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Abstract: With the development of information technology in modern military confrontation, spe-
cific emitter identification has become a hot and difficult topic in the field of electronic warfare, 
especially in the field of electronic reconnaissance. Specific emitter identification requires a histori-
cal reconnaissance signal as the matching template. In order to avoid being intercepted by enemy 
electronic reconnaissance equipment, modern radar often has multiple sets of working parameters, 
such as pulse width and signal bandwidth, which change when performing different tasks and 
training. At this time, the collected fingerprint features cannot fully match the fingerprint template 
in the radar database, making the traditional specific emitter identification algorithm ineffective. 
Therefore, when the working parameters of enemy radar change, that is, when there is no such 
variable working parameter signal template in our radar database, it is a bottleneck problem in the 
current electronic reconnaissance field to realize the specific emitter identification. In order to solve 
this problem, this paper proposes a network model based on metric learning. By learning deep fin-
gerprint features and learning a deep nonlinear metric between different sample signals, the same 
individual sample signals under different working parameters can be associated. Even if there are 
no samples under a certain kind of working parameter signal, it can still be associated with the 
original individual through this network model, so as to achieve the purpose of specific emitter 
identification. As opposed to the situation in which the traditional specific emitter identification 
algorithm cannot be associated with the original individual when the signal samples of changing 
working parameters are not collected, the algorithm proposed in this paper can better solve the 
problem of changing working parameters and zero samples. 

Keywords: electronic warfare; specific emitter identification; metric learning; variable working pa-
rameters; zero samples 
 

1. Introduction 
With the rapid development of military technology in the world, weapon systems 

can emerge endlessly. However, the basic principle of “Know the enemy and know your-
self, and you can fight a hundred battles with no danger of defeat” remains unchanged. 
In the dynamic battlefield environment, how to associate the signal detected from the 
complex electromagnetic environment with the emitter, the platform, and the weapon 
system has important military significance. The demand and concept of radar emitter fin-
gerprint identification are generated. Radar emitter fingerprint identification began in the 
mid-1960s, which is generally called specific emitter identification (SEI) [1–3] in foreign 
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countries. It refers to receiving electromagnetic signals from unknown radar emitters, an-
alyzing their individual characteristics, and determining the technical level of radar, so as 
to uniquely identify individual radar emitters, complete an accurate threat judgment and 
identification of its carrying platform, and provide intelligence and support for threat 
analysis, identification, and warning of electronic intelligence reconnaissance systems in 
a complex environment. 

Modern radar often has multiple sets of working parameters. When performing dif-
ferent tasks and training, different working parameters are used, so that we cannot easily 
establish a complete radar database through electronic intelligence reconnaissance. En-
emy radar emitters will not only hide among a group of radar emitters of the same type 
or radar emitters working in the same modulation mode, but also change the working 
parameters of some transmitting channels, such as center frequency, pulse width, and sig-
nal bandwidth, to resist our electronic intelligence reconnaissance. Many scholars have 
made great progress in specific emitter identification under constant working parameter 
conditions. However, the research on specific emitter identification under variable work-
ing parameter conditions is still preliminary. The nonlinear characteristics of radar emit-
ters under variable working parameter conditions will change, and the collected finger-
print features cannot fully match the usual fingerprint features, the recognition accuracy 
will be greatly reduced or even impossible to recognize. Specific emitter identification un-
der variable working parameter conditions has been a major problem in the field of elec-
tronic reconnaissance for a long time. Therefore, the research on specific emitter identifi-
cation under variable working parameters is of great significance. 

In the field of specific emitter identification, conventional radar parameters were in-
itially used as identification features [1], and the most typical case is the use of a pulse 
description word (PDW = (carrier frequency (CF), pulse amplitude (PA), pulse width 
(PW), time of arrival (TOA), direction of arrival (DOA))) to identify specific radar equip-
ment. With the increasing complexity of the radar system, the waveform design becomes 
more and more complex, the working frequency band of radar is constantly expanding, 
and the working frequency bands of different radars overlap in a wider and wider range. 
Especially with the use of phased array radar and agile radar, the conventional radar pa-
rameters cannot provide enough effective information to meet the corresponding identi-
fication requirements [4]. The intra pulse characteristics of radar signals are increasingly 
used in SEI, such as envelope characteristics [5–10], instantaneous characteristics [11–15], 
and other basic parameter information, as well as time spectrum [16–20], high-order spec-
trum [21–25], Hilbert spectrum [26–29], and other transform domain information [30–49]. 
In addition, there are also studies to analyze and design fingerprint features for specific 
emitter identification based on the generation mechanism of fingerprint features [50–52]. 
However, the above algorithms have not discussed whether the fingerprint features will 
change and their changes when the radar working parameters change, but the radar work-
ing parameters change from time to time. Therefore, whether or not the fingerprint fea-
tures of the above algorithms are robust needs further experimental testing. In this paper, 
a specific emitter identification algorithm model based on metric learning is proposed. 
Although the nonlinear characteristics of emitter change when the radar working param-
eters change, the emitter system containing these nonlinear characteristics does not 
change, so the change rule of these nonlinear characteristics is still traceable. On the one 
hand, the recognition accuracy of the classification algorithm lies in the separability of the 
proposed features, and on the other hand, it lies in the measurement method used to eval-
uate the differences between samples. The proposed model takes metric learning as the 
point of penetration and establishes a deep nonlinear distance metric between different 
working parameter sample signals of the same individual, so that even for the sample 
signals with unknown working parameters, it can still be better associated with the origi-
nal individual than the traditional algorithm. The main contributions are summarized as 
follows: (1) It is proposed for the first time that when the radar working parameters 



