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Abstract: The vegetative cover in and surrounding the Rohingya refugee camps in Ukhiya-Teknaf is
highly vulnerable since millions of refugees moved into the area, which led to severe environmental
degradation. In this research, we used a supervised image classification technique to quantify the
vegetative cover changes both in Ukhiya-Teknaf and thirty-four refugee camps in three time-steps:
one pre-refugee crisis (January 2017), and two post-refugee crisis (March 2018, and February 2019), in
order to identify the factors behind the decline in vegetative cover. The vegetative cover vulnerability
of the thirty-four refugee camps was assessed using the Per Capita Greening Area (PCGA) datasets
and K-means classification techniques. The satellite-based monitoring result affirms a massive loss
of vegetative cover, approximately 5482.2 hectares (14%), in Ukhiya-Teknaf and 1502.56 hectares
(79.57%) among the thirty-four refugee camps, between 2017 and 2019. K-means classification
revealed that the vegetative cover in about 82% of the refugee camps is highly vulnerable. In the end,
a recommendation as to establishing the studied region as an ecological park is proposed and some
guidelines discussed. This could protect and reserve forests from further deforestation in the area,
and foster future discussion among policymakers and researchers.

Keywords: Rohingya refugee crisis; vegetative cover vulnerability analysis; Landsat; supervised
image classification; per capita greening area (PCGA) datasets; K-means classification; spatiotemporal
change analysis

1. Introduction

The local inhabitants, previously settled Rohingya refugees, and different national
and international non-governmental organizations (NGOs) have built approximately
209,891 households for nearly a million Rohingya refugees in the Ukhiya-Teknaf upazila
of Bangladesh [1] since the commencement of the Rohingya refugee crisis on 25 August
2017 [2–8]. This exodus is regarded as one of the fastest developing refugee crises since
World War II [9–11]. Rohingya minorities are one of the most widely victimized refugees
in the world at the moment; the government of Bangladesh refers to Rohingya refugees
as “Forcibly Displaced Myanmar Nationals” [12–14]. In response, the government of
Bangladesh allocated 1942.49 hectares of mostly hilly-forested land for refugee settlement
in September 2017, which quickly became overpopulated [6]. As of April 2019, more than
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610,372 refugees were accommodated in that camp, and the number is growing each day
(see Figure 1).
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lated expansion of refugee settlements [2,4,9,15]. The rapid conversion of lands with veg-
etative cover into refugee settlements is the principal agent of environmental degradation 
and has caused the most significant large-scale land cover changes in Ukhiya-Teknaf in 
recent times [14]. Hassan and Smith (2018) quantified the territorial expansion of refugee 
settlements in Teknaf, finding that the refugee settlement increased from 175 hectares to 
1530 hectares between 2016 and 2017 [2]. Imtiaz (2018) assessed the impact on the vegeta-
tive cover by displaced refugees on the Teknaf peninsula, estimating a total vegetative 
cover loss of 1284.48 hectares between 2014 and 2017 [4]. Labib et al. (2018) determined 
vegetative cover and estimated carbon emission losses in the Kutupalong-Balukhali ex-
pansion site: 572 hectares of vegetative cover were deforested to set up camps between 
2016 and 2017, which accounted for an approximate loss of 365,288 Great British Pounds 
(GBP) per year [15]. 

There are thirty-four Rohingya refugee camps settled over Ukhiya-Teknaf and they 
are equally responsible for the overall vegetative cover loss, but Imtiaz (2018) assessed the 
vegetative cover changes only in Teknaf, and Labib et al. (2018) in Kutupalong-Balukhali 
Rohingya refugee expansion sites [4,15]. With the intention of calculating the vegetative 
cover loss and territorial expansion of the Rohingya refugee settlement in Teknaf, Hasan 
et al. (2018) created multiple ring buffer zones centered on the three pre-existing refugee 
camps to narrow down their analysis [2]. However, previous studies did not attempt to 
define the actual vegetative cover changes among all thirty-four refugee camps, which is 

Figure 1. Camp-wise Rohingya refugee changes, pre and post refugee crisis (between 2017 and 2019), among thirty-four
refugee camps in Ukhiya-Teknaf. Here, C = camp; RC* = registered camp; Ext. = extension. (Data source: [10]).

The vegetative cover of Ukhiya-Teknaf is under severe pressure due to the unregulated
expansion of refugee settlements [2,4,9,15]. The rapid conversion of lands with vegetative
cover into refugee settlements is the principal agent of environmental degradation and
has caused the most significant large-scale land cover changes in Ukhiya-Teknaf in recent
times [14]. Hassan and Smith (2018) quantified the territorial expansion of refugee settle-
ments in Teknaf, finding that the refugee settlement increased from 175 hectares to 1530
hectares between 2016 and 2017 [2]. Imtiaz (2018) assessed the impact on the vegetative
cover by displaced refugees on the Teknaf peninsula, estimating a total vegetative cover
loss of 1284.48 hectares between 2014 and 2017 [4]. Labib et al. (2018) determined vegeta-
tive cover and estimated carbon emission losses in the Kutupalong-Balukhali expansion
site: 572 hectares of vegetative cover were deforested to set up camps between 2016 and
2017, which accounted for an approximate loss of 365,288 Great British Pounds (GBP) per
year [15].

There are thirty-four Rohingya refugee camps settled over Ukhiya-Teknaf and they
are equally responsible for the overall vegetative cover loss, but Imtiaz (2018) assessed the
vegetative cover changes only in Teknaf, and Labib et al. (2018) in Kutupalong-Balukhali
Rohingya refugee expansion sites [4,15]. With the intention of calculating the vegetative
cover loss and territorial expansion of the Rohingya refugee settlement in Teknaf, Hasan
et al. (2018) created multiple ring buffer zones centered on the three pre-existing refugee
camps to narrow down their analysis [2]. However, previous studies did not attempt to
define the actual vegetative cover changes among all thirty-four refugee camps, which
is crucial to fathom the influence of Rohingya refugees on vegetative cover loss and
eventually identify refugee camps with highly vulnerable vegetative cover. Furthermore,
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the introduction of the per capita greening area (PCGA) dataset in this research deepens
our understanding of the vegetative cover capacity changes at each of the thirty-four
refugee camps. PCGA datasets are the ratio between each of the thirty-four refugee camps
vegetative cover and the number of refugees in 2017, 2018, and 2019. The combination of
Landsat satellite data and the PCGA dataset is a novel approach to investigate the possible
vegetative cover vulnerability of the refugee camps in Ukhiya-Teknaf.

The ultimate goal of this research is to identify the critical factors behind the declining
vegetative cover in the Ukhiya-Teknaf area of Bangladesh, as well as quantify Rohingya
refugee camps with highly vulnerable vegetation cover using Remote Sensing (RS), Geo-
graphical Information System (GIS), and Machine Learning (ML) techniques. The results of
this study are indispensable and should be able to help the bodies responsible for interna-
tional human rights, refugee welfare, policymakers, and all the national and international
organizations to comprehend the challenges (e.g., environmental degradation) facing the
Bangladesh government due to the refugee issues. This research might be instrumental
to researchers in multiple subjects (e.g., refugee studies, political geography, international
relationships, migration, environmental sciences, and so on) and could be influential in
taking initiatives to reduce deforestation and forest degradation activities.

The objectives of this research are twofold. First, we map and characterize temporal
changes of vegetative cover in three phases between 2017 and 2019, more specifically pre
and post influx of refugees in both Ukhiya-Teknaf and the thirty-four refugee camps, in
order to identify the critical factors behind the declining vegetative cover. Second, we
quantify the per capital greening area changes at each of the camps due to the sudden
influx of refugees and identify Rohingya refugee camps with highly vulnerable vegetation
cover over the study period, with the intention of monitoring the vegetative cover changes
in the Ukhiya-Teknaf area of Bangladesh.

