. Elevation information was lacking for five stations that are depicted
with white triangles.

2. Transdimensional Surface Wave Tomography

Transdimensional tomography is a Bayesian inference method that uses Voronoi cells
in conjunction with a rj-McMC algorithm to allow a variable parameterization of the model
space. The objective of Bayesian inversion is to recover the posterior probability density of
the model parameters given the observed data, p(m|d). Based on Bayes’ rule [28]:

p(m|d) = p(d|m)p(m)

p(d)
, (1)

where the vector d contains the frequency-dependent travel times. The vector m contains
the model parameters and depends on the parameterization of the region of interest; we
discuss this vector in more detail later. The likelihood function p(d|m) plays a fundamental
role in the inference of the model space as it provides the probability of the observed travel
times given a specific velocity model. The prior probability distribution, p(m), depends
on the (a priori) known information about the model space. Finally, p(d) is the so-called
evidence, which here can be considered a constant because it is not a function of any
particular model m. Consequently, we have:

p(m|d) ∝ p(d|m)p(m). (2)
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2.1. Model Parameterization

In conventional linearized or gradient-based seismic tomography methods, the region
of interest is usually parameterized using fixed cells or a grid of points with predefined
shapes and sizes (usually regular rectangular grids). Determining the shape and size of the
grid is always a challenge and, ideally, is a function of the data uncertainty (i.e., level of
noise available in data) and data resolution (i.e., the ability of the data to resolve different
scales or features in the model). Data uncertainty is usually not known and should therefore
be estimated before the inversion. In addition to unknown data uncertainty, differences in
data resolution due to nonuniform spatial sampling render a uniform grid size undesirable.
Consequently, irregular grids or meshes have been proposed by some authors [11,29–32].

Because of the challenge in defining cell geometries, Bodin et al. [30] and Bodin and
Sambridge [11] proposed to invert for cell geometries and seismic properties (e.g., velocities)
simultaneously. This means that the data directly determine the parameterization. To
allow the size and shape of cells to be variable and unknown in the tomographic algorithm,
different kinds of methods have been proposed, including Voronoi cells in 2D [11,20,23,30],
Voronoi polyhedra (or simply also cells) in 3D [24,25], Delaunay triangulation in 2D [32,33],
Johnson–Mehl tessellation in 2D [31], and Gaussian kernels for a 2D model [31]. Despite
the abilities of Voronoi cells to accommodate sharp changes and discontinuities, some
authors questioned their ability in the case of smooth velocity models or models with a
gradient in velocity changes (e.g., [25,32,33]).

In this study, we parameterize the 3D velocity field using polyhedral Voronoi cells to
recover the 3D shear wave velocity structure of the subsurface [25]. By assigning a constant
shear wave velocity (Vs) to each Voronoi cell, the Voronoi tessellation turns into a shear
wave velocity model. Figure 2 shows the region of interest with a coarse parameterization
using 33 cells and a finer one with 704 cells; both generated randomly. The number
of Voronoi cells, their position, and the shear-wave velocity in each cell are treated as
unknowns in the tomographic inversion. Importantly, p-wave velocity (Vp) is considered
to be a linear function of Vs, using the relation Vp = 1.73Vs [24]. Density (ρ) is considered to
be a function of p-wave velocity as ρ = 2.35 + 0.036(Vp − 3)2, where Vp and Vs are in km/s
and ρ is in g/cm3 [24,34]. It is useful to note that the parameterization and relations in this
paragraph imply that the medium is assumed to be isotropic.

Figure 2. Two random Voronoi parameterizations. The first uses 33 Voronoi cells (a), and the second uses 704 Voronoi
cells (b). Both cell locations and the assigned velocities are generated randomly.
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2.2. The Likelihood

The dependence of the posterior on the input data is encoded in the likelihood function
p(d|m). The likelihood function can be considered as a measure of misfit between observed
and predicted data. The normalized Gaussian likelihood function reads:

p(d|m) =

( n f

∏
l=1

nr

∏
k=1

1√
2πσkl

)
exp

(
−

n f

∑
j=1

nr

∑
i=1

(
gij(m)− dij

)2

2σ2
ij

)
, (3)

where n f and nr are the number of discrete frequencies and ray paths, respectively. dij is the
travel time along ray path i at discrete frequency j. The vector m contains the parameters
describing the proposed subsurface model. gij is the computed travel time along ray path i
at discrete frequency j in that subsurface model. σij is the data uncertainty or noise level
for the travel time associated with discrete frequency j and ray path i (and hence σkl is
associated with discrete frequency l and ray path k) . This data uncertainty includes both
observational errors and modeling errors [20]. The data uncertainty controls the level of fit
and directly affects the complexity of the models in the posterior distribution. That is, the
number of Voronoi cells needed to explain the data is highly dependent on the estimated
data noise [20]. Consequently, σij plays an important role in the transdimensional algorithm.
Here, we consider it to be a linear, frequency-dependent function:

σij = aj ∗ tij + bj, (4)

where tij is the computed travel time along ray path i at discrete frequency j. aj and bj
are noise hyper-parameters for the discrete frequency j. It is worth noting that this linear
relation for the noise parameters is a common assumption and is demonstrated in several
previous studies (e.g., [20,23,25]). Moreover, it is straightforward to implement it in the
context of the transdimensional algorithm.

2.3. Forward Modeling

To evaluate the likelihood of a proposed model given the observed data and to com-
pare this likelihood with the likelihood of the current model in the chain, we need to com-
pute the frequency-dependent travel times in the proposed model (gij(m) in Equation (3)).
This is achieved by employing a two-step approach detailed in [24]. First, at each point on
the Earth’s surface, the local frequency-dependent dispersion curves are computed using a
modal approximation method [10] in the 1D vertical depth profile of surface wave velocity
beneath each of the surface points. As such, we obtain frequency-dependent 2D maps of
surface wave phase velocity. Figure 3 depicts this first step. Figure 3a depicts a randomly
generated 3D surface wave velocity model using Voronoi polyhedra. Figure 3b depicts the
corresponding surface wave phase velocity as a function of frequency (vertical axis). We
refer to this first step as the depth to frequency step.

In the second step, we use the frequency-dependent phase velocities to compute
frequency-dependent travel times by solving the Eikonal equation in two dimensions:

|∇T(x, ω)| = 1
c(x, ω)

, (5)

where T(x, ω) is the frequency-dependent travel time of the wave-front at surface location
x and angular frequency ω, and c(x, ω) is the phase velocity of the model at that surface
location and frequency. By solving this equation for each source at each frequency, the travel
time field corresponding to first arrivals is obtained at all points of the (2D) model, including
the receiver locations. A variety of methods has been proposed for the solution of this
equation, including finite-difference [35,36] and the fast marching method (FMM) [37,38].
The fast-marching method is unconditionally stable, meaning that we can use relatively
coarse grids to solve Equation (5). A coarser grid, however, does introduce additional
travel time errors, which we refer to as modeling errors.
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We use the FMM to solve Equation (5) to obtain frequency-dependent travel times at
the location of each receiver. As one can see, the relation between the model parameters,
c(x, ω), and travel time, T(x, ω), in Equation (5) is nonlinear, implying the solution of
the forward function involves relatively high computational costs (compared to other
computational steps in the rj-McMC algorithm). In order to reduce overall computational
costs, it is common practice to linearize the problem using a fixed ray path geometry
(e.g., straight ray [3]) or update the ray geometry only occasionally to account for the
non-linearity of the problem [11,39]. Ray paths are perpendicular to the travel time field.
Hence, after computing the travel time field with the fast-marching method, the ray path
geometry can be calculated by starting at each receiver location in the travel time field and
following the travel time gradient (∇T) back to the source location [38]. Once the ray paths
are determined, integration of the slowness along each ray path is straightforward and
travel times can be computed at relatively little computational expense.

Figure 3. Depth to frequency conversion of surface wave velocities using the modal approximation method. (a) Surface
wave velocity model generated randomly using Voronoi cells. (b) Computed phase velocities corresponding to each depth
profile using the modal approximation method.

2.4. The Prior

Since all inferences on the posterior are relative to the prior distribution, priors have
great importance in Bayesian inversion schemes. The final result may suffer heavily
from an incorrect prior. In order to prevent the introduction of prior-related biases into the
solution, we choose uniform prior distributions with wide bounds for all model parameters.
Assuming independent model parameters, the prior can be written as:

p(m) = p(n)p(c|n)p(v|n)p(h), (6)

where n is the number of Voronoi cells, p(n) is the prior on the number of cells, p(c|n) is the
prior on cell nuclei location, p(v|n) is the prior on cell velocity, and p(h) is the prior on noise
hyper-parameters or data uncertainty (see [11,20] for details). The modal approximation
method for computing phase velocities fails to compute the right surface wave mode when
the model contains a layer whose velocity is lower than the velocity of the top layer [23,25].
Hence, this issue has to be taken into account in the prior by discarding models for which
the top layer does not have the lowest velocity value.