Remote Sens. 2021, 13, 4919 3 of 19 
 

 

change, the features extracted by the traditional recognition algorithm do not have robust-
ness, resulting in a great reduction in the recognition accuracy. (2) Compared with the 
traditional algorithm, which cannot recognize the original individual under variable 
working parameter conditions, the proposed algorithm could achieve high recognition 
accuracy under the extreme condition that a certain kind of variable working parameter 
sample signal to be identified is not obtained, that is, under the condition of zero samples. 
(3) Moreover, the proposed model is trained end-to-end from scratch, with random ini-
tialization, no additional training set, and simpler (no RNNs) and faster (no fine-tuning) 
processing. 

This paper is arranged as follows: Section 2 gives a further detailed description of the 
problem to be studied in this article. Section 3 focuses on the specific structure and exper-
imental ideas of the proposed network model, reviews the data structure of variable work-
ing parameter sample signal dataset, and compares the proposed algorithm with several 
traditional typical recognition algorithms. Numerous experimental results are shown in 
this section. Section 4 discusses why the proposed model can solve the zero sample prob-
lem well. Finally, conclusions are drawn in Section 5. 

2. Problem Definitions 
Emitter fingerprint identification, also known as specific emitter identification, was 

first proposed by Northrop Grumman Company in the 1960s. It refers to the technology 
of extracting the information reflecting the target identity (known as “emitter finger-
print”) only through the external feature measurement of the signal, comparing the fin-
gerprint information with the radar database to determine the specific emitter individual 
transmitting a given signal. Thus, it is a technique to determine which specific emitter 
individual is transmitting a given signal. The non-ideal characteristics of the emitter de-
vice lead to the inevitable deviation of the modulation signal, which carries the uninten-
tional modulation containing hardware information, and there are slight differences be-
tween different emitter devices, so that unintentional modulation implies a certain “indi-
vidual information”. This individual difference of the emitter is inevitable and difficult to 
forge due to the non-ideal characteristics of hardware and the fact that it is attached to 
intentional modulation, that is, an “emitter fingerprint”, which is an inherent feature of 
emitter hardware. 

Emitter fingerprint recognition refers to extracting the characteristics representing 
the individual information of a specific emitter from the received time series signal for 
classification and recognition. In essence, it is a pattern recognition problem. Talbot et al. 
proposed a typical SEI system structure in 2003, as shown in Figure 1 [1]. The general 
processing flow is as follows: First, receive the signal through the radio frequency (RF)-
receiving subsystem. Then, through the signal processing system, the received time series 
signals are preprocessed by filtering, denoising, pulse detection, and so on, and the signal 
is demodulated according to the actual demand. Next, the fingerprint features are ex-
tracted to obtain the fine features including the individual information of the emitter. Fi-
nally, compared with the radar database, the specific emitter transmitting a given signal 
is determined by using the classification and recognition algorithm to realize the individ-
ual recognition of the emitter. 

 
Figure 1. Structural diagram of typical system for specific emitter identification. 
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At present, the existing research focuses on identifying individual radar emitters un-
der the condition of fixed working parameters and the research on specific emitter iden-
tification under variable working parameter conditions is still preliminary. The existing 
research does not discuss whether the fingerprint features will change and their changes 
when the radar working parameters change. Therefore, whether or not the fingerprint 
features of the existing research are robust needs further experimental testing. 

The typical working parameters of radar emitter mainly include center frequency, 
signal bandwidth, pulse width, transmission power, and modulation waveform. The cen-
ter frequency of the radar is mainly determined according to the characteristics of the tar-
get, radio wave propagation conditions, antenna size, performance of high-frequency de-
vices, measurement accuracy, and functions of the radar, etc. The signal bandwidth is 
mainly determined according to the ranging accuracy and distance resolution of the task. 
Pulse width refers to the duration of the transmitted pulse signal. It is represented by τ, 
which is generally between 0.05 and 20 us. It not only affects the detection capability of 
the radar, but also affects the range resolution. The pulse width of early radars is constant, 
and modern radars use signals with variable pulse widths for selection. When pulse com-
pression technology is used, the pulse width of the transmitted pulse can reach hundreds 
of microseconds, which correspondingly increases the bandwidth of the signal; the value 
of the transmit power affects the effective power, and the larger the power, the longer the 
effective distance. Transmit power is divided into pulse power and average power. The 
output power of the radar during the pulse signal transmission is called the pulse power, 
and the average power refers to the average value of the transmitter output power in a 
period. The output power of the transmitter directly affects the power and anti-interfer-
ence ability of the radar. The generation of high frequency and high power is restricted by 
factors such as devices, power supply capacity, and efficiency. Generally, the pulse power 
of early warning radars is in the order of hundreds of kilowatts to megawatts, and fire-
power control radars are in the order of several kilowatts to hundreds of kilowatts. Early 
radar transmission signals used a single pulse waveform modulation method, and mod-
ern radars often use multiple modulation waveforms for different target detection re-
quirements.  