2. Related Work

Land use/land cover change (LULCC) shows the existing interactions between the
physical and human environment [16]. The foremost benefits of using satellite data and GIS
techniques for analysis of land cover change are its timely, cost-effective, and labor-saving
felicity. Ali et al. (2018), Ayele et al. (2018), and Rimal et al. (2018) performed maximum
likelihood (ML) classification and Landsat for land cover classification [17–19]. Hassan et al.
(2018) and Phiri et al. (2018) used random forest (RF) classification for land cover change
analysis [2,20,21]. Yoo et al. (2019) used the convolutional neural network (CNN) for climate
zone classification [22]. Several studies already revealed that the Support Vector Machine
(SVM) supervised image classifier more precisely classified than the other classification
techniques. Topaloglu et al. (2016) applied maximum likelihood (ML) and SVM to classify
eight different land categories in Istanbul in Turkey to compare classification accuracies of
classified maps, and stated that SVM produces better results compared to ML [23]. Yousefi
et al. (2015) compared six supervised classification algorithms, namely minimum distance
of mean (MDM), mahalanobis distance (MD), ML, artificial neural network (ANN), spectral
angle mapper (SAM), and SVM in terms of land-use mapping in Iran, and they show that
SVM outperformed the others [24]. The image classification algorithms and high-resolution
satellite imagery makes data mining and monitoring of a broad range of target features on
the ground relatively trouble-free.

Specifically, SVM is an efficient learning algorithm for remote sensing classification
applications, for instance, vegetative cover monitoring [25–27]. SVM classification is ap-
plied broadly to achieve different research objectives due to its high classification accuracy
and ability to handle complex relations among variables [28]. Although LULCC analysis
depicts the relationship between the human and physical environment, the use of diverse
datasets (e.g., satellite data and socioeconomic data) with clustering algorithms can produce
detailed information and facts. For example, hierarchical clustering [29], K-means [30–32],
and Gaussian mixture model [33] are a few benchmark clustering techniques for change
analysis. The hierarchical clustering method is preferable with larger datasets, but k-means
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clustering performs better both with the large and medium datasets [34]. Karim et al.
(2019) used k-means classification to quantify the changing pattern of shrimp yield in three
coastal districts of Bangladesh from 2002 to 2017 [30]. For water quality analysis, Zou et al.
(2015) utilized the k-means classification technique and took the Heihe River in China as a
study area [32]. Agarwal et al. (2013) intended to specify the crime trends of England and
Wales and used the k-means method for crime analysis [31].

3. Materials and Methods
3.1. Study Area

The study area is Ukhiya-Teknaf, two adjoining sub-districts of Cox’s Bazar district,
located in the southernmost part of Bangladesh, shown in Figure 2, and ranging between
20◦43′0” N and 21◦18′0” N latitude and 92◦4′0” E and 92◦20′0” E longitude. The fastest-
growing refugee camps in the world are located in Ukhiya-Teknaf, settling in different
positions both in the pre-established and spontaneous new refugee camps that have vaulted
up in the region since August 2017 [35]. Ukhiya-Teknaf has 147 villages grouped into 11
clusters (called unions), and 1 municipality (locally known as Paurashava) that totally
covers 557 square km (55,700 hectares). Since the crisis broke out, there have been thirty-
four refugee camps with a total cumulative refugee population of approximately one
million by the time of this research. Ukhiya-Teknaf has a dynamic waterway system with
two main water channels—the Naf River and the Reju Canal.
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Figure 2. A schematic framework of Ukhiya-Teknaf, study area. (a) shows Bangladesh bordered by India, Myanmar, and
the Bay of Bengal. (b) displays the Ukhiya-Teknaf sub-district, represented as red color, bounded by the Ramu sub-district
on the north, Arakan state of Myanmar and Naikhongchori sub-district of Bangladesh on the east, and the Bay of Bengal
on the west and south corner. These two-adjoining sub-districts are the focus of our analysis of temporal vegetative cover
monitoring before and after the Rohingya refugee crisis and eventually identifies the influencing factors behind the declining
vegetative cover. (c) shows a natural-color composite image of the study area, Ukhiya-Teknaf, with a band combination
of 4, 3, and 2 showing all the existing Rohingya refugee camps dated 4 February 2019. These camps are the focus of our
identification and analysis of refugee camps with highly vulnerable vegetative cover.
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The study area, Ukhiya-Teknaf, is situated in the subtropical monsoon climatic region,
with broad seasonal distinctions in rainfall, high temperature, and humidity. Ukhiya-
Teknaf experienced three distinct seasons: a dry and cold winter (October–March), a hot
summer (March–June), and rainy monsoon (June–October). The monthly average dry bulb
temperature from 1975 to 2016 was 25.90 ◦C/month, and the warmest and coldest months
are May (32.2 ◦C) and January (14.9 ◦C). The annual average rainfall from 1977 to 2016 was
4067.99 mm/year, the highest rain occurred in July (1029 mm), and the least rain occurred
in January (2 mm).

Ukhiya-Teknaf is geographically located in the coastal area and often falls victim to
cyclones, sea storms, and tidal bore [36]. The maximum extension of the study area is
about 65 km in the north-south, and 10 km in the east-west direction. The study area
displays distinct physiographic features such as piedmont plains, rugged rocky hills, and
an unbroken 120 km (75 miles) long line of sandy beaches straightening to Cox’s Bazar
throughout the Bay of Bengal, reportedly the second-largest uninterrupted sea beach in
the world after Brazil’s Praia do Cassino Sea beach. The sea beach is backed by gently
sloping foothills and generally occupied by human activities. The sandy soil, saline water,
and a vast area of dense vegetation is the main barrier in the study area for traditional
agricultural practices, mainly rice.

There are two registered refugee camps, named Kutupalong RC and Nayapara RC,
and thirty-two other refugee camps located in the study area [9]. By the time of this study,
the largest refugee camp by refugees was Camp 15, hosting approximately 49,468 refugees.
The oldest and second-largest of all the camps is Nayapara RC, housing approximately
37,000 refugees. Camp 20 (extension), located along the north of Camp 15, hosts the fewest
refugees, approximately 4630 (see Figure 3).
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The subtropical monsoon climatic pattern, along with the physiographic features
of Ukhiya-Teknaf, contributes to the development of dense forestland. There are 11,615
hectares of forestland in Ukhiya-Teknaf that are set as a wildlife asylum. This vast area
harbors many endangered species such as shoreline and offshore birds, wild Asian ele-
phants, and so forth. About 58.37% of the study area is covered with dense forests, sparse
vegetation, and so forth. However, this has declined over time. The cause of this decline
is uncertain, but large-scale anthropogenic activities in past years might have triggered
substantial loss of vegetative cover [2,4,15,37,38]. The data selection, collection criteria, and
satellite imagery processing are elaborated in the next section.

3.2. Data Collection and Satellite Image Processing

Diverse demographic, satellite, and geospatial data (presented in Table 1) were utilized
to accomplish the goals of this research. Three sets of time period multispectral Landsat
8 OLI/TIRS satellite image scenes were acquired for monitoring vegetative cover. The
image scenes at 30 m ground resolution were collected from the U.S. Geological Survey
(USGS) website. To obtain cloud-free satellite scenes of Ukhiya-Teknaf, images from the
winter seasons (December–February) were selected: the cloud cover was about 0%–10%.
After examining all nine images visually, three images were selected for SVM supervised
image classification. In this research, ENVI 5.3 was used for atmospheric correction to
conduct Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH), for radiometric
calibration, and for band combination. The minimum noise fraction (MNF) wizard was
used in this study in order to segregate noise from the data, and to reduce the computational
requirements for the subsequent processing. Additionally, to prevent spatial referencing
problems, all images were registered in the same projection (UTM, WGS 84, zone 46N). In
addition, for photo-interpretation of the Landsat images, two historical Google earth scenes
of February 2017 and 13 February 2018, and field survey data were used for identifying
land cover features, tracing new and old refugee settlements, generating training samples
for land cover classification, and in accuracy assessment.

Table 1. Representations of the selected satellite, geospatial, and demographic data. OLI, Operational Land Imager; TIRS,
Thermal Infrared Sensor; USGS, U.S. Geological Survey.

