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Abstract: The traditional field-based measurements of carbon dioxide (pCO2) for inland waters are
a snapshot of the conditions on a particular site, which might not adequately represent the pCO2

variation of the entire lake. However, these field measurements can be used in the pCO2 remote
sensing modeling and verification. By focusing on inland waters (including lakes, reservoirs, rivers,
and streams), this paper reviews the temporal and spatial variability of pCO2 based on published data.
The results indicate the significant daily and seasonal variations in pCO2 in lakes. Rivers and streams
contain higher pCO2 than lakes and reservoirs in the same climatic zone, and tropical waters typically
exhibit higher pCO2 than temperate, boreal, and arctic waters. Due to the temporal and spatial
variations of pCO2, it can differ in different inland water types in the same space-time. The estimation
of CO2 fluxes in global inland waters showed large uncertainties with a range of 1.40–3.28 Pg C y−1.
This paper also reviews existing remote sensing models/algorithms used for estimating pCO2 in
sea and coastal waters and presents some perspectives and challenges of pCO2 estimation in inland
waters using remote sensing for future studies. To overcome the uncertainties of pCO2 and CO2

emissions from inland waters at the global scale, more reliable and universal pCO2 remote sensing
models/algorithms will be needed for mapping the long-term and large-scale pCO2 variations for
inland waters. The development of inverse models based on dissolved biogeochemical processes
and the machine learning algorithm based on measurement data might be more applicable over
longer periods and across larger spatial scales. In addition, it should be noted that the remote sensing-
retrieved pCO2/the CO2 concentration values are the instantaneous values at the satellite transit
time. A major technical challenge is in the methodology to transform the retrieved pCO2 values on
time scales from instant to days/months, which will need further investigations. Understanding the
interrelated control and influence processes closely related to pCO2 in the inland waters (including
the biological activities, physical mixing, a thermodynamic process, and the air–water gas exchange)
is the key to achieving remote sensing models/algorithms of pCO2 in inland waters. This review
should be useful for a general understanding of the role of inland waters in the global carbon cycle.

Keywords: pCO2; remote sensing; satellites; inland waters; CO2 flux

1. Introduction

Inland waters are an important component of the global carbon cycle. They function as
active pipes to transport and transform a large quantity of naturally and anthropogenically
derived carbon [1–4]. They serve as passive conduits from soil to sea and also divert
carbon to the atmosphere and sediment sink. Carbon exchange occurs through the vertical
interactions between inland waters and the atmosphere, often in the form of greenhouse
gases (GHGs). The globally averaged surface temperature (combining land and ocean)
has increased by approximately 1.0 ◦C (0.8–1.2 ◦C) above the pre-industrial levels [5].
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Rising emission of natural and anthropogenic GHGs is highly likely to be the dominant
cause of the observed warming since the mid-20th century [6]. Carbon dioxide (CO2)
in the atmosphere is the most important GHG because it can enhance the greenhouse
effect, with a contribution rate of 60%. A global CO2 emission survey on inland waters
indicated that 95% of the 6708 streams and rivers have a median partial pressure of
carbon dioxide (pCO2) greater than the atmospheric value, and 7939 lakes and reservoirs
are supersaturated [3]. The CO2 flux released by inland waters is of the same order of
magnitude as land–atmosphere and land–ocean net carbon exchanges. Hence, long-term
monitoring of pCO2 and CO2 emissions from inland waters is essential for quantifying and
understanding how inland waters contribute to the global carbon cycle [7–9].