Among the five types of typical radar working parameters, this article focuses on 
how to identify unknown samples when the three types of working parameters—center 
frequency, signal bandwidth, and pulse width—are changed and their combination 
changes. Although we can obtain a large number of sample signals under constant pa-
rameter conditions and some sample signals whose working parameters have changed 
(such as the bandwidth is expanded by 10 MHz, 15 MHz, and 20 MHz), it is impossible 
for us to collect all sample signals within the possible range of changes in working param-
eters (such as the bandwidth is expanded by 8 MHz), which is exactly the problem to be 
solved in this article: how to identify when the working parameters are changed and when 
there is no such signal sample in the radar database. 

3. Methodology 
3.1. Dataset 

In order to provide basic conditions for theoretical analysis and practical verification 
for this research, it is necessary to repeatedly adjust the working parameters of different 
individual radar emitters to generate individual signals. Owing to the confidentiality to 
military systems, such complex individual signals are extremely difficult to obtain. There-
fore, this research adopts simulation methods for experimental analysis. The method pro-
posed in article [53] is selected here to establish a fingerprint-level radar emitter simula-
tion model. This model cannot only provide fingerprint-level individual signals, but also 
can flexibly adjust the modulation mode and working parameters, which can fully meets 
the experimental needs of this research.  
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SystemVue is a system-level electronic simulation software of Keysight Company, 
which mainly realizes system-level modeling and simulation in the electronic field, in-
cluding radar, communication, radio, and other fields. This software can realize digital, 
analog, or mixed domain, single-rate or multi-rate simulation system in the application of 
digital signal processing, communication equipment, and radio and control systems. It 
contains a variety of tool libraries, which is convenient for users to add a baseband, RF, 
physical layer, and other functional modules, and supports the theoretical analysis and 
simulation of analog circuits such as amplifiers, capacitors, and inductors. The software 
interface is friendly, and can be combined with C++, ADS, Xilinx, MATLAB, and other 
software to achieve simulation. In recent years, SystemVue has attracted more and more 
attention in the field of electronic simulation, especially in the field of radar communica-
tion. At present, the use of this software in the electronic field is mainly reflected in the 
communication system, whereas the construction and simulation of the radar system plat-
form is less. SystemVue is a system-level design and simulation software for baseband 
and RF advanced architecture development. It includes a variety of simulation techniques 
in the time-frequency domain and baseband radio frequency domain, and can realize all 
linear and nonlinear behavior-level modeling and simulation of baseband and radio fre-
quency systems. It mainly supports the simulation of the following spectrum types: (1) 
spectrum of signal source and carrier frequency; (2) intermodulation/harmonics: nonline-
arity caused by RF devices such as mixers, amplifiers, etc.; (3) broadband noise: caused by 
thermal noise of RF circuit; (4) phase noise: phase noise transmitted in RF system. These 
functions make it very suitable for nonlinear fingerprint-level radar simulation modeling.  

According to the working principle of the radar, the fingerprint-level radar system is 
designed and modeled based on the SystemVue simulation platform, as shown in the Fig-
ure 2. The upper part of the model is the signal source, and the lower part is the IF filter, 
IF amplifier, mixer, local oscillator, RF filter, and RF amplifier from left to right. 

 
Figure 2. Fingerprint-level radar system modeling. 

As described in Section 2, the non-ideal characteristics of the emitter device lead to 
the inevitable deviation of the modulation signal, which carries the unintentional modu-
lation containing hardware information, and there are slight differences between different 
emitter devices, so that unintentional modulation implies a certain “individual infor-
mation”. The non-ideal characteristics of radar emitters are mainly reflected in signal 
sources, mixers, and amplifiers. In this model, the simulation models of different radar 
emitter individuals are mainly realized by adjusting the design parameters of these three 
devices. Among them, the non-ideal characteristics of the signal source are mainly burrs, 
which are caused by phase truncation error and amplitude quantization error, as shown 
in Figures 3–5. These non-ideal characteristics can be simulated by adjusting the phase 
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truncation bits and amplitude quantization bits in the signal source. The mixer and am-
plifier are the core modules in the transmission channel. The mixer is responsible for mov-
ing the IF signal spectrum to the RF region, and the amplifier is responsible for amplifying 
the input RF signal. However, the nonlinear characteristic models of the two are con-
sistent, as shown in Figure 6. The non-ideal characteristics of mixers and amplifiers are 
mainly high-order harmonics and intermodulation distortion. These non-ideal character-
istics can be simulated by adjusting the 1 dB compression point, third-order truncation 
point, and second-order truncation point in the mixer and amplifier. 

 
Figure 3. Spurious phase truncation error in the signal source. 

 
Figure 4. Spurious amplitude quantization error without phase truncation in the signal source. 
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Figure 5. LFM signal spectrum considering both the phase truncation error and amplitude quanti-
zation error in the signal source. 