2.5. Reversible Jump McMC

The reversible jump Markov chain draws samples from the posterior distribution
employing an iterative stochastic process (such as the Metropolis–Hasting algorithm). The
reverse jumps allow for a variable number of Voronoi cells, hence a variable number of
parameters. Jumping between different model dimensions allow the rj-McMC algorithm to
perform a global search [40]. The algorithm proposes different types of model perturbations.
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Specifically, we use four different perturbation types to sample the posterior distribution
efficiently [11]: a velocity update, Voronoi cell move, cell death and cell birth. In addition,
we perturb the amplitude of the noise to infer the posterior probability of the errors on
the measured surface wave travel times (this is introduced by Bodin et al. [20]). These
perturbation types allow the model to dynamically adapt itself to data density, underlying
velocity structure, and travel time noise.

The flowchart for the algorithm of the transdimensional McMC inversion is depicted
in Figure 4. The process starts with a random initial model m. Then, the algorithm draws
the next sample of the chain by proposing a new model, m′, based on a known proposal
probability function, q(m′|m), which only depends on the previous state of the model m.
To propose a new model in a velocity update step and a Voronoi cell move, a Voronoi cell is
selected randomly, then the velocity or the location of that cell is perturbed using a Gaussian
proposal distribution. In a noise perturbation step, one of the two noise parameters at
one frequency (i.e., aj or bj) is chosen randomly, then it is perturbed using a Gaussian
proposal distribution. The proposed sample, then, will be accepted or rejected based on
an acceptance probability for the proposed model, m′ [30]. A new sample is drawn at
each step of the Markov chain by perturbing the 3D velocity structure or the noise hyper-
parameters (using one of the five perturbation types). The surface wave dispersion data
(i.e., the frequency-dependent travel times) are then calculated to evaluate the following
acceptance probability [11]:

α(m′|m) = min[1,
p(m′)
p(m)

p(d|m′)
p(d|m)

q(m|m′)
q(m′|m)

× |J|], (7)

where α(m′|m) is the probability of accepting the proposed model m′ given the current

model m,
p(m′)
p(m)

the prior probability ratio of two models, d the observed data (here these

are the frequency-dependent travel times),
p(d|m′)
p(d|m)

the likelihood ratio of the two models,

q(m|m′)
q(m′|m)

the proposal ratio, and J is the Jacobian matrix, which accounts for (potential)

differences in dimensionality between m and m′ (resulting from a different number of
Voronoi cells in m and m′ ). For the birth and death steps used here, the determinant of the
Jacobian matrix is unity [11,24].

When sufficient samples are drawn from the posterior, we can compute the mean,
standard deviation, and other statistical measures of the posterior. The samples from a
certain initial period of the chain are discarded. This initial sampling period is usually
referred to as the burn-in period, which is the period that the algorithm needs to remove the
effects of the initial model and reach sufficient mixing of the posterior samples. Since each
sample is drawn based on a small perturbation of the previous model, adjacent samples are
correlated or similar. To ensure that drawn samples are uncorrelated, we retain a sample
every so many iterations; for example, every 200th model is retained. This process is
usually referred to as ‘thinning’ of the chain.
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Figure 4. Flowchart of the transdimensional Markov chain Monte Carlo algorithm used in this work. Here, a total of M
samples is drawn from the posterior.
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3. Experiment Setup and Computational Performance Tests

To investigate the potential of the transdimensional algorithm for the interferometric
surface wave responses of the RARR, we design three distinct 3D (block model) tests. With
these tests, we evaluate the ability of the algorithm to recover subsurface models with
different resolutions. In this section we introduce the three block models, but additionally
conduct a number of experiments to determine acceptable values for the different numer-
ical parameters (e.g., grid size). The results obtained by applying the transdimensional
algorithm to travel times in the three block models are presented in the next section.

3.1. Ray Path Update and Computational Cost

The described transdimensional Markov chain naturally adapts model resolution to
data resolution, implying it is self-regularized and self-smooth and hence does not require
the regularization and/or smoothing needed in deterministic inversions (e.g., [3]). In
addition, model uncertainty is naturally captured in the posterior. Despite these benefits,
the high computational cost is still a drawback of the method. To sample the posterior
sufficiently well, we need to run multiple chains for at least a million iterations.

As we mentioned earlier, computing frequency-dependent travel times using the
fast-marching method contributes most to the computational cost. To make the algorithm
computationally less demanding, Bodin et al. [20] used fixed ray paths to compute travel
times and updated the ray paths only occasionally (three times for three million samples).
In this way, they linearized the algorithm partially. Galetti et al. [23] argued that this
might introduce artifacts and bias into the solution. Therefore, Galetti et al. [23] and
Zhang et al. [25] updated the ray paths at each step of the Markov chain.