Data Acquired Date/Year Producer

Landsat 8 (OLI/TRIS)
27 January 2017 USGS global land cover Facilities

(http://glovis.usgs.gov/) accessed date 5
March 2019

3 January 2018
4 February 2019

Geospatial data (Administrative boundary of
Ukhiya-Teknaf, Camp location) 2019

Humanitarian Data Exchange (HDX)
(https://data.humdata.org/) accessed

date 15 April 2019

Google Earth Historical Imageries 13 February 2017,
13 February 2018 Digital Globe

Refugee Counts ISCG, UNHCR,2017, 2018, and 2019
United Nation (UN)

(https://www.unhcr.org/) accessed date
20 April 2019

Vegetation Area Counts Classified Image of 2017, 2018, and
2019

Support Vector Machine (SVM)
Supervised Classification

Demographic data for Ukhiya-Teknaf were required to understand the impact of
refugee activities on the surrounding environment. The incoming refugees appearing
in both the registered and non-registered population data were assembled from various
national and international organizations such as Bangladesh Bureau of Statistics (BBS), Inter-
Sector Coordination Group (ISCG), and United Nation High Commissioner for Refugees
(UNHCR). The vegetative cover data of each of the thirty-four refugee camps was calculated
through the classified images of 2017, 2018, and 2019. The refugee population data and

http://glovis.usgs.gov/
https://data.humdata.org/
https://www.unhcr.org/
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vegetative area data for the thirty-four camps were combined to create the Per Capital
Greening Area (PCGA) dataset (see Table 1).

3.3. Image Classification

The decisive goal of this research was to detect the critical factors behind the dimin-
ishing vegetative cover in Ukhiya-Teknaf. Hardy et al.’s (1976) first-order hierarchical
classification system was partly adopted for land cover feature selection [39]. Initially,
nine land cover categories (vegetative, agricultural land, aquaculture land, settlement,
water-body, arable land, bare land, sandy area, and tidal mudflat) were produced using the
professional familiarity of the study area, field survey data, and observations of Google
Earth historical images of 13 February 2017, and 13 February 2018, and photo interpre-
tation to identify and confirm the diverse land cover features. The training areas were
produced utilizing polygon vectors for individual features based on the spectral reflectance
wavelength, presented in Figure 4 and Table 2.
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Table 2. Land use/land cover (LULC) classes delineated based on supervised classification (based
on [2,39,40]).

N Land Cover Type Description

1 Vegetation
Scattered forest, mixed forest, sparse low-density forest,

degraded forest, the mix of trees and other natural grass covers,
homestead vegetation.

2 Agricultural land Wet and dry crop fields, paddy fields, fallow lands.

3 Aquaculture land Marine aquaculture, brackish water shrimp farming area
containing saline.

4 Settlement Isolated and clustered small and large buildings, roads.

5 Water-bodies Rivers, canals, permanent open water, ponds, reservoirs.

6 Arable land Land capable of being ploughed, pasture land, temporary
fallow land.

7 Bare land Exposed soils and barren areas influenced by human impact.

8 Sandy area Land covered with sand, sea beaches.

9 Tidal mudflat Coastal wetlands that form when the mud is deposited by tides.

In order to improve the classification accuracy, testing of previews and repeated
segmentation of individual land cover classes were conducted. The same band set—near
infrared (0.845–0.885 µm), red (0.630–0.680 µm), and green (0.525–0.600 µm) (band 5, 4, 3)—
was used for SVM classification [24,27,41,42] to reduce the bias introduced when combining
different bands. The LULC conversion areas and their proportions for 2017, 2018, and 2019
classified images were consequently derived from the classification results via ENVI 5.3.
The thematic change workflow method was executed to distinguish 2017–2018, 2018–2019,
and 2017–2019 land cover alterations. In order to calculate the transformation of land cover
alterations from one type to another, a transitional probability matrix was used.

3.4. Per Capital Greening Area (PCGA)

We created the PCGA to calculate the refugee population-wise vegetative cover in
each of the thirty-four refugee camps in sequence. The equation used in this research to
compute the PCGA is as follows:

PCGA =
Vegetative Cover (Ha)

Refugee Population
(1)

Here, PCGA datasets are the ratio between each of the thirty-four refugee camps
vegetative cover and the number of refugees in 2017, 2018, and 2019. The PCGA dataset
was created to identify highly vulnerable vegetation cover refugee camps in three-time
periods, one before the refugee crisis in 2017 and two after the crisis broke out in 2018 and
2019. In the next part, the procedure deploying k-means classification to identify refugee
camps with highly vulnerable vegetative cover is discussed.

3.5. Vegetative Vulnerable Refugee Camp Identification Based on PCGA Dataset Using K-Means
Classification

The k-means classification technique permits a deeper understanding of the vegetative
cover capacity changes due to the sudden influx of refugees at each of the thirty-four refugee
camps, and eventually identification of the refugee camps with the highly vulnerable
vegetation cover over the study period. K-means classification identifies observations that
are alike for categorization [29,43–45]. The analysis was run on R studio and associated
packages; it is an open-source statistical computing and graphics software.

The distance measurement in clustering defines how the similarity of two non-spatial
PCGA observations (xi, xj) is calculated and influences the shape of the cluster. In this
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analysis, the Euclidean distance was computed to represent the dissimilarity between each
pair of observations, and the equation is as below:

Dis
(

xi, xj
)
= 2

√{(
x1

i − x1
j

)2
+
(

x2
i − x2

j

)2
+
(

x3
i − x3

j

)2
}

(2)

where xi is the PCGA observation with three variables: x1
i , x2

i and x3
i , representing PCGA

of the three study periods 2017, 2018, and 2019. There are thirty-four observations in total,
where (xi, xj) (i = 1, 2, . . . , 34; j = 1, 2, . . . , 34) represents a pair of the yield observations,
and Dis

(
xi, xj

)
= 0 whenever i = j.

Here, in the PCGA datasets, there are thirty-four observations with three variables.
The elbow method, silhouette method, and gap statistics are the three popular methods for
determining the optimal clusters [33]. The most popular is the elbow method and this was
also used in this research. We plotted the curve of the total Within-cluster Sum of Square
(WSS) according to the number of clusters k (in this case, k = 10). In general, the location of
a bend (knee) in the plot is considered as an indicator of the appropriate number of clusters.
In this research, we used the standard algorithm, namely the Hartigan–Wong algorithm,
which holds several potential advantages compared to the classical optimization heuristic,
Lloyd’s algorithm [43].

4. Results
4.1. Rapid Declining of Vegetative Cover and Increased Settlement and Bare Land in
Ukhiya-Teknaf, the Situation of Pre and Post Rohingya Refugee Crisis, 2017–2019

The confusion matrix method using ground truth Region of Interest (ROI) for each of
the nine classes was applied by segregating test pixels to the corresponding location in the
classified images [19,30,46]. The reference data (788 polygons and 8219 pixels for 3 Landsat
OLI images) were manually selected to assess image classification accuracy. The producer
and user accuracy of the three classified images were obtained from confusion matrix
techniques. Overall classification accuracy for 2017, 2018, and 2019 is 99.51%, 98.16%,
and 96.36%, with kappa coefficient index values of 0.98, 0.97, and 0.98, respectively (see
Table 3).

Table 3. Image classification accuracy verification values of 2017, 2018, and 2019 (here, PA = Pro-
ducer’s accuracy and UA = User’s accuracy).

LULC Classes
2017 2018 2019

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Vegetation 98.92 97.58 98.99 98.99 100 99.39
Settlement 95.59 98.48 76.38 97.98 94.49 92.31
Water-body 99.8 99.8 100 100 100 99.57

Agricultural land 84.62 92.63 93.92 93.92 93.33 100
Aquaculture 98.46 99.22 99.1 100 95.83 96.99
Arable land 100 97.92 100 94.81 100 98.77

Tidal mudflat 99.11 99.11 99.69 100 96.54 96.88
Sandy area 100 99.3 99.74 95.98 97.75 98.09
Bare land 94.12 100 99.07 100 98.02 99.5

Overall Accuracy 98.51% 98.16% 96.36%

Kappa Coefficient 0.98 0.97 0.98

The classification results of the classified images of Ukhiya-Teknaf in 2017, 2018, and
2019 are presented in Figure 5.
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Figure 5. Land cover maps for the study area, Ukhiya-Teknaf region, classified into nine major land cover classes including:
vegetation (green), bare land (yellow), agricultural land (light blue), sandy area (grey), water-body (dark blue), settlement
(red), arable land (cyan), agricultural land (violet), and tidal mudflat, at three time-steps (a) 2017, (b) 2018, and (c) 2019.

The statistics of different types of land use areas and their proportions are presented
in Figure 6. By visual interpretation, it is evident that the vegetative cover of the study area
has tested a dynamic (transition and conversion) relationship after the refugee crisis broke
out. The vegetative cover is the largest land cover area and declined from 67.87% to 58.37%
over the study period.