 
Figure 6. Non-ideal characteristic model of the mixer and amplifier. 

We simulated individual fingerprint-level signal datasets by adjusting design param-
eters such as amplitude quantization bits, phase truncation bits, second-order and third-
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order truncation points, and 1 dB compression points. Table 1 shows a set of the typical 
values of the main design parameters of the main components of a radar emitter that can 
characterize individual differences. On this basis, the constant working parameter and 
variable working parameter fingerprint-level datasets of individual signals are generated 
by adjusting the working parameters of center frequency, signal bandwidth, and pulse 
width. A total of C individual fingerprint-level signal datasets are thus generated. Each 
individual dataset is subdivided into a constant working parameter case and seven vari-
able working parameter cases: center frequency change, signal bandwidth change, pulse 
width change, and their combinations. Each variable working parameter dataset is subdi-
vided into W subsets according to the value of parameter change. Among them, the con-
stant working parameter dataset is used to simulate the sample signals of fixed working 
parameters frequently received in the radar database, one part of the variable working 
parameter dataset (V subsets) is used to simulate the sample signals of variable working 
parameters occasionally received in the radar database, and the other part (𝑈𝑈 subsets, 
where 𝑈𝑈 = 𝑊𝑊 − 𝑉𝑉) is used to simulate the sample signals under variable working param-
eter conditions that we have never received and need to identify. The dataset distribution 
architecture is shown in Figure 7, where the center frequency, pulse width, and signal 
bandwidth are represented by 𝑓𝑓, 𝜏𝜏, and 𝐵𝐵, respectively, and O represents constant work-
ing parameters. For example, ‘𝑓𝑓’ means that only the center frequency has changed, and 
‘𝑓𝑓 + 𝜏𝜏 + 𝐵𝐵’ means that the center frequency, pulse width, and signal bandwidth have all 
changed at the same time. Due to space constraints, not all subsets of variable working 
parameter datasets are drawn. Here, let us take the dataset with bandwidth change as an 
example, where 𝐵𝐵1 to 𝐵𝐵V represent V subset signals that have been received in the radar 
database, and 𝐵𝐵V+1 to 𝐵𝐵V+U represent 𝑈𝑈 subset signals that have never been received and 
need to be identified. 

 
Figure 7. The distribution architecture of the datasets. 

Table 1. A set of typical values of the main design parameters of the main components of a radar emitter. 

Components Main Design Parameters Typical Values 

Signal Source 

Phase truncation bits 12 
Amplitude quantization bits 10 

Integral nonlinearity 3 LSB 
Differential nonlinearity 0.5 LSB 

Mixer 

Suppression of the alternate output sideband −200 dB 
RF to output rejection −200 dB 
LO to output rejection −200 dB 

LO to RF isolation −200 dB 
RF to LO isolation −200 dB 
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Second-order truncation points 40 dBm 
Third-order truncation points 25 dBm 

Amplifier 
1 dB compression points 17 dBm 

Second-order truncation points 20 dBm 
Third-order truncation points 35 dBm 

Local Oscillator Phase noise [−85, −105, −110, −115, −135] 

In military applications, higher requirements are put forward on performance indi-
cators such as radar effective distance, resolution capability, and measurement accuracy. 
On the one hand, in order to improve the resolution and ranging accuracy, the signal is 
required to have a large bandwidth, and on the other hand, in order to improve the speed 
resolution and speed measurement accuracy, the signal is required to have a large time 
width. In addition, increasing the effective distance of the radar system requires the signal 
to have large energy. Under the condition that the peak power of the system’s transmitting 
equipment is limited, large signal energy can only be obtained by increasing the time 
width of the signal, which requires the signal to have large time width and bandwidth 
product. From the signal and system theory, it is known that the time bandwidth product 
of an ordinary signal is a constant, so it is impossible for a signal to have a large time width 
and bandwidth at the same time. In order to resolve this contradiction, people have made 
various attempts and explorations in an effort to get a breakthrough in the radar system. 
The emergence of pulse compression technology effectively solves the contradiction be-
tween the effective distance of the radar system and the range resolution. The linear fre-
quency modulation system is a kind of pulse compression technology. Its generation and 
processing are relatively easy, and the technology is relatively mature, and it has been 
widely used at present. In this research, the linear frequency modulation system is used 
as the modulation mode of the radar to generate fingerprint-level individual signals. More 
concretely, a total of five individual fingerprint-level signal datasets are generated. Each 
individual dataset is subdivided into constant working parameter case and seven variable 
working parameter cases: center frequency change, signal bandwidth change, pulse width 
change, and their combinations. Each variable working parameter dataset is subdivided 
into W subsets according to the value of parameter change, each subset has 1000 samples 
with a length of 1024 under different SNR conditions (10 dB, 20 dB, and 30 dB). 