The response of regional inland waters to global change has attracted the attention of
the international research community [6]. Over the past decade, most of the research efforts
have been on refining CO2 flux estimation at the regional and global scales [3,10–13]. Nev-
ertheless, the quantification of the pCO2 in inland waters is also important for accurately
estimating CO2 flux in the water–atmosphere interface and understanding the role of CO2
in inland waters in the Earth’s carbon budget. Some studies reported about the significant
spatial and temporal variations of the pCO2 in lakes and rivers [13–17] and the strong
influence of ambient environment and river discharge on the pCO2 of inland waters [18–20].
However, the current pCO2 data of inland waters remain uncertain due to the large discrep-
ancy of pCO2 in the global inland waters. Moreover, the variation in CO2 flux estimation
to the atmosphere stems not only from the limited spatiotemporal data availability, but
also from various methods in an un-unified pCO2 estimation approach [12,21,22]. The
common methods include the direct measurement of in situ pCO2 using an air-flushing
equilibrator connected to an infrared photoacoustic gas analyzer [23,24]; the underway
pCO2 system [25]; the underwater sensors, e.g., C-SenseTM, HydroCTM-CO2, and Franat-
ech CO2-sensor [25,26]; calculation of pCO2 based on in situ pH, total alkalinity, water
temperature, and salinity values of inland waters [27]; and estimation of pCO2 based on
the dissolved CO2 concentration in the water [28]. There is a lack of an effective and
generalized method to characterize the spatial and temporal dynamics of pCO2 in detail,
particularly in some regions with a large freshwater surface area and regions sensitive to
climate change [28,29]. According to climate model projections, extreme climatic events
(e.g., rainfall and flood) would increase in some regions [30,31]. Some studies showed
that intense rainfall events and floods could modify the water–atmosphere exchange of
CO2 [32–34]. It is necessary to develop a common method to estimate pCO2, which covers
long-term records and large spatial coverage, so that we could better illustrate the potential
impact of such events on pCO2 and accurately quantify CO2 flux and the role of inland
waters in the global carbon cycle. Over the past two decades, remote sensing of pCO2 in
the water environment has received much attention due to its unique advantages against
the traditional field-based technologies [35]. In addition, this method has the ability to
achieve the simultaneous observation and comparison of pCO2 values in different waters
and different times over the same location. The assessment of pCO2 variations based on
multi-source remote sensing data has contributed greatly to the accurate quantification of
CO2 flux in the atmosphere–water interface at high-spatiotemporal resolution in the ocean
and coastal waters [36–39], while a similar attempt has also been conducted in the inland
waters [11,13,40,41].

The statement is strengthened by the fact that inland waters function as important
elements in the global carbon balance despite the smaller overall size relative to the
terrestrial ecosystem [42–44]. In this paper, we aim to summarize and discuss the temporal
and spatial variability of pCO2 in inland waters, especially in different water types based on
data gathered by Aufdenkampe et al. (2011). We summarize the current state of CO2 fluxes
in inland waters and compare them in different water types and climatic zones. A key open
question is the low accuracy of long-term monitoring of pCO2 in inland waters, and the fact
that pCO2 in inland waters can vary with climate conditions and water types. It also varies
seasonally and interannually. Therefore, we analyzed the current pCO2 remote sensing
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method in marine and coastal waters at the global scale and put forward the challenges
and prospects of using remote sensing to estimate pCO2 in inland waters.

2. General Background and Motivation of pCO2 Remote Sensing
2.1. Spatio-Temporal Variability of pCO2 in Inland Waters

The process of CO2 exchange in the atmosphere–water system is regulated by the
climate and watershed characteristics; meanwhile, the estimation of CO2 evasion should
consider the daily variability of pCO2. At present, there are limited data that characterize
the connection between CO2 flux and the daily course and variation of pCO2 in inland
waters [16]. Improving the understanding of the daily variation of pCO2 is a critical step to
reduce uncertainties in CO2 flux estimations for inland waters. Significant daily variation in
pCO2 has been measured in University Lake, a shallow, subtropical, eutrophic lake located
in Louisiana, USA, with a consistently declining trend of pCO2 from early mornings to late
afternoons [15,16] (Figure 1). The daily variation in pCO2 was also observed in stratified
water bodies, with a strong relation to the diurnal cycles of metabolic activity [45], while
pCO2 in an unproductive lake in Northern Sweden was found to have low daily variation
during summer [46]. In the daytime, pCO2 dynamics are primarily driven by aquatic
metabolism in a eutrophic lake and are associated with the lake’s primary and secondary
production [16]. Elevated primary production during algal’s growing season in a eutrophic
lake can draw down CO2 levels in water. Previous studies showed that algal blooms can
reduce carbon emissions to the atmosphere, but algal decomposition could release a large
amount of CO2 [47–49]. High algae productivity can turn a lake from a net CO2 source to
a net CO2 sink to the atmosphere [50]. Furthermore, previous studies confirmed a close
correlation between daily changes of pCO2 and solar radiation, water temperature, and the
lake trophic status [15,16,45,46,51,52].