At the same time, we know that each new sample involves only a small perturbation
of the model. Consequently, ray paths do not change too much in one thinning “period” (in
our case, every 200 iterations). Hence, we update ray paths every 200 iterations based on
the average velocity of the previous 200 samples. In this way, we reduce the computational
cost significantly while still retaining most of the non-linearity. Figure 5 shows the speed-
up associated with different ray path update steps (with respect to updating ray paths at
every chain step). The dimension of our assumed model is 120 km by 70 km. We used a
constant grid spacing of 0.5 km in the depth direction (used for the modal approximation
method, [10]). Then, we compared the time needed to take three million Markov chain
steps using grid spacing of 0.5 km, 1 km, and 2 km in the two horizontal directions.
Figure 5 demonstrates that updating ray paths every 200 iterations significantly decreases
computational costs. Updating the ray paths less frequently (i.e., using higher update step),
however, does not reduce computational cost much more. Hence, we consider updating
ray paths every 200 iterations optimal in terms of both computational cost and honoring
the non-linearity of the problem.

3.2. Block Models

The three considered synthetic models are depicted in Figure 6. Figure 6a depicts a
block model with blocks of size 20 km× 20 km× 10 km in the northing, easting, and depth
directions, respectively. We will henceforth refer to this subsurface model as the coarse
block model. Figure 6b depicts a block model with blocks of size 10 km × 10 km × 5 km
in the northing, easting, and depth directions, respectively. We will henceforth refer to
this subsurface model as the intermediate block model. Figure 6c depicts a block model
with blocks of size 5 km × 5 km × 2.5 km in the northing, easting, and depth directions,
respectively. We will henceforth refer to this subsurface model as the fine block model. In
addition to these resolution tests, we study the impact of additive noise on the ability of
the algorithm to adapt the model to (and to estimate) the noise level.
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Figure 5. Decrease in computation time as a function of the frequency at which ray paths are updated.
The speed up is depicted for three different FMM resolutions.

Figure 6. Three different synthetic block models to test the 3D transdimensional algorithm. (a) Coarse block model,
(b) Intermediate block model, (c) Fine block model. Inverted yellow triangles indicate the locations of the stations of the
RARR. (See also Figure 1).

3.3. Sensitivity Kernels

Each of the three block models in Figure 6 has only two distinct velocity profiles, of
which one is shown in the left panel of Figure 7a,d,g. The other velocity profiles (not shown)
have coinciding step sizes and depths, but their velocities are simply 500 m/s higher for
each layer. The middle panel of this figure (b, e, h) depicts the associated sensitivity kernels
of the Rayleigh waves computed using the modal approximation method [10]. For different
frequencies, these kernels give the Rayleigh waves’ sensitivity to the shear wave velocity
as a function of depth.

Figure 7b shows that Rayleigh waves in the frequency range of 0.1–0.5 Hz are pre-
dominantly sensitive to the shear wave velocities of the shallowest 10 km. Hence, we do
not expect the algorithm to recover the shear wave velocity below that depth very well
in the coarse block model. Figure 7e,h show that Rayleigh waves in the frequency range
0.1–0.5 Hz are sensitive to the shear wave velocities of all blocks of the intermediate and
fine block models down to 10 km, and should, in principle, be able to recover these blocks.
We, therefore, expect to recover the velocity structure in areas traversed by sufficient ray
paths. A decrease in resolution with increasing depth is expected. The right panel of
Figure 7 is the phase velocity for the corresponding depth profile of shear wave velocity
at ten different discrete frequencies in the frequency range of 0.1–0.5 Hz using the modal
approximation method [10].
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Figure 7. Surface wave sensitivity analysis of one of the depth profiles of each block model. The left column displays shear
wave velocity as a function of depth for (a) the coarse block model, (d) the intermediate block model, and (g) the fine block
model. The middle column (b,e,h) displays the corresponding sensitivity of the Rayleigh waves for different periods (1/f)
as a function of depth. On the right (c,f,i), the corresponding phase velocity dispersion is shown as a function of frequency.

3.4. Additive Noise and Modeling Errors

As we mentioned before, noise parameters are assumed to be unknown and are
estimated by the transdimensional algorithm. To evaluate the ability of the algorithm
to recover the noise level, we designed a noise-free experiment and an experiment with
additive Gaussian random noise. A noise-free experiment means that we did not add any
additive noise to the modeled synthetic data. Modeling errors (effectively resulting in noise)
are, however, still present. These are relatively small, and we therefore nevertheless refer
to this experiment as a noise-free experiment. In the second experiment, after computing
frequency-dependent travel times through the true synthetic block models of Figure 6, we
have added random Gaussian noise with a variance based on Equation (4) with aj = 0.04
and bj = 0.1.