3.2. Network Architecture 
Firstly, we divide the fingerprint-level signal datasets obtained from the above sim-

ulation models into three datasets: the training set, verification set, and testing set. Each 
set consists of two parts of the data. One part of the data is the constant working parameter 
dataset and the other part is the variable working parameter dataset, where each set has 
its own parameter value change space that is disjointed with the others (the training set 
occupies V1 subsets, and the verification set occupies the remaining 𝑉𝑉2 = 𝑉𝑉 − 𝑉𝑉1 sub-
sets.). Among them, the variable working parameter sample signals in the training set and 
verification set are used to simulate the various working parameter sample signals occa-
sionally collected in the radar database, while the testing set is used to simulate the vari-
able working parameter sample signals that are not available in the radar database and 
need to be identified. 

With the verification set only, we can, in principle, train a classifier to assign a class 
label 𝑦𝑦� to each sample 𝑥𝑥� in the testing set. However, due to the obvious differences be-
tween the fingerprint characteristics of variable working parameter sample signals with 
different change values, the performance of such a classifier is usually not satisfactory. 
Therefore, we aim to perform meta-learning on the training set, in order to extract trans-
ferrable knowledge that will allow us to perform better on the verification set, and thus 
classify the testing set more successfully. 
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In each training iteration, an episode is formed by randomly selecting K1-labeled 
samples from each of C classes of constant working parameter datasets in the training set 
as the sample set 𝑆𝑆 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑚𝑚 (𝑚𝑚 = 𝐾𝐾1 × 𝐶𝐶), and randomly selecting K2 samples from 
each of the V1 subsets of the C classes of variable working parameter datasets in the train-
ing set as the query set 𝑄𝑄 = ��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗��𝑗𝑗=1

𝑛𝑛 (𝑛𝑛 = 𝐾𝐾2 × 𝑉𝑉1 × 𝐶𝐶). This sample/query set split is 
designed to simulate the verification/testing set that will be encountered at test time. A 
model trained from the sample/query set can be fine-tuned further using the verification 
set, if desired. In this work we adopt such an episode-based training strategy. 

Our model consists of two modules: a Feature Extractor 𝑓𝑓𝜑𝜑 and a Relation Computer 
𝑔𝑔∅ , as illustrated in Figure 8. Sample 𝑥𝑥𝑗𝑗 in the query set 𝑄𝑄, and sample 𝑥𝑥𝑖𝑖 in the sample 
set 𝑆𝑆 are fed through the Feature Extractor 𝑓𝑓𝜑𝜑, which produces feature maps 𝑓𝑓𝜑𝜑(𝑥𝑥𝑖𝑖) and 
𝑓𝑓𝜑𝜑�𝑥𝑥𝑗𝑗� . The feature maps 𝑓𝑓𝜑𝜑(𝑥𝑥𝑖𝑖)  and 𝑓𝑓𝜑𝜑�𝑥𝑥𝑗𝑗�  are combined with operator 
𝐶𝐶 �𝑓𝑓𝜑𝜑(𝑥𝑥𝑖𝑖), 𝑓𝑓𝜑𝜑�𝑥𝑥𝑗𝑗��, where 𝐶𝐶(∙,∙) means to concatenate the feature maps in depth. 

 
Figure 8. Network architecture for a zero sample problem with one query example. 

The combined feature map of the sample and query are fed into the Relation Com-
puter 𝑔𝑔∅, which eventually produces a scalar in range of 0 to 1, representing the similarity 
between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗, which is called the relation score. Thus, for each query input 𝑥𝑥𝑗𝑗, we 
could generate C relation scores 𝑟𝑟𝑖𝑖,𝑗𝑗 between training sample set examples 𝑥𝑥𝑖𝑖.  

𝑟𝑟𝑖𝑖,𝑗𝑗 = 𝑔𝑔∅ �𝐶𝐶 �𝑓𝑓𝜑𝜑(𝑥𝑥𝑖𝑖), 𝑓𝑓𝜑𝜑�𝑥𝑥𝑗𝑗��� , 𝑖𝑖 = 1,2, … ,𝐶𝐶 (1) 

We use the mean square error (MSE) loss (Equation (2)) to train our model, regressing 
the relation score 𝑟𝑟𝑖𝑖,𝑗𝑗 to the ground truth: matched pairs have a similarity of 1 and the 
mismatched pairs have a similarity of 0. 

𝜑𝜑,∅ ← argmin
𝜑𝜑,∅

���𝑟𝑟𝑖𝑖,𝑗𝑗 − 1�𝑦𝑦𝑖𝑖 == 𝑦𝑦𝑗𝑗��
2

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

 (2) 

The network architecture details of Feature Extractor and Relation Computer are 
shown in Figure 9; more concretely, each convolutional block contains a 32-filter one-di-
mensional convolution whose size is 3, a batch normalization, and a ReLU nonlinearity 
layer, respectively. The first two blocks in Feature Extractor also contain a max-pooling 
layer whose size is 2, while the latter two do not. We do so because we need the output 
feature maps for further convolutional layers in the Relation Computer. The Relation 
Computer consists of two convolutional blocks and two fully connected layers. Each of 
the convolutional blocks is a one-dimensional convolution whose size is 3 with 32 filters 
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followed by batch normalization, ReLU nonlinearity, and max-pooling whose size is 2. 
The output size of last max pooling layer is 𝐻𝐻 = 32 × 64 = 2048. The two fully connected 
layers are eight- and one-dimensional layers, respectively. All fully connected layers are 
ReLU except the output layer, which is Sigmoid, in order to generate relation scores in a 
reasonable range of our network architecture. 