The pCO2 in inland waters often shows significant variability at the seasonal scale
[45,46,53]. Relative to other seasons, the surface pCO2 in summer is generally low due to the
strong photosynthesis of phytoplankton in lakes and reservoirs, which absorb CO2 in the
water column for primary production [54–57]. In addition, the ice-melt period is a critical
time window for CO2 emissions from boreal lakes [9,58,59], because the accumulated
CO2 sealed in ice and sub-ice water can be quickly released to the atmosphere during ice
melt. The growing interest in seasonal pCO2 estimation indicates the need to consider
the influence mechanism of pCO2 in different inland waters. In stratified reservoirs,
seasonal variability of pCO2 is related to the water temperature dynamics and thermal
stratification of the water column [45]. In an oligotrophic unproductive lake, seasonal
pCO2 variation could be driven by changing dissolved inorganic carbon and allochthonous
organic matter [29,46]. In rivers, pCO2 always shows a higher value during the rainy
season compared with the dry season [53], and the seasonal pCO2 variations are generally
controlled by flows and dissolved oxygen enrichment [53,60].

Figure 1. Daily pCO2 variations in different inland waters; the data were collected from the following
references: [15,16,45,61].
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Studies across the global inland waters demonstrated that nearly all freshwater bodies
are CO2 supersaturated compared to the atmosphere [62,63]. Measured or calculated
pCO2 values typically vary widely in the global inland waters. In general, according
to the statistical analysis of Aufdenkampe et al. (2011), the pCO2 in rivers and streams
is higher than those in lakes and reservoirs in the same climatic zone, and the pCO2 in
tropical waters is higher than those in temperate, boreal, and arctic waters (Figure 2).
From published literature, the pCO2 values of global lakes ranges from 17–65,250 µatm,
with a mean value of 1287 ± 41 µatm, and the pCO2 in Arctic lakes is significantly lower
than those in lakes of other climatic zones [20]. The pCO2 values in reservoirs ranges
from 5–10,000 µatm [27,64,65], and CO2 emissions in reservoirs are correlated to the built
age and latitude, with CO2 emission rates from the tropical Amazon region significantly
higher than other climatic zones [65,66]. In addition, reservoirs often exhibit higher mean
pCO2 than lakes in the same region [27,42,63]. The pCO2 in rivers and streams ranges
from 582 µatm to more than 12,000 µatm [44,49]. The riverine pCO2 at the global scale
demonstrates a decreasing trend from low to high latitudes [3,44,65], and a similar trend is
also well established with rivers’ and streams’ order and length in riverine networks [67].
Riverine pCO2 interacts with aqueous carbon and nutrients and can reach significantly
high levels when the level of nutrients in the water is high [61].

Figure 2. Graphical representation of pCO2 in different inland waters’ zones based on atmospheric
circulation; the data were collected from the following article: [65]. The values showed in the figure
are median values. The rivers’ class and streams’ class were calculated by Lehner and Doll’s (2004)
and Downing’s (2009) methods [68,69].