To determine the number of computational grid points while solving the forward
function of the transdimensional algorithm and a reasonable level of additive noise, we
designed two tests. First, we considered the fine block model of Figure 6c. Then, we
computed the travel times between the RARR stations at a frequency of 0.1 Hz, which
implies, on average, a wavelength of 20 km. Travel times were computed for four different
grid sizes (61 × 36 × 21, 121 × 71 × 41, 241 × 141 × 81, and 481 × 281 × 161). The
corresponding grid separations are 2 km × 2 km × 0.5 km, 1 km × 1 km × 0.25 km,
0.5 km × 0.5 km × 0.125 km, and 0.25 km × 0.25 km × 0.0625 km, respectively. Assuming
the obtained travel times with the finer grid points (481 × 281 × 161) as a reference, we
calculated the other three grids’ relative errors. Errors are then sorted based on interstation
distances and are presented in Figure 8a. As such, we get an impression of the modeling
errors associated with different grid sizes. In the second test, we used the randomly
generated model of Figure 3a and followed the same procedure as the first test. Relative
errors are presented in Figure 8b. The relative error due to a random Gaussian noise
based on Equation (4) with aj = 0.04 and bj = 0.1 is also presented in this figure by the
green solid line. The relative error is around 5% at longer distances and reaches more
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than 30% at shorter distances. We believe this represents the available noise in a real case
study. Additionally, it seems that the modeling error is compatible with the assumed linear
relation for the noise variance, Equation (4).

We deduce from Figure 8 that the modeling errors at short distances are much higher
than at long distances. In particular, we consider the modeling errors using a grid of
61× 36× 21 unacceptably high at short distances. We consider modeling errors using a
grid of 121× 71× 41 and 241× 141× 81 points acceptable. They are low enough to be used
in our modeling and inversion. That is why we select the grid of 241× 141× 81 points
to compute the synthetic travel times (i.e., observed travel times). Solving the forward
problem using a grid of 241× 141× 81 points, however, renders the transdimensional
Markov chain computationally very expensive (given the size of our computational cluster).
Consequently, we use a grid of 121× 71× 41 points while running the Markov chain.

Figure 8. Two tests to analyze modeling errors. (a) Relative modeling errors while computing travel
times through the fine block model of Figure 6c using three different grid resolutions. (b) Modeling
errors for computing travel times through the randomly generated model of Figure 3a using three
different grid resolutions. Relative error due to the additive random Gaussian noise based on
Equation (4) with aj = 0.04 and bj = 0.1 is also included in green line on both (a,b).

It is useful to note that, in application to field data, we will discard travel times
associated with interstation distances shorter than 1.5 wavelength. In practice, given (i) a
maximum frequency of 0.5 Hz for which reliable interferometric surface wave responses
can be retrieved and (ii) an average phase velocity of about 2 km/s at that frequency, no
travel times associated with interstation distances shorter than approximately 6 km will
serve as input.

3.5. Modeling and Inversion Parameters

The modeling and inversion parameters used in the synthetic experiments are pre-
sented in Table 1. We used the same inversion parameters for the noise-free experiments
and the experiments with additive noise. We started the transdimensional sampling of
the posterior with a random initial model in all experiments, implying that the number of
Voronoi cells, their position and their velocities were chosen randomly. However, to take
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into account the necessity of having the lowest velocity at the surface, the initial model
was generated, increasing in depth, yet randomly. As can be seen in Table 1, we generated
synthetic frequency-dependent travel times (“observed” data) on a relatively fine grid for
all three block models. While computing the frequency-dependent travel times (forward
modeling) during McMC sampling, however, we used a coarse grid. Finally, we used a
finer grid for calculating the post-burn-in pointwise average and standard deviation of the
sampled models.

For drawing new velocity values as well as new nuclei locations, we used Gaussian
proposal probability distributions. The width of the proposal distributions control the
chance of a proposed model being accepted and, consequently, the transdimensional
algorithm’s convergence rate. On the one hand, narrow proposal distributions lead to
higher acceptance ratios, more correlated samples and a lower convergence rate. On the
other hand, wide proposal distributions lead to lower acceptance ratios and consequently
lower convergence rates. Previous studies suggest that an efficient proposal distribution
width results in an acceptance ratio of 25–50% [30,41]. These values were determined, a
priori, from the data. We determined the efficient proposal distribution width through a
pilot run of the algorithm and looked at samples’ acceptance ratios of different perturbation
types. This means that one does (of course) not need to know the true velocity model to
define the proposal widths. The obtained proposal widths for the velocity update, moving
a cell and noise perturbation are presented in Table 1. The valid range of parameters
presented in the table defines the bounds of the uniform prior on each parameter.