 
Figure 9. Network architecture details of Feature Extractor (b) and Relation Computer (c), which are composed of elements 
including convolutional blocks (a). 

3.3. Experiments 
Our model in all experiments uses Adam [54] with the initial learning rate 10−2, an-

nealed by half for every 10,000 episodes. The model is end-to-end trained from scratch 
with no additional dataset. We compare against various typical traditional algorithms for 
specific emitter identification as baselines to evaluate the excellent performance of our 
algorithm, including pulse envelope front [55], bispectral diagonal slice [56], Zero-Slice 
feature of ambiguity function [57], and inter pulse information parameters [58]. The fol-
lowing is a brief introduction of these four recognition algorithms. 

I. Recognition algorithm based on similarity of pulse envelope front. 
The algorithm steps are as follows: 
(a) Extracting pulse envelope by Hilbert transform; 
(b) Moving average filtering for aliasing noise; 
(c) Normalization of pulse envelope; 
(d) Extracting “standard” envelope waveform by means of averaging; 
(e) Identification by the nearest neighbor classification method. 
II. Recognition algorithm based on similarity of bispectral diagonal slice. 
The algorithm steps are as follows: 
(a) Segment and de-average the received signal; 
(b) Solve the third-order cumulative function of each signal; 
(c) Calculate the mean of the third-order cumulants of all signals; 
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(d) Fourier transform the results of the previous step to obtain the bispectral diago-
nal slice; 

(e) Identification by the nearest neighbor classification method. 
III. Recognition algorithm based on similarity of Zero-Slice feature of ambiguity func-

tion. 
The algorithm steps are as follows: 
(a) Segment and de-average the received signal; 
(b) Calculate the autocorrelation function of each signal; 
(c) Fourier transform the results of the previous step to obtain the ambiguity func-

tion; 
(d) Let the frequency offset be 0 to obtain the Zero-Slice feature of the ambiguity 

function; 
(e) Identification by the nearest neighbor classification method. 
IV. Recognition algorithm based on similarity of inter pulse information parameters. 
The following inter pulse information parameters are calculated and the nearest 

neighbor classification algorithm is used to identify the radar emitter individuals: 
(a) Rising time: the time of the pulse amplitude rising from 10% to 90%; 
(b) Falling time: the time of the pulse amplitude falling from 90% to 10%; 
(c) Pulse width: the time span between two nodes with a 50% pulse amplitude; 
(d) Rising angle: the angle between the time axis and the fitting line of the rising 

edge of the pulse; 
(e) Falling angle: the angle between the time axis and the fitting line of the falling 

edge of the pulse; 
(f) Frequency modulation angle: the angle between the regression line of the 

frequency waveform vector and the time axis. 
First, under constant working parameter conditions, we tested the recognition per-

formance of the above typical traditional fingerprint recognition algorithms. The experi-
mental results are shown in Table 2. 

Table 2. Accuracy of traditional algorithms under constant working parameter conditions. 

Changes in Working 
Parameters 

Signal-to-Noise Ratio Algorithm [55] Algorithm [56] Algorithm [57] Algorithm [58] 

constant 
30 dB 92.2% 89.9% 99.8% 100.0% 
20 dB 67.8% 67.4% 87.8% 90.1% 
10 dB 37.2% 37.0% 56.0% 35.0% 

It can be seen that the above traditional algorithms have good recognition accuracy 
under constant working parameter conditions, especially under high signal-to-noise ratio 
conditions (20 dB and above). Next, the recognition accuracy of traditional algorithms was 
tested under seven variable working parameter conditions as described in Section 3.1, and 
the experimental results are shown in Table 3, where the meaning of the symbol is the 
same as that in Figure 7. Comparing Tables 2 and 3, it can be seen that several traditional 
algorithms mentioned above have good recognition performance under constant working 
parameter conditions; however, because the nonlinear characteristics of the radar emitter 
change under the condition of the variable working parameter, the collected fingerprint 
features cannot fully match the usual fingerprint features, and the recognition accuracy 
rate is greatly reduced or even impossible to recognize the original individual. 
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Table 3. Accuracy of traditional algorithms under various working parameter conditions. 

Changes in Working 
Parameters 

Signal-to-Noise Ratio Algorithm [55] Algorithm [56] Algorithm [57] Algorithm [58] 

𝑓𝑓 
30 dB 88.2% 88.4% 100% 99.8% 
20 dB 61.0% 57.8% 91.2% 87.54% 
10 dB 37.8% 30.4% 57.6% 36.6% 