Table 4 demonstrates the net land cover differences of each class in 2017–2018, 2018–
2019, and 2017–2019. The most notable land cover changes were the rapid decrease of
vegetative cover (3359 hectares/8.58%), an associated increase of agricultural land (419.7
hectares/34.4%), arable land (2670.8 hectares/55.88%), settlement (356.9 hectares/27.02%),
and bare land (264.9 hectares/70.15%) in 2017–2018. Similarly, the rapid decrease of vegeta-
tive cover (2123.2 hectares/5.93%) and agricultural land (189 hectares/11.53%), an associ-
ated increase of arable land (2194.4 hectares/29.46%), settlement (1079.4 hectares/64.33%),
and bare land (111 hectares/17.28%) in 2018–2019. Overall, between 2017 and 2019, a
massive decrease of vegetative cover (5482.2 hectares/14%), and the associated increase
of settlement (1436.3 hectares/108.74%), arable land (4865.2 hectares/101.8%), bare land
(375.9 hectares/99.5%), and agricultural land (230.7 hectares/18.91%) was indicated.

Tables A3–A5 show the spatiotemporal land cover changes in 2017–2018, 2018–2019,
and 2017–2019, respectively, from each land cover to another. Vegetative cover changes
in the thirty-four Rohingya refugee camps were quantified based on three classes such as
vegetative cover, settlement, and non-vegetative cover in 2017–2019, as discussed in the
next section.
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Figure 6. Land cover area (in thousands of hectares) changes in Ukhiya-Teknaf region before and after the Rohingya refugee
crisis between 2017–2019, by the period of observation.

Table 4. Gain and loss of different LULC areas (in hectares and percentage) in Ukhiya-Teknaf, pre
and post refugee crisis, by the period of observation.

LULC Classes
2017–2018 2018–2019 2017–2019

Area % Area % Area %

Vegetative −3359 −8.58 −2123.2 −5.93 −5482.2 −14
Settlement 356.9 27.02 1079.4 64.33 1436.3 108.74
Waterbody 9.5 0.61 −134 −8.51 −124.5 −7.96

Agricultural Land 419.7 34.4 −189 −11.53 230.7 18.91
Aquaculture land 81.9 1.41 −2840.2 −48.28 −2758.3 −47.55

Arable land 2670.8 55.88 2194.4 29.46 4865.2 101.8
Tidal mudflat −683.4 −25.91 1563.4 80.01 880 33.36

Sandy area 238.8 28.5 338.4 31.43 577.2 68.89
Bare land 264.9 70.15 111 17.28 375.9 99.55

4.2. Expansion of Rohingya Refugee Settlement and Decline of Vegetative Cover among All
Thirty-Four Refugee Camp Areas, the Situation of Pre and Post Rohingya Refugee Crisis,
2017–2019

The refugee settlement expanded at a massive rate across the thirty-four refugee
camps, increasing from 101 hectares to 822 hectares between January 2017 and February
2019, with a total growth rate of 717% (see Table 5). In this analysis, the vegetative covers
of the existing thirty-four refugee camps show a rapid downward trend, from 1866.33
hectares to 381.33 hectares, with a declining rate of 79.57%.

The conversion matrix of land cover in 2017–2019 suggests that vegetative to non-
vegetative (i.e., waterbody, agricultural land, aquaculture land, arable land, tidal mudflat,
and sandy area) land cover increased rapidly, accounting for 956 hectares; additionally, the
vegetative to settlement and non-vegetative to settlement conversion area was 546 hectares
and 209 hectares. The total net vegetative, non-vegetative, and settlement cover changes
in all thirty-four camps are −1502.56 hectares, +760.89 hectares, and +729.99 hectares. In
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January 2017, 74.36% of the refugee camp area was covered by vegetative land, indicating
that vegetative was the dominant land cover before the crisis began. However, after the
refugee crisis broke out, a massive decline of vegetative cover was recorded in March 2019,
accounting for only 15.19%. The refugee settlement was the smallest land cover in 2017,
accounting for only 4.01%, but it increased by 32.75% in 2019. The non-vegetative cover
accounted for 21.64% in 2017 and was estimated to be 52.06%; it is the dominant land cover
after the refugee crisis in 2019.

Table 5. Area and spatial changes in land cover classes and overall net gain and losses between 2017 and 2019 among the
thirty-four Rohingya refugee camp areas.

LULC Classes 2017
(ha) (%) 2019

(ha) (%) Class Change
(ha)

Growth/Decline
Rate (%)

Net Change in
Camp Area (ha)

Vegetative 1866.33 74.36 381.33 15.19 −1485 −79.57 −1502.6
Settlement 100.62 4.01 822.06 32.75 721 717 729.99

Non-Vegetative 543.06 21.64 1306.62 52.06 763 958.93 760.89

Appendix A, Table A1 shows the overall net changes of different land cover between
2017 and 2019, among thirty-four Rohingya refugee camps. The most significant net
vegetative cover changes occurred in Camp 4, Camp 17, Camp 8W, Camp 18, and Camp
20 (ext.), accounting for 116.55 hectares, 96.75 hectares, 78.12 hectares, 74.52 hectares, and
75.78 hectares, respectively, between 2017 and 2019 (see Figure 7).

Remote Sens. 2021, 13, x  13 of 29 
 

 

 
Figure 7. Camp-wise vegetative cover changes, pre and post refugee crisis (between 2017 and 2019), among thirty-four 
refugee camps in Ukhiya-Teknaf. Here, C = camp; RC* = registered camp; Ext. = extension. 

The massive influx of refugee populations in a short period made the vegetative 
cover in the refugee camp extremely vulnerable. In order to understand the vegetative 
capacity and identify the refugee camps with highly vulnerable vegetation cover, in this 
study, we used the PCGA dataset and k-means classification. 

4.3. Vegetative Cover Vulnerable Rohingya Refugee Camp Identification Using K-Means 
Classification 

The PCGA dataset of each of the thirty-four refugee camps in 2017, 2018, and 2019 is 
plotted in Figure 8, where the differences in PCGA before and after the Rohingya refugee 
crisis are massive. However, to understand the changing pattern of PCGA from a qualita-
tive perspective as well as identify refugee camps with highly vegetative cover that is 
vulnerable, we used k-means classification, aiming to divide the PCGA observation data 
into cluster groups. 

Figure 7. Camp-wise vegetative cover changes, pre and post refugee crisis (between 2017 and 2019), among thirty-four
refugee camps in Ukhiya-Teknaf. Here, C = camp; RC* = registered camp; Ext. = extension.

The massive influx of refugee populations in a short period made the vegetative cover
in the refugee camp extremely vulnerable. In order to understand the vegetative capacity
and identify the refugee camps with highly vulnerable vegetation cover, in this study, we
used the PCGA dataset and k-means classification.
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4.3. Vegetative Cover Vulnerable Rohingya Refugee Camp Identification Using K-Means
Classification

The PCGA dataset of each of the thirty-four refugee camps in 2017, 2018, and 2019
is plotted in Figure 8, where the differences in PCGA before and after the Rohingya
refugee crisis are massive. However, to understand the changing pattern of PCGA from a
qualitative perspective as well as identify refugee camps with highly vegetative cover that
is vulnerable, we used k-means classification, aiming to divide the PCGA observation data
into cluster groups.
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Figure 8. Per capital greening area (in hectares) of thirty-four Rohingya refugee camps in Ukhiya-Teknaf of Bangladesh, pre
and post refugee influx, between 2017 and 2019.

The normalized dissimilarity result of each observation is demonstrated in Figure 9
and the data presented in Appendix A, Table A2. The higher values indicate a more
substantial dissimilarity than lower.

The optimal cluster number was determined using the elbow method, and in this case,
the optimal cluster number is three, as is shown in Figure 10. In K-means clustering, each
cluster is represented by its center (i.e., centroid), which corresponds to the mean of the
points assigned to the cluster [31].

Since the number of the cluster must be set before running the algorithm, it is often
advantageous to use several different values of k and examine the differences in the
result [45]. However, in this analysis, different values of k (2, 3, 4, 5, and 6) were used
before setting the optimal cluster number as three—the clustering result and clustering
vector group presented in Figure 11 and Table 6.
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Figure 11. Clustering results of vegetative vulnerable refugee camps in Ukhiya-Teknaf in Bangladesh between 2017 and
2019. The results show the PCGA dataset grouped into three clusters. Besides, dim1 (53.5%) and dim2 (30.6%) explain that
53.5% variance within the PCGA dataset is captured by Principal Component Analysis 1 (PCA 1), while PCA 2 demonstrates
30.6% variance of the dataset.