To reduce computational cost while still preserving the non-linearity of the problem,
we updated ray paths at every 200 iterations as we discussed earlier. Thinning was also
achieved by retaining every 200th model.

Table 1. Modeling and inversion parameters. Parameters are the same for the noise-free experiment and the experiment
with synthetic additive noise.

Modeling and Inversion Parameters Coarse Block Model Intermediate Block Model Fine Block Model

Model dimension (km) 120 × 70 × 20 120 × 70 × 10 120 × 70 × 10
Number of grid points in generating synthetic data 241 × 141 × 81 241 × 141 × 81 241 × 141 × 81
Number of grid points in McMC sampling 121 × 71 × 41 121 × 71 × 41 121 × 71 × 41
Number of grid points for calculating post-burn-in
pointwise average

241 × 141 × 41 241 × 141 × 41 241 × 141 × 41

Valid range of shear wave velocity (km/s) 1.5–6 1.5–6 1.5–6
Valid range of noise hyper parameter a 10−5–1 10−5–1 10−5–1
Valid range of noise hyper parameter b 0-2 0–2 0–2
Proposal width for a move step. Md is the model
dimension.

0.07 ∗Md 0.06 ∗Md 0.05 ∗Md

Velocity proposal width (km/s) 0.4 0.4 0.3
Proposal width for a 10−3 10−3 10−3

Proposal width for b 10−2 10−2 10−2

Thinning level 200 200 200
Ray path update step 200 200 200

4. Results and Discussion

In this section, we present the results obtained by applying the transdimensional
Markov sampler to the synthetic travel times through the block models introduced in
Figure 6. That is, the travel times between the RARR stations (computed using a grid of
241× 141× 81 points) serve as input, that is, as the observed data.

4.1. Coarse Block Model

Figure 9 shows the results of the one-step 3D transdimensional method for the coarse
block model of Figure 6a in the noise-free experiment. A horizontal slice at the surface of the
model and two vertical cross-sections of the true velocity model are depicted in Figure 9a–c.
Figures 9d–f depict the (pointwise) average of all post-burn-in models (after thinning).
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The bottom row of this figure (Figure 9g–i) provides an estimate of the model uncertainty,
that is, the post-burn-in (pointwise) standard deviation. Retained models are obtained
by thinning ten separate transdimensional Markov chains, each with 1× 106 iterations of
which 4× 105 are considered burn-in steps. Since thinning involves retaining one in every
200 iterations in our case, 30,000 samples are used for the computation of the pointwise
average and standard deviation.

Figure 9 shows that the algorithm recovered the velocity distribution at the surface
very well. In line with the low sensitivity of the sensitivity kernels to greater depth
(Figure 7b), the velocity structure below 10 km is not recovered very well, and reveals a
higher uncertainty than at shallower depth. Figure 10 is similar to Figure 9, but presents
the results in the experiment with additive noise. Comparing Figure 9d–f and Figure 10d–f
shows that the additive Gaussian noise results in a smoother (pointwise averaged) model.
The block interfaces are clearly visible in the uncertainty maps of Figure 10g–i. Though
the velocity models are not recovered very well in deeper parts of Figure 10d–f, the deeper
subsurface structure is reflected in the uncertainty maps of Figure 10g–i. This exemplifies
why the uncertainties aid the interpretation of the results.

Comparing the average maps and the uncertainty maps of Figures 9 and 10, we can
conclude that the rj-McMC converges faster in case of higher noise levels. The results
presented in Figure 9 suggest that more iterations are needed to sample the posterior
sufficiently well (this will be discussed in more detail in Section 4.4). We explain this
by the fact that stronger noise (σ in Equation (3), which we also estimate by means of
the hyper-parameters) results in a flatter likelihood. This makes it easier to explore the
posterior compared to a narrower likelihood associated with less noise (i.e., a smaller σ).
Mathematically speaking, a higher σ simply increases the acceptance ratio of the Markov
chain and hence results in more unique samples. Consequently, the pointwise average of all
sampled models (after burn-in) is likely to be smoother and closer to the true posterior. In
the case of a noise-free experiment, we could use a fixed (higher) noise estimate to achieve
a smoother result. However, we would lose resolution unnecessarily by imposing such a
higher value. Of course, were one to have ample computational power, one could simply
run the Markov chains for the noise-free experiment for a longer time to better approach
the posterior.