𝜏𝜏 
30 dB 46.2% 

Unrecognized Unrecognized Unrecognized 20 dB 32.2% 
10 dB 23.8% 

𝐵𝐵 
30 dB 

Unrecognized Unrecognized Unrecognized 
28.1% 

20 dB 26.0% 
10 dB 24.5% 

𝑓𝑓 + 𝜏𝜏 
30 dB 

Unrecognized 
21.2% 

Unrecognized Unrecognized 20 dB 27.6% 
10 dB 31.2% 

𝑓𝑓 + 𝐵𝐵 
30 dB 

Unrecognized Unrecognized Unrecognized 
20.1% 

20 dB 23.2% 
10 dB 24.6% 

𝜏𝜏 + 𝐵𝐵 
30 dB 22.3% 

Unrecognized Unrecognized 
20.4% 

20 dB 25.5% 23.2% 
10 dB 30.0% 26.9% 

𝑓𝑓 + 𝜏𝜏 + 𝐵𝐵 
30 dB 21.2%  

Unrecognized Unrecognized Unrecognized 20 dB 25.4% 
10 dB 29.8% 

The above traditional algorithms are specific emitter identification algorithms based 
on machine learning. Here, we build a convolutional neural network without the Relation 
Computer module for performance comparison, which we call CNN-without-RC, and as 
our model utilizes four convolutional blocks for the Feature Extractor module, we fol-
lowed the same architecture setting for fair comparison (see Figure 10). The four convolu-
tional blocks are exactly the same as the model we proposed, and the output size of last 
convolutional block is 𝐻𝐻 = 32 × 256 = 8192. The two fully connected layers are 128- and 
5-dimensional layers, respectively. All fully connected layers are ReLU, except the output 
layer, which is Softmax, in order to generate probability values belonging to each individ-
ual. 
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Figure 10. Network architecture details of the CNN-without-RC model. 

Firstly, we tested the recognition performance of this model under constant working 
parameters, and the recognition accuracy was 90.9%, 96.1%, and 98.2% at 10 dB, 20 dB, 
and 30 dB SNR, respectively, which proves the effectiveness of this model in identifying 
individual radar emitters under constant working parameters. Under the variable work-
ing parameters condition, it did not distinguish whether the input individual data is a 
variable working parameter signal. That is, the collected constant working parameter and 
variable working parameter signals were not distinguished, and they were uniformly 
marked as the signal of an individual to train this model. Then, we tested the accuracy of 
the model to classify the never seen variable working parameter signals. The results are 
shown in Table 4, where the meaning of the symbol is the same as that in Figure 7. 

Table 4. Accuracy of the CNN-without-RC model under various working parameter conditions. 

Signal-to-Noise Ratio 𝒇𝒇 𝝉𝝉 𝑩𝑩 𝒇𝒇 + 𝝉𝝉 𝒇𝒇 + 𝑩𝑩 𝝉𝝉 + 𝑩𝑩 𝒇𝒇 + 𝝉𝝉 + 𝑩𝑩 
10 dB 39.2% 33.5% 26.8% 36.2% 35.1% 31.3% 29.1% 
20 dB 49.6% 41.2% 30.0% 45.1% 45.9% 40.0% 28.4% 
30 dB 51.2% 43.3% 40.9% 48.4% 48.6% 43.5% 30.3% 

It can be seen from the above experimental results that, although the model based on 
the convolutional neural network has good recognition accuracy under the condition of 



Remote Sens. 2021, 13, 4919 15 of 19 
 

 

constant working parameters, its recognition accuracy is greatly reduced under the con-
dition of variable working parameters, mainly because the fingerprint features extracted 
by the model that can be used to identify different individuals change when the radar 
working parameters change, and the model has never seen such sample signals. Even in 
the case of a single change of center frequency, this model still cannot effectively identify 
variable working parameter individuals. The reason is that the features extracted by the 
model from known samples are not interpretable and have poor stability, while the fea-
tures extracted by the algorithm based on machine learning are interpretable. Therefore, 
it still has the ability to effectively identify variable working parameter individuals when 
there is a single change of the center frequency. The four traditional recognition algo-
rithms based on machine learning and the recognition algorithm based on convolutional 
neural network proved that it is very difficult to recognize individual signals when the 
radar working parameters change, and there are no such signal samples in the radar da-
tabase. 

Next, let us talk about how our model (we call it CNN-with-RC) deals with the zero 
sample problem. As described in Section 3.1, each individual dataset is subdivided into a 
constant working parameter case and seven various working parameter cases: center fre-
quency change, signal bandwidth change, pulse width change, and their combinations. 

Here, let us take the dataset with bandwidth change as an example; the dataset dis-
tribution architecture is shown in Figure 11, where 𝐵𝐵1 to 𝐵𝐵V represent V subset signals 
that have been received in the radar database, and 𝐵𝐵V+1 to 𝐵𝐵V+U represent 𝑈𝑈 subset sig-
nals that have never been received and need to be identified. 

 
Figure 11. The distribution architecture of training set, verification set, and testing set. 

In each training iteration, an episode is formed by randomly selecting K1-labeled 
samples from each of C classes of constant working parameter datasets in the training set 
as the sample set 𝑆𝑆 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑚𝑚 (𝑚𝑚 = 𝐾𝐾1 × 𝐶𝐶), and randomly selecting K2 samples from 
each of the V1 subsets of the C classes of variable working parameter datasets in the train-
ing set as the query set 𝑄𝑄 = ��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗��𝑗𝑗=1

𝑛𝑛 (𝑛𝑛 = 𝐾𝐾2 × 𝑉𝑉1 × 𝐶𝐶), where 𝐾𝐾1 = 𝐾𝐾2 × 𝑉𝑉1, in order 
to establish the learnable nonlinear distance metric between the constant working param-
eters and variable working parameters of the same individual from one-to-one training. 
This means, for example, that there are 𝐾𝐾1 × 𝐶𝐶 + 𝐾𝐾2 × 𝑉𝑉1 × 𝐶𝐶 images in one training ep-
isode/mini-batch for the experiments. Our model is end-to-end trained from scratch, with 
random initialization and no additional training set. 