2.2. The Current State of CO2 Fluxes in Inland Waters

Inland waters are widely considered as significant sources of CO2 to the atmosphere
[7,42,63,70–72]. Most studies up-scaled the local or regional CO2 fluxes’ measurements
in inland waters to the globe by multiplying an average emission rate by the global area.
However, these calculations contained large uncertainties due to the change and inaccurate
estimation of global inland waters’ surface area and gas transfer rate. For example, the
global CO2 flux from inland waters estimated by Cole et al. (2007) was only 750 Tg y−1,
because the data sets used in that estimation merely covered about 5000 individual lakes
spanning across the globe, the largest reservoirs in the world (excluding the very small
reservoirs), more than 80 of the world’s largest rivers, and only the main channels of the
rivers. However, the global CO2 flux from inland waters estimated by Raymond et al.
(2013) reached 2100 Tg y−1. That estimation provided a total global surface area of inland
waters of 3,620,000 km2. They combined lakes and reservoirs with streams and rivers,
including lakes and reservoirs <3.16 km2 and the first-order streams. To date, the global
CO2 evasion from inland waters to the atmosphere ranges from 1.40–3.28 Pg C y−1 [3,42].
The contributions of inland water CO2 to atmosphere also vary with regions and water
types (Table 1). For example, the inland waters in India and China yielded average CO2
emissions of 22.0 Tg yr−1 [73] and 98 ± 19 Tg yr−1 [11], respectively. The total CO2
emitted by global saline lakes ranges from 110–150 Tg yr−1 [72], while that emitted by
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all German drinking water reservoirs is about 0.44 Tg y−1 [74] and that emitted by the
lakes and ponds of Florida is roughly 2.0 Tg y−1 [70]. Fluxes of greenhouse gases in boreal
reservoirs are usually 3–10 times higher than those in natural lakes at their maximum [42].
In addition, the global stream and rivers are also the hotspots of CO2 efflux [3] and they
make a nonnegligible contribution to CO2 flux from inland waters to the atmosphere that
does not correspond to their area proportion in the whole inland waters area. Globally,
conservative estimates imply that 26.7–64.4% of total CO2 emissions from inland waters
originate from rivers and streams (Figure 3). In the Amazon basin, CO2 evasion from
streams, rivers, and wetlands of the region could reach as high as 500 Tg y−1, and this
value was later revised upward due to CO2 supersaturation in some small headwater
streams [75,76]. In the 2010s, the amounts of CO2 evasion from streams and rivers in the
United States, China, and Africa were 97 ± 32 Tg C y−1 [77], 85.8 ± 19.4 Tg C y−1 [11],
and 270–370 Tg C yr−1 [78], respectively. In addition, some studies suggested that the
contribution of very small ponds (<0.001 km2) to inland water CO2 emissions could not be
ignored despite their small total surface area of the inland water [79], and some researchers
indicated the need of paying attention to the CO2 emissions from exposed river sediments
during drought period [80,81].

Table 1. The global and regional estimate of inland waters’ CO2 emission to atmosphere.

Region Water Type CO2 Emission Ref.

Global Inland waters 2100 Tg C y−1 [3]
Global Inland waters 3280 Tg y−1 [82]
Global Inland waters 750 Tg y−1 [1]
Global Inland waters 1400 Tg y−1 [42]
Global Streams and rivers 1800 ± 250 Tg y−1 [3]
Global Streams and rivers 560 Tg y−1 [65]
Global Streams and rivers 650 Tg y−1 [44]
Global Lakes and reservoirs 320 + 520, −260 Tg y−1 [3]

Global Lakes and
impoundments 810 Tg y−1 [42]

Global Lakes and
impoundments 245–527 Tg y−1 [21]

Global Lakes and reservoirs 640 Tg y−1 [65]
Global Lakes 530 Tg y−1 [72]
Global Saline lakes 110–150 Tg y−1 [72]
Global Reservoirs 280 Tg y−1 [1]
Global Reservoirs 273 Tg y−1 [62]

Global Hydroelectric
reservoirs 48 Tg y−1 [66]