Table 6. K-means classification results of PCGA, clustering vector groups, mean values, and the
average mean value of each cluster, lower values represent high vulnerability, and higher values
represent low vulnerability.

Cluster 2017
(Mean)

2018
(Mean)

2019
(Mean)

Average
(Mean) Clustering Vector

2 −0.31 2.22 2.05 1.32 Camp23, Camp27, Camp25,
Camp20 (extension)

1 3.21 −0.42 −0.34 0.82 Camp19, Camp11

3 −0.19 −0.30 −0.28 −0.26

Camp 1E, Camp 1W, Camp 2E,
Camp 2W, Camp 3, Camp 4,
Camp 4 (extension), Camp 5,
Camp 6, Camp 7, Camp 8E,

Camp 8W, Camp 9, Camp 10,
Camp 12, Camp 13, Camp 14,
Camp 15, Camp 16, Camp 17,
Camp 18, Camp 20, Camp 21,
Camp 22, Camp 24, Camp 26,

Nayapara-RC, and
Kutupalong-RC

Figure 11 and Table 6 demonstrate the vegetative cover vulnerability of refugee camps
over the study period. The result indicates that Camp 20 (extension), Camp 23, Camp 25,
and Camp 27 belong to cluster 2, and the average mean is 3.95, suggesting less vulnerable
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refugee camps. Similarly, Camp 11 and Camp 19 are included in cluster 1, and the average
mean is 2.45 which states that camp vulnerability is moderate. Likewise, Camp 1W, Camp
2E, Camp 2W, Camp 3, Camp 4, Camp 4 (extension), Camp 5, Camp 6, Camp 7, Camp
8E, Camp 8W, Camp 9, Camp 10, Camp 12, Camp 13, Camp 14, Camp 15, Camp 16,
Camp 17, Camp 18, Camp 20, Camp 21, Camp 22, Camp 24, Camp 26, Nayapara-RC, and
Kutupalong-RC are linked with cluster 3. The refugee camps under cluster 3 are highly
vegetative cover vulnerable, and the average mean is −0.77. This study affirms that the
rapid expansion of the Rohingya refugee settlement makes about 82% of Rohingya refugee
camps’ vegetative covers highly vulnerable.

5. Discussion
5.1. Land with Vegetative Cover Is the Primary Source of the Newly Increased Settlement and
Bare Areas

To accommodate the mass influx of Rohingya refugees, approximately 5482.2 hectares
of vegetative cover in and surrounding the refugee camp was razed for settling thirty-two
new non-registered refugee camps. The mass decline in vegetative cover was found in and
surrounding the greatest concentration of Rohingya refugee settlements [2]. Furthermore,
the large-scale deforestation mainly took place towards the south-west direction of pre-
existing Kutupalong RC and the north-south direction of Nayapara RC (see Figure 12).
Such an unprecedented mass decline of vegetative cover puts severe pressure on the
socio-economic fabric as well as the ecology not limited to Ukhiya-Teknaf but the entire
country [47].
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there are only two registered refugee camps, which is indicated by the symbol *).

The host community, national and international NGO’S, as well as previously set-
tled Rohingya refugees, had wiped out vegetative cover in Ukhiya-Teknaf for temporary
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makeshift homes for the refugees, resulting in a rapid increase of land with settlement,
arable and bare areas [2,4,9] (see Figure 13).
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Figure 13. The transition of vegetation covers to other land use/land cover, Ukhiya-Teknaf. (a) 2017–2018, (b) 2018–2019,
and (c) 2017–2019.

On the contrary, there was no significant conversion from other land covers to veg-
etative cover seen in and surrounding the refugee camps since the crisis broke out in
2017 [5,38], see Figure 14.

Bangladesh is a tiny country by area, and already struggling to solve poverty and
overpopulation problems of its own, associated with ever-increasing environmental and cli-
matic risks [48]. The government has no luxury of open land to construct a new settlement
for nearly millions of refugees and accommodate them therein [12]. The incoming refugee’s
magnitude and rate have already created enormous pressure on the natural resources
and ecological environment around the refugee camps and substantially alerted the local
landscape. The massive vegetative cover loss before and after the refugee crisis is identified
by red color in Figure 15.
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Figure 15. Spatiotemporal changes of vegetative cover, pre and post refugee crisis, Ukhiya-Teknaf: (a) Vegetative cover
before the refugee influx in 2017, (b) loss of vegetative cover after the refugee influx in 2018, (c) rapid loss of vegetative cover
due to the refugee influx in 2019. Green, red, and violet colors represent no change, total loss, and total gain, respectively, by
the period of observation.
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Besides the rapid influx of Rohingyas, different activities such as clearing land for
building new camps [15], expansion of agricultural land [4], cutting down the forest for
fuelwood collection [2], and so on are the critical factors behind the decline of vegetative
cover in Ukhiya-Teknaf. The refugee camps demand 750,000 kg of fuelwood each day, and
to meet this substantial demand, they razed down in and surrounding protected forest [2].
In addition, nearly a million refugees have accommodated a total area of only 2510.01
hectares of hilly land. As a consequence, rampant hill wiping out the herbaceous layer
may trigger landslides during the rainy season. Landslides are a frequent natural disaster
in the hilly mountain areas in Bangladesh and cost many lives each year [14]. A gigantic
landslide in the campsite might prompt a more significant humanitarian situation. Though
the government of Bangladesh strictly prohibited the expansion of the refugee camp further
to protect the reserve forest, many refugees are camping in the deep forest and blocking
the elephant corridors [38]. Severe deforestation is resulting at local and regional levels to
meet the demand within the refugee camps. The international organization for migration
estimated 3000 out of 43,000 acres of forest land in the hilly district of Cox’s Bazar has been
destroyed by the refugees since the crisis broke out, resulting in a rapid increase of refugee
settlements and bare areas [9].

5.2. Nearly 82% of Rohingya Refugee Camps Land with Vegetative Covers Are Highly Vulnerable

It is evident that the mass refugee population has caused rapid and long-term negative
impacts on the environment in and surrounding the refugee camps of host region Ukhiya-
Teknaf, Bangladesh. To accommodate these millions of refugees, with the help of local and
international volunteer organizations, the Bangladesh government allowed thirty-four big
and small refugee camps, varying from 49,468 (in Camp 15) to 4630 refugees (in Camp
20-extension), to be built [35]. As a result, approximately 1502.56 hectares of vegetative
cover was lost among the thirty-four camps between 2017 and 2019 (see Figure 16).
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representing pre-influx (a) January 2017, and post-influx (b) March 2018, and (c) February 2019.



Remote Sens. 2021, 13, 4922 20 of 27

The thirty-four Rohingya refugee camps were settled near a highly sensitive ecological
region, containing a protected forest for endangered wild animals. The rapid spatial
expansion of refugee settlements and corresponding human-made activities (such as
cutting down the forest cover for fuelwood, timber, and other substance needs) poses a
severe threat to wildlife as well as the surrounding ecosystem. This vast expansion of
refugee settlements and the decline of large-scale vegetative cover mainly took place on two
neighboring pre-existing refugee camps, namely Kutupalong RC and Nayapara RC. Almost
every day, new refugees are joining the refugee camp and threatening further sociological
and environmental degradation. The ultimate goal of this research was to identify refugee
camps with highly vulnerable vegetation cover. This study estimated 28 out of 34 (82.35%)
Rohingya refugee camps with highly vulnerable vegetation cover, and most of them were
expanded through south, west, and south-west direction from Kutupalong RC. If this trend
continues, we fare to speak that, soon, there will be no vegetative cover in and surrounding
the refugee camps.

The tension between the host community and refugees is increasing due to cultural
differences and lack of labor opportunities, as well as an invasion of forest resources.
Approximately 1.2 million people in the host population have been negatively affected due
to the refugee crisis, and they are yet to receive minimum attention or support from the
local government or international community [13]. The frequency of labor opportunities
and wages has reduced since the crisis broke out. Approximately 1500 local inhabitants
previously involved in the community forestry program face a loss of income [11]. The local
community near refugee camps lost vegetable plots and agricultural fields due to set-up
makeshift homes for refugees in the early stage. Some refugees, directly and indirectly, are
involved in drug smuggling (especially “Yaba”, imported from Myanmar), human and sex
trafficking, prostitution, and robberies [2,4,15,38]. Over one million refugees changed the
population configuration of Cox’s Bazar district, one of the famous destinations among the
local and international tourists and put a severe threat to the tourism sector of this region.