Since we are dealing with the zero sample problem, that is, although the sample sig-
nals to be identified still belongs to a specific individual, its fingerprint characteristics 
change due to changes in its working parameters, and such sample signals have never 
been collected in the radar database, thus relying only on supervised learning can easily 
lead to the overfitting of established metrics in the training mode. Therefore, it is necessary 
to make the established metrics more transferable in verification mode. In each verifying 
iteration, an episode is also formed by randomly selecting 𝐾𝐾1′-labeled samples from each 
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of the C classes of constant working parameter datasets in the verification set as the sam-
ple set 𝑆𝑆 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑚𝑚 (𝑚𝑚 = 𝐾𝐾1′ × 𝐶𝐶), and randomly selecting 𝐾𝐾2 samples from each of 
the V2 subsets of the C classes of variable working parameter datasets in the verification 
set as the query set 𝑄𝑄 = ��𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗��𝑗𝑗=1

𝑛𝑛 (𝑛𝑛 = 𝐾𝐾2 × 𝑉𝑉2 × 𝐶𝐶), where 𝐾𝐾1′ = 𝐾𝐾2 × 𝑉𝑉2. The same 
as training mode, there are 𝐾𝐾1′ × 𝐶𝐶 + 𝐾𝐾2 × 𝑉𝑉2 × 𝐶𝐶 images in one verifying episode/mini-
batch for the experiments. The verification set is used for monitoring generalization per-
formance only. 

We computed classification accuracies on the above datasets by averaging over 1000 
randomly generated episodes from the testing set. The results are shown in Table 5, where 
the meaning of the symbol is the same as that in Figure 7. We achieved state-of-the-art 
performance under all experimental settings with higher averaged accuracies. 

Table 5. Accuracy of the CNN-with-RC model under various working parameter conditions. 

Signal-to-Noise Ratio 𝒇𝒇 𝝉𝝉 𝑩𝑩 𝒇𝒇 + 𝝉𝝉 𝒇𝒇 + 𝑩𝑩 𝝉𝝉 + 𝑩𝑩 𝒇𝒇 + 𝝉𝝉 + 𝑩𝑩 
10 dB 100.0% 77.6% 78.4% 72.8% 71.4% 92.2% 70.2% 
20 dB 100.0% 82.4% 92.4% 78.0% 80.5% 96.6% 73.6% 
30 dB 100.0% 96.2% 99.2% 83.4% 84.5% 99.8% 81.3% 

4. Discussion 
Why can the proposed model solve the zero sample problem well? Although the 

nonlinear characteristics of the emitter change when the radar working parameters 
change, the emitter system containing these nonlinear characteristics does not change, so 
the change rule of these nonlinear characteristics is still traceable. On the one hand, the 
recognition accuracy of the classification algorithm lies in the separability of the proposed 
features, and on the other hand, it lies in the measurement method used to evaluate the 
differences between samples. Traditional specific emitter identification algorithms use 
fixed pre-specified distance metrics, such as Euclidean or Cosine distance metrics, to per-
form classification, because the fingerprint features that can be used for identification 
change with the change of working parameters, but the metric used for measurement and 
evaluation does not change, and the recognition accuracy is greatly reduced. The pro-
posed model takes metric learning as the point of penetration and establishes a deep non-
linear distance metric between different working parameter sample signals of the same 
individual, so that even for the sample signals with unknown working parameters, it can 
still be better associated with the original individual than the traditional algorithm. In 
contrast to traditional algorithms’ fixed metric, our model can be seen as both learning 
deep fingerprint features and learning a deep nonlinear metric. These are mutually tuned 
end-to-end to support each other in this study. After all, this study deals with the problem 
of zero samples, relying only on supervised learning can easily lead to the overfitting of 
established metrics in the training mode. Therefore, on the one hand, it is necessary to 
verify whether the model is overfitted under the verification model, and on the other 
hand, it is necessary to avoid the excessive complexity of the network and prevent the 
model from overfitting in the training mode, resulting in the inability to learn a universal 
metric to identify new variable working parameter samples. Therefore, our model is com-
pletely composed of simple and fast feed forward CNNs. 

5. Conclusions 
It is proposed for the first time that when the radar working parameters change, the 

features extracted by the traditional specific emitter identification algorithm do not have 
robustness, resulting in a great reduction in the recognition accuracy. We propose a model 
to solve this zero sample problem in the variable working parameter scene of specific 
emitter identification. In contrast to traditional algorithms’ fixed metric, our model can 
better identify matching/mismatching pairs by deep learning a nonlinear similarity metric 
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jointly with the deep fingerprint features. This approach is very simple and produces 
state-of-the-art results. 
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