4.2. Intermediate Block Model

Figure 11 shows the results of the one-step 3D transdimensional method for the
intermediate block model of Figure 6b in the noise-free experiment. Figure 11a–c depicts
the horizontal slice at the surface of the model and two vertical cross-sections of the true
velocity model. Figure 11d–f depicts the post-burn-in pointwise average of the retained
velocity models. Figure 11g–i depicts the uncertainty, which is the post-burn-in standard
deviation of the retained samples.

Figure 11 reveals that the algorithm recovered the true velocity model well in both
horizontal and vertical directions in densely sampled regions. Regions that are not sampled
that well by the data (i.e., regions traversed by few ray paths) are recovered less well;
for example, the eastern part of the velocity model. These regions also exhibit larger
uncertainties estimated from the pointwise averages. The fact that the algorithm results
in smoother pointwise averages in regions sampled by fewer rays, is the reason that the
transdimensional algorithm is often referred to as a self-smooth, self-regularized algorithm.

Figure 12 is similar to Figure 11 but presents the results in the case of additive noise.
Similar to our findings for the coarse block model, the additive Gaussian noise results in a
smoother (pointwise averaged) model. Block interfaces and areas traversed by no (or few)
ray paths show higher uncertainties, as one would expect.
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Figure 9. Transdimensional tomographic models estimated from noise-free synthetic travel times through the coarse block
model in Figure 6a. The true block model: (a) horizontal slice at the surface of the model including station locations,
(b) vertical cross-section at easting of 410 km, and (c) vertical cross-section at northing of 7090 km. The vertical cross-sections
are indicated with black dashed lines in (a). (d–f) Pointwise averaged velocities calculated from post-burn-in retained
samples. (g–i) Standard deviation (model uncertainty) calculated from post-burn-in retained samples.

Figure 10. Transdimensional tomographic models estimated from synthetic travel times containing Gaussian random noise
for the coarse block model in Figure 6a. The true block model: (a) horizontal slice at the surface of the model including
station locations, (b) vertical cross-section at easting of 410 km, and (c) vertical cross-section at northing of 7090 km. The
vertical cross-sections are indicated with black dashed lines in (a). (d–f) Pointwise averaged velocities calculated from
post-burn-in retained samples. (g–i) Standard deviation (model uncertainty) calculated from post-burn-in retained samples.
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Figure 11. Transdimensional tomographic models for the noise-free synthetic travel times through the intermediate block
model in Figure 6b. The true block model: (a) horizontal slice at the surface of the model including station locations,
(b) vertical cross-section at easting of 405 km, and (c) vertical cross-section at northing of 7095 km. The vertical cross-sections
are indicated with black dashed lines in (a). (d–f) Pointwise averaged velocities calculated from post-burn-in retained
samples. (g–i) Standard deviation (model uncertainty) calculated from post-burn-in retained samples.

Figure 12. Transdimensional tomographic models for the synthetic travel times containing Gaussian random noise for the
intermediate block model in Figure 6b. The true block model: (a) horizontal slice at the surface of the model including
station locations, (b) vertical cross-section at easting of 405 km, and (c) vertical cross-section at northing of 7095 km. The
vertical cross-sections are indicated with black dashed lines in the horizontal slice. (d–f) Pointwise averaged velocities
calculated from post-burn-in retained samples. (g–i) Standard deviation (model uncertainty) calculated from post-burn-in
retained samples.
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4.3. Fine Block Model

Figure 13 shows the results of the one-step 3D transdimensional method for the
fine block model of Figure 6c with no additive noise on the travel times. Because of the
greater complexity of the fine block model, we used 20 chains (instead of 10) to sample the
posterior. Each chain generated 2× 106 samples, of which 1× 106 samples are considered
part of the burn-in period. Figure 13a–c depicts the true velocity model by means of a
horizontal slice at the surface of the model and two vertical cross-sections. Figure 13d–f
represent the recovered velocity models, which are the post-burn-in pointwise averages
of the retained samples. Retaining again every 200 iterations, the pointwise averages
and standard deviation are computed from a total of 100,000 samples. As one can see,
the algorithm recovered the blocks fairly well in the densely sampled area of the model.
Figure 13g–i estimates the model uncertainty through the computation of the post-burn-in
standard deviation of the retained samples.