5.3. The Bangladesh Government Might Relocate the Rohingya Refugees to the Sittwe and Take
Initiatives to Establish the Whole Refugee Settlement Area as an “Ecological Park” Justifying
Proper Guidelines and Protocols/Land Use Policy Recommendations

The government of Bangladesh is spending 0.3 billion dollars to resettle nearly 100,000
Rohingya refugees at Bhashan Char to solve the dreadful overcrowding in the Rohingya
refugee camps in Cox’s Bazar [49], where about one million Rohingya refugees live. The
Bangladesh government has already initiated the resettlement process and moved nearly
20,000 Rohingya refugees to Bhashan Char since December 2020. It is high time for the
government and responsible bodies to prepare effective guidelines and policy, and to take
initiatives, accordingly, with an aim to restore huge deforested land-mass of Ukhiya-Teknaf
into nature.

The rapid exodus of Rohingya refugees in Ukhiya-Teknaf of Bangladesh since August
2017 triggered severe deforestation [2,14,15]. This requires a permanent solution to protect
the biodiversity and ecology of the region. For instance, the government may take the
initiatives of a peaceful return of the refugees to their origin Rakhine State, Myanmar. The
government might give this strategic policy priority because a large sum of the Rohingya
refugees want to go back to their mother state, Rakhine, but the guarantee of their safety
and quality of life must be ensured. In that case, the Government of Bangladesh, along with
its regional and international allies and organizations (such as UNHCR, WORLD BANK,
SAARC, and UN), may put continuous pressure on the Government of Myanmar to ensure
honor, safety, and the peaceful return of the Rohingya people to Rakhine state, Myanmar.
The capital of Rakhine state, namely Sittwe, home of the Rohingya people, and the Teknaf
Upazila, Cox’s Bazar is a frontier state [12], and the distance between the two neighboring
places is barely 101.56 km (see Figure 17). The government has spent 0.3 billion to resettle
100,000 people in Bhashan Char, and considering this as a reference class of cost estimation
for the government, an estimated 3 billion US$ is needed to allocate to relocate one million
Rohingyas to Rakhine State, Myanmar. Since it is a matter of time to relocate nearly one
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million people to the Sittwe, the government may consider other areas similar to Bhashan
Char as an alternative for temporary resettlement.
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The sudden influx of millions of Rohingya refugees into the Ukhiya-Teknaf area has
not only caused deforestation and damaged the ecological biodiversity in the refugee camp
area but has put the entire region at risk [2]. The forest of Ukhiya-Teknaf is the habitat of
many endangered flora and fauna as well as a habitat and breeding ground for various
animals and birds; many of them are threatened with extinction [50]. In order to protect
endangered flora, fauna, animals, and birds from extinction and maintain the ecological
balance of the forest, the government and the responsible bodies might take the initiatives
to establish the whole region as a national ecological park. The government may plan to
set up separate sanctuaries for endangered flora, fauna, and birds in the region, bringing
the region’s biodiversity back to its former glory as well as being a great tourist destination
for local and foreign visitors. In this regard, the government may take inspiration from
the Alcatraz National Park, located 1.25 miles offshore from San Francisco, California,
the United States, which was turned from a prison to a tourist attraction, a sanctuary
for various flora and fauna, a recreation yard, art exhibition center, and so on [51]. The
government of Bangladesh built the country’s first eco-park in 2001 at an estimated cost of
1.2 million US$ on an area of 808 hectares located in Sitakunda Upazila, Chittagong [52].
The Ukhiya-Teknaf has 34 refugee camps, more than four times the size of the Sitakunda
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eco-park (2510 hectares). Taking into account the estimated cost of the Sitakunda eco-park
and the camp area as a reference class, the estimated cost of establishing an ecological park
could be around 7.4–10 million US$.

The Chittagong hill track covers the largest area of forest in Bangladesh and the heart
of this vast region is Ukhiya-Teknaf [53]. If the above-mentioned plan is implemented, it is
possible to alleviate the damage done to the forest, biodiversity, and ecosystem after the
arrival of Rohingyas in the area. The ultimate vision of this strategic policy is to protect the
ecological biodiversity of the forest.

6. Conclusions

Since 25 August 2017, nearly a million Rohingya refugees fled into Bangladesh and put
the environmentally fragile Ukhiya-Teknaf on the edge of massive ecological catastrophe.
Based on supervised image classification techniques (such as SVM), and remote sensing
data, this research quantified the temporal changes of vegetative cover between 2017 and
2019 (more specifically pre and post influx of Rohingya refugees) in Ukhiya-Teknaf and
thirty-four refugee camps, respectively. We further identified the refugee camps with
highly vulnerable vegetation cover utilizing the k-means clustering method and PCGA
datasets. The results revealed that 79.57% vegetative cover was lost among the thirty-four
refugee camps, and 14% vegetative cover was lost in the entire Ukhiya-Teknaf area since
the refugee crisis broke out. Further, we found that 28 out of 34 refugee camps’ vegetative
covers are highly vulnerable. The vegetative cover is the primary source of the makeshift
refugee camps in Ukhiya-Teknaf, and the unplanned and overcrowded refugee settlement
seems to be one of the critical factors for the decline in vegetative cover around the thirty-
four refugee camps. We show that there is an urgent need to estimate refugee camp
settlements more precisely. The current use of Landsat 8 OLI seems to be insufficient to
portray the evolution of the settlement in a desirable accuracy. VHR (Very High Resolution)
satellite imagery would be a better choice in future research. Besides, the land cover of
Ukhiya-Teknaf is dominated by meter-scale heterogeneity which is unlikely to be captured
precisely by discrete classification methods. It might be interesting to consider subpixel
spatial mixing models as a useful avenue of future work. By considering the ever-declining
rate of vegetative cover, it will be too late to protect the fragile hilly forest, vegetative
cover, and several rare endangered animals in Ukhiya-Teknaf if no initiatives are taken
now or in the near future. Furthermore, the results of this research could be useful to the
policymakers, planners, and researchers who are interested in utilizing these solutions for
different studies.
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Appendix A

Table A1. Vegetative cover changes and overall net changes of different LULC area (hectares) in 2017, 2018, and 2019,
among thirty-four Rohingya refugee camps, by the period of observation. Here, V = Vegetative, R.C = Refugee Camp,
N.V = Non-Vegetative, NVCC = Net Vegetative Cover Change, NRCC = Net Refugee Camp Change, NNVCC = Net
Non-Vegetative Cover Change, NCARC = Net Change in All Refugee Camp Area, and C = Camp.

Camp No
2017(ha) 2019(ha) Net Change by Class (ha) Net Change in All

Refugee Camp
Area (NCARC)V R.C N.V V R.C N.V NVCC NRCC NNVCC

C. 1W 32.49 4.23 17.64 5.49 33.93 14.94 −27 29.7 −2.7

Camp Area
+729.99 ha

Vegetative Cover
−1502.56 ha

Non-Vegetative
+760.89 ha

C. 1E 58.5 0.27 7.22 27 20.7 17.28 −31.5 20.43 10.06
C. 2W 3.06 5.31 31.95 0.27 22.5 17.55 −2.79 17.19 −14.4
C. 2E 7.11 6.3 26.55 4.59 27 8.37 −2.52 20.7 −18.18
C. 3 44.82 0.36 1.17 0.8 21.6 23.94 −44.02 21.24 22.77
C. 4 117 0.18 0.18 0.45 29.43 87.48 −116.55 29.25 87.3

C. 4 (Ext.) 48.87 0 0.72 1.8 5.4 42.39 −47.07 5.4 41.67
C. 5 62.1 0 0.63 0.18 9.54 53.01 −61.92 9.54 52.38
C. 6 18.27 0.18 18.81 0 22.5 14.76 −18.27 22.32 −4.05
C. 7 48.24 1.98 22.23 8.1 34.92 29.43 −40.14 32.94 7.2