Figure 14 is the same as Figure 13 but presents the results in the case of noisy travel
times. Similar to our observations for the other two block models, the additive Gaussian
noise results in a smoother (pointwise averaged) model. Both the noise free and the noisy
travel times result in pointwise averaged velocity models exhibiting large uncertainty
compared to the velocity models recovered for the intermediate and coarse block models.

Figure 13. Transdimensional tomography results of the noise-free synthetic travel times for the fine block model in Figure 6c.
The true block model: (a) horizontal slice at the surface of the model including station locations, (b) vertical cross-section at
easting of 402 km, and (c) vertical cross-section at northing of 7097 km. The vertical cross-sections are indicated with black
dashed lines in the horizontal slice of (a). (d–f) Pointwise averaged velocities calculated from post-burn-in retained samples.
(g–i) Standard deviation (model uncertainty) calculated from post-burn-in retained samples.
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Figure 14. Transdimensional tomography results of the synthetic travel times containing Gaussian random noise for the fine
block model in Figure 6c. The true block model: (a) horizontal slice at the surface of the model including station locations,
(b) vertical cross-section at easting of 402 km, and (c) vertical cross-section at northing of 7097 km. The vertical cross-sections
are indicated with black dashed lines in the horizontal slice of (a). (d–f) Pointwise averaged velocities calculated from
post-burn-in retained samples. (g–i) Standard deviation (model uncertainty) calculated from post-burn-in retained samples.

4.4. Chain Statistics and Convergence

To evaluate the ability of the algorithm to infer the noise level and complexity of
the model space, we show here the chain statistics for the intermediate block model.
Results are approximately the same for the other two block models (i.e., the coarse block
model and the fine block model). Figure 15 shows how misfit, number of cells (model
dimension), and noise hyper-parameters change during McMC sampling. Figures 15a–d
are for the noise-free experiment, and Figures 15e–h are for the experiment with additive
noise. Different colors represent different chains. Noise hyper-parameters are presented
for a single frequency as they vary by frequency. Looking at this figure, the number of
cells converged to a small number of cells (around 300) in the experiment with additive
noise. In the noise-free experiment, however, the number of cells approaches higher values
and also the variation between different chains is larger. For the inferred noise level, in the
experiment with additive Gaussian random noise, the recovered hyper-parameter a is fairly
close to the true value. However, the recovered hyper-parameter b slightly underestimates
the true value.

The results presented in Figure 15 can also be used as a means to determine chain
convergence and the length of the burn-in period. As one can see, for the experiment with
additive Gaussian noise, all parameters at all chains stabilize around the same value. This
stationarity and convergence can be interpreted as a fully mixed Markov chain. For the
noise-free experiment, however, it seems as if the separate chains still need more time to
stabilize entirely; the misfit and the noise hyper-parameter are still decreasing, and the
number of cells is still increasing. It means that if we continue sampling from the posterior
for the noise-free experiment, the quality of results will improve and the Markov chain
will reach a steady state. In other words, the experiment with additive Gaussian noise
converged faster and hence better explores the posterior distribution for the same number
of samples.
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Figure 15. Variation of the misfit, the number of cells (dimensionality of model space), and the noise hyper-parameters
during ten chains of McMC sampling for the intermediate block model in the noise-free experiment (a–d) and the experiment
with additive Gaussian noise (e–h). Each color represents a sampling chain. Noise hyper-parameters are plotted for a single
frequency. The black lines in (g–h) represent the actual values. Histograms of the posterior distribution for the retained
models for each parameter are shown as insets of each panel.

5. Conclusions

In this paper, we investigated the ability of 3D transdimensional Markov chain Monte
Carlo to recover the 3D surface wave velocity structure of the Reykjanes peninsula. An-
ticipating future application of this algorithm to interferometric travel times extracted
from ambient seismic noise, we specifically considered travel times between stations of
the Reykjanes seismic array. We find that updating ray paths every 200 iterations does not
significantly affect the performance of the algorithm (i.e., it honors the non-linearity of the
problem sufficiently), while at the same time significantly reducing computational costs.
Our results show that the algorithm successfully adapts model resolution to ray density
and hence yields a higher resolution and lower uncertainty in more densely sampled areas.
Similarly, the uncertainty is larger in regions where the station density is lower. In addition,
the algorithm successfully adapts to the noise level of the observed travel times; smoother
models are obtained for higher levels of additive random noise. The algorithm converges
(i.e., stabilizes) faster with a higher noise level because noise flattens the posterior and,
consequently, the posterior is easier to explore. The uncertainty maps aid the interpretation
of the results. The block interfaces are visible in uncertainty maps with higher uncertainties.
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