C. 8W 78.12 0.09 0.09 0 33.21 45.03 −78.12 33.12 44.94
C. 8E 79.29 1.44 16.38 15.57 37.08 43.86 −63.72 35.64 27.48
C. 9 38.34 0.09 27.27 3.96 34.29 27.46 −34.38 34.2 0.19
C. 10 41.4 0.18 8.64 0 24.75 25.47 −41.40 24.57 16.83
C. 11 39.15 0.09 8.91 0.9 27.09 20.16 −38.25 27 11.25
C. 12 51.75 0 12.06 9.99 17.37 36.45 −41.76 17.37 24.39
C. 13 57.42 0.9 17.55 2.25 35.55 38.07 −55.17 34.65 20.52
C. 14 80.28 0 6.93 7.92 25.11 44.18 −72.36 25.11 37.25
C. 15 74.52 0.27 24.39 0.81 49.77 48.6 −73.71 49.5 24.21
C. 16 27.72 0.81 25.2 4.14 18.81 30.78 −23.58 18 5.58
C. 17 96.75 0 1.35 0.0001 7.02 91.08 −96.75 7.02 89.73
C. 18 74.52 0 1.8 0 22.05 54.27 −74.52 22.05 52.47
C. 19 56.43 0.27 21.06 4.68 12.69 60.39 −51.75 12.42 39.33
C. 20 47.52 0 1.98 0.001 3.06 46.44 −47.519 3.06 44.46

C. 20 (Ext) 76.14 0 1.71 0.36 9.81 67.68 −75.78 9.81 65.97
C. 21 40.32 0 1.62 5.67 18.27 18 −34.65 18.27 16.38
C. 22 38.34 1.26 16.92 6.57 28.62 21.33 −31.77 27.36 4.41
C. 23 105.3 5.85 25.65 79.2 15.39 42.21 −26.1 9.54 16.56
C. 24 73.44 12.96 32.58 44.19 29.16 45.63 −29.25 16.2 13.05
C. 25 48.6 9.72 56.16 30.6 19.44 64.43 −18 9.72 8.27
C. 26 100.71 16.83 58.86 45.99 64.26 66.15 −54.72 47.43 7.29
C. 27 101.79 4.77 29.43 60.93 28.71 46.35 −40.86 23.94 16.92

Kutupalong
RC 10.17 13.05 15.75 7.47 21.33 10.17 −2.7 8.28 −5.58

Nayapara
RC 7.92 13.68 11.25 3.96 20.7 8.19 −3.96 7.02 −3.06

Table A2. Standardized value of Per Capital Greening Area (PCGA) dataset in 2017, 2018, and 2019,
by the period of observation.

Standardized per Capital Greening Area (PCGA) Dataset
Camp No. 2017 2018 2019

Camp 1W −0.44 −0.46 −0.34
Camp 2E −0.82 −0.43 −0.33
Camp 2W −0.82 −0.50 −0.42

Camp 3 −0.25 −0.50 −0.42
Camp 4 0.36 −0.46 −0.42

Camp 4 Ext. −0.56 0.93 −0.23
Camp 5 −0.21 −0.50 −0.43
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Table A2. Cont.

Standardized per Capital Greening Area (PCGA) Dataset
Camp No. 2017 2018 2019

Camp 6 −0.73 −0.50 −0.43
Camp 7 −0.69 −0.39 −0.29

Camp 8E −0.23 −0.23 −0.09
Camp 8W −0.17 −0.50 −0.43

Camp 9 −0.67 −0.43 −0.36
Camp 10 −0.27 −0.50 −0.43
Camp 11 2.48 −0.49 −0.41
Camp 12 0.52 −0.31 −0.15
Camp 13 0.39 −0.47 −0.39
Camp 14 1.03 −0.38 −0.26
Camp 15 1.07 −0.49 −0.42
Camp 16 −0.06 −0.44 −0.30
Camp 17 −0.02 −0.07 −0.43
Camp 18 0.78 −0.49 −0.43
Camp 19 3.94 −0.34 −0.28
Camp 20 −0.59 0.19 −0.43

Camp 20 Ext. −0.53 4.32 −0.38
Camp 21 0.08 −0.01 −0.12
Camp 22 0.08 −0.35 −0.23
Camp 23 −0.70 2.33 4.40
Camp 24 −0.81 0.12 0.45
Camp 25 −0.10 0.90 1.73
Camp 26 −0.51 −0.08 0.32
Camp 27 0.09 1.31 2.43

Nayapara RC * −0.82 −0.45 −0.33
Kutupalong RC * −0.82 −0.30 −0.15

* registered refugee camp.

Table A3. Spatiotemporal transition of LULC, Ukhiya-Teknaf, 2017–2018 (in km2), here, Veg. = vegetative, Sett. = Settlement,
Wat. = Water-body, Agri. = Agricultural land, Aqua. = Aquaculture land, Arab. = Arable land, Tidal. = Tidal Mudflat, Sand.
= Sandy area, Bare. = Bare land.

2017

LULC Classes Veg. Sett. Wat. Agri. Aqua. Arab. Tidal. Sand. Bare. C.T

2018

Veg. 344.06 0.41 1.09 3.16 4.33 3.74 1.15 0.02 0.06 358.02
Sett. 3.91 2.87 0.04 0.06 2.77 1.61 0.42 0.79 0.32 12.78
Wat. 0.69 0.02 10.86 0 0.45 0.02 3.67 0.04 0 15.74
Agri. 9.07 0.14 0.03 7.63 0.1 3.17 0 0 0.26 20.4
Aqua. 7.82 2.22 1.12 0.04 38.91 2.69 5.78 0.15 0.09 58.83
Arab. 21.49 6.35 0.05 1.12 7.51 35.34 0.1 0.46 2.07 74.5
Tidal. 0.53 0.29 2.27 0 3.25 0.06 12.81 0.32 0 19.54
Sand. 0.36 0.77 0.19 0.01 0.3 0.11 2.44 6.55 0.03 10.77
Bare. 3.68 0.14 0 0.17 0.38 1.05 0.03 0.03 0.94 6.43

C.T 391.61 13.21 15.65 12.2 58.01 47.79 26.38 8.38 3.78 0
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Table A4. Spatiotemporal transition of LULC, Ukhiya-Teknaf, 2018–2019 (in km2), here, Veg. = vegetative, Sett. = Settlement,
Wat. = Water-body, Agri. = Agricultural land, Aqua. = Aquaculture land, Arab. = Arable land, Tidal. = Tidal Mudflat, Sand.
= Sandy area, Bare. = Bare land.

2018

LULC Class Veg. Sett. Wat. Agri. Aqua. Arab. Tidal. Sand. Bare. C.T

2019

Veg. 317.83 0.23 0.54 7.11 5.74 4.58 0.67 0.04 0.03 336.79
Sett. 2.31 7.71 0.07 0.07 5.43 8.44 0.9 1.18 1.47 27.57
Wat. 0.64 0.05 11.02 0 0.88 0.07 1.6 0.15 0 14.4
Agri. 5.78 0.04 0 6.85 0.04 1.78 0 0 0.02 14.51
Aqua. 1.36 0.86 0.04 0.04 25.02 2.23 0.82 0.02 0.05 30.43
Arab. 26.95 2.04 0.01 6 6.09 53.57 0.16 0.08 1.56 96.44
Tidal. 2.22 0.55 3.76 0 15.13 0.76 12.36 0.39 0 35.17
Sand. 0.1 0.81 0.29 0 0.44 0.49 3.03 8.91 0.08 14.15
Bare. 0.85 0.47 0 0.32 0.07 2.58 0 0.02 3.21 7.53

C.T 358.02 12.78 15.74 20.4 58.83 74.5 19.54 10.77 6.43 0

Table A5. Spatiotemporal transition of LULC, Ukhiya-Teknaf, 2017–2019 (in km2), here, Veg. = vegetative, Sett. = Settlement,
Wat. = Water-body, Agri. = Agricultural land, Aqua. = Aquaculture land, Arab. = Arable land, Tidal. = Tidal Mudflat, Sand.
= Sandy area, Bare. = Bare land.

2017

LULC Class Veg. Sett. Wat. Agri. Aqua. Arab. Tidal. Sand. Bare. C.T

2019

Veg. 322.51 0.4 0.66 4.39 5.57 2.44 0.7 0.04 0.09 336.79
Sett. 8.73 4.67 0.07 0.12 7.96 3.65 0.82 1.05 0.51 27.57
Wat. 0.41 0.03 10.16 0 0.54 0 3.16 0.1 0 14.4
Agri. 7.01 0.12 0.02 5.14 0.07 1.96 0 0 0.18 14.51
Aqua. 2.51 1.39 0.14 0.03 23.53 1.82 0.83 0.1 0.07 30.43
Arab. 43.03 4.97 0.07 2.31 7.44 36.23 0.1 0.2 2.08 96.44
Tidal. 2.1 0.6 4 0 11.88 0.33 16.09 0.16 0.01 35.17
Sand. 0.34 0.85 0.52 0.01 0.78 0.23 4.67 6.69 0.05 14.15
Bare. 4.98 0.18 0 0.19 0.23 1.13 0 0.03 0.79 7.53

C.T. 391.61 13.21 15.65 12.2 58.01 47.79 26.38 8.38 3.78 0

References
1. ISCG. Monitoring Report: Rohingya Refugee Crisis Response Plan. no. October, 2017; pp. 1–48. Available online: https:

//reliefweb.int/report/bangladesh/2017-monitoring-report-rohingya-refugee-crisis-response-plan (accessed on 4 April 2019).
2. Hassan, M.; Smith, A.; Walker, K.; Rahman, M.; Southworth, J. Rohingya Refugee Crisis and Forest Cover Change in Teknaf,

Bangladesh. Remote Sens. 2018, 10, 689. [CrossRef]
3. World Health Organization. Rohingya Refugee Crisis in Cox’s Bazar, Bangladesh: Health Sector Bulletin. 2018. Available online:

http://www.searo.who.int/bangladesh/healthsectorcxbbanbulletinno3.pdf (accessed on 6 April 2019).
4. Imtiaz, S. Ecological impact of Rohingya refugees on forest resources: Remote sensing analysis of vegetation cover change in

Teknaf Peninsula in Bangladesh. Ecocycles 2018, 4, 16–19. [CrossRef]
5. XCHANGE-FOUNDATION. ‘The Rohingya Amongst Us’: Bangladeshi Perspectives on the Rohingya Crisis Survey. 2018.

Available online: http://xchange.org/bangladeshi-perspectives-on-the-rohingya-crisis-survey/ (accessed on 3 April 2019).
6. UNHCR. ROHINGYA REFUGEE CRISIS Camp Settlement and Protection Profiling Cox’s Bazar, Bangladesh. 2018. Available

online: https://www.unocha.org/rohingya-refugee-crisis (accessed on 15 April 2019).
7. ISCG. Situation Report Rohingya Refugee Crisis. 2018. Available online: https://reliefweb.int/report/bangladesh/iscg-situation-

report-rohingya-refugee-crisis-cox-s-bazar-13-december-2018-0 (accessed on 13 December 2018).
8. UNICEF. Influx of Rohingya refugees in Bangladesh- Bangladesh Revised Response Plan October 2017. 2017. Available online:

https://reliefweb.int/report/bangladesh/unicef-bangladesh-revised-response-plan-rohingya-crisis-october-2017 (accessed on 5
April 2019).

9. International Organization for Migration. JRP for Rohingya Humanitarian Crisis. 2019. Available online: https://www.unocha.
org/sites/unocha/files/JRPforRohingyaHumanitarianCrisis2018.PDF (accessed on 1 May 2019).

10. UNHCR. Bangladesh Refugee Emergency Population Factsheet (as of 31 December 2018). 2018. Available online: https:
//reliefweb.int/sites/reliefweb.int/files/resources/67447.pdf (accessed on 20 April 2019).

https://reliefweb.int/report/bangladesh/2017-monitoring-report-rohingya-refugee-crisis-response-plan
https://reliefweb.int/report/bangladesh/2017-monitoring-report-rohingya-refugee-crisis-response-plan
http://doi.org/10.3390/rs10050689
http://www.searo.who.int/bangladesh/healthsectorcxbbanbulletinno3.pdf
http://doi.org/10.19040/ecocycles.v4i1.89
http://xchange.org/bangladeshi-perspectives-on-the-rohingya-crisis-survey/
https://www.unocha.org/rohingya-refugee-crisis
https://reliefweb.int/report/bangladesh/iscg-situation-report-rohingya-refugee-crisis-cox-s-bazar-13-december-2018-0
https://reliefweb.int/report/bangladesh/iscg-situation-report-rohingya-refugee-crisis-cox-s-bazar-13-december-2018-0
https://reliefweb.int/report/bangladesh/unicef-bangladesh-revised-response-plan-rohingya-crisis-october-2017
https://www.unocha.org/sites/unocha/files/JRP for Rohingya Humanitarian Crisis 2018.PDF
https://www.unocha.org/sites/unocha/files/JRP for Rohingya Humanitarian Crisis 2018.PDF
https://reliefweb.int/sites/reliefweb.int/files/resources/67447.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/67447.pdf


Remote Sens. 2021, 13, 4922 26 of 27

11. U. SaveTheChildrean, BRAC, WorldVision, WFP. Self-reliance Situation of Host Communities in Cox’s Bazar, 2018. Available
online: https://fscluster.org/sites/default/files/documents/self_reliance_assessment_report-final.pdf (accessed on 4 April
2019).

12. ALLARD K. LOWENSTEIN INTERNATIONAL HUMAN RIGHTS CLINIC, YALE LAW SCHOOL. Persecution of the Rohingya
Muslims: Is Genocide Occuring in Myanmar’s Rakhine State. Dec. 2015. Available online: https://www.fortifyrights.org/
downloads/Yale_Persecution_of_the_Rohingya_October_2015.pdf (accessed on 1 September 2021).

13. GFDRR. Rohingya Crisis 2017–2018 Draft Rapid Impact, Vulnerability and Needs Assessment. 2018. Available online: https:
//www.gfdrr.org/sites/default/files/Rohingyacrisisexecsummary-2.pdf (accessed on 7 April 2019).

14. Tani, M.; Rahman, A. Deforestation in the Teknaf Peninsula of Bangladesh; Springer: Singapore, 2018. [CrossRef]
15. Labib, S.M.; Hossain, N.; Patwary, S.H. Environmental Cost of Refugee Crisis: Case Study of Kutupalong Balukhali Rohingya

Camp Site A Remote Sensing Approach. In Proceedings of the 26th Annual GIScience Research UK (GISRUK 2018), Leicester,
UK, 17–20 April 2018. [CrossRef]

16. Pielke Sr, R.A.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F.; Goldewijk, K.K.; Nair, U.; Betts, R.; Fall, S.; et al.
Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev. Clim. Chang.
2011, 2, 828–850. [CrossRef]

17. Ali, M.Z.; Qazi, W.; Aslam, N. A comparative study of ALOS-2 PALSAR and landsat-8 imagery for land cover classification using
maximum likelihood classifier. Egypt. J. Remote Sens. Space Sci. 2018, 21, S29–S35. [CrossRef]

18. Ayele, G.T.; Tebeje, A.K.; Demissie, S.S.; A Belete, M.; A Jemberrie, M.; Teshome, W.M.; Mengistu, D.T.; Teshale, E.Z. Time Series
Land Cover Mapping and Change Detection Analysis Using Geographic Information System and Remote Sensing, Northern
Ethiopia. Air Soil Water Res. 2018, 11, 1–18. [CrossRef]

19. Rimal, B.; Zhang, L.; Stork, N.; Sloan, S.; Rijal, S. Urban expansion occurred at the expense of agricultural lands in the Tarai region
of Nepal from 1989 to 2016. Sustainability 2018, 10, 1341. [CrossRef]

20. Phiri, D.; Morgenroth, J.; Xu, C.; Hermosilla, T. Effects of pre-processing methods on Landsat OLI-8 land cover classification
using OBIA and random forests classifier. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 170–178. [CrossRef]

21. Pelizari, P.A.; Spröhnle, K.; Geiß, C.; Schoepfer, E.; Plank, S.; Taubenböck, H. Multi-sensor feature fusion for very high spatial
resolution built-up area extraction in temporary settlements. Remote Sens. Environ. 2018, 209, 793–807. [CrossRef]

22. Yoo, C.; Han, D.; Im, J.; Bechtel, B. Comparison between convolutional neural networks and random forest for local climate zone
classification in mega urban areas using Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 157, 155–170. [CrossRef]
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