Boreal and arctic region Inland waters 150 Tg yr−1 [65]
Boreal region Lakes 189 Tg yr−1 [13]

Boreal and arctic region Lakes and reservoirs 110 Tg yr−1 [65]
Africa Rivers 270–370 Tg yr−1 [78]

Amazon Reservoirs 8 Tg yr−1 [66]
Boreal region Reservoirs 6 [66]

Temperate Reservoirs 5 [66]
Tropical Reservoirs 37 [66]
Amazon The lower river 480 Tg yr−1 [83]

Amazon Streams, rivers, and
wetlands 500 Tg y−1 [75,83]
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Table 1. Cont.

Region Water Type CO2 Emission Ref.

Germany Drinking water
reservoirs 0.44 Tg y−1 [74]

United States Streams and rivers 97 ± 32 Tg y−1 [77]
Florida Lakes and ponds 2.0 Tg y−1 [70]
China Inland waters 66–136 Tg yr−1 [11]

China Hydroelectric
reservoirs 29.6 Tg y−1 [43]

China Streams and rivers 19.4 Tg yr−1 [11]
China Lakes and reservoirs 12.1 Tg yr−1 [11]
China Lakes and reservoirs 25.15 Tg yr−1 [12]
India Inland waters 22.0 Tg y−1 [73]

Figure 3. The proportions of inland water CO2 flux in different climatic zones; the data were
collected from the following article: [65]. The pie chart denotes the area proportions of different
inland waters type.

Furthermore, previous studies on long-term monitoring of the CO2 flux in inland
waters revealed that some lakes switched between acting as a CO2 source and sink [7–9].
This highlights that it is important to fully understand the mechanisms and influence
factors controlling CO2 evasion. The increase of CO2 flux in the atmosphere–lake sys-
tem is generally considered synchronous to the decrease in photosynthetic activity of
plankton [51]. CO2 supersaturation often exists in lakes when the respiration exceeds
photosynthesis in lakes [56,84]. Beyond that, the inputs of dissolved carbon from carbonate
weathering in lake and watershed should also be considered for the CO2 supersatura-
tion [20,63]. The lake’s size, trophic status, ice presence/absence, algal blooms, and salinity
all have important implications on CO2 emissions [21,71,72,85–91]. Algal blooms in some
lakes could reduce carbon emissions, while the algal-derived organic carbon during the
algae degradation process could increase the subsequent CO2 production [47,48,50,92].
Saline lakes could raise the total CO2 emissions to the atmosphere more than freshwater
lakes [72]. Eutrophication with the enhanced organic matter decay and biological activity
could increase lacustrine CO2 emissions [27,49,85]. Understanding the source of inland
water CO2, the influence of diel and seasonal pCO2 changes on CO2 outgassing estimation,
and the exchange mechanism of carbon between different ecosystems is important for the
accurate estimation of CO2 evasion in inland waters globally, which has a major impact on
the global carbon biogeochemical cycles.

3. Studies on Remote Sensing of pCO2

According to existing theoretical analysis and research results, pCO2 in water surface
cannot be directly derived from satellite radiance. It is mostly an indirect measurement
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that requires the estimation of other variables first. The remote sensing of pCO2 in water
surface requires some environmental variables related to the pCO2 controlling processes as
indicators (e.g., water surface temperature (T), water salinity (S), plankton concentration
(Chla), colored dissolved organic matter (CDOM), mixed layer depth). There is also some
directly remote sensing research of the dissolved CO2 concentration or pCO2 by developing
the estimation model based on satellite imagery-derived products. At present, while
remote sensing technology has been successfully applied for the estimation of pCO2 in
water surface, most of these studies focused on ocean and coastal waters.

3.1. Remote Sensing Estimating pCO2 in Marine and Coastal Waters

Research on remote sensing of pCO2 in sea and coastal waters has received much
attention in recent years. It is useful for the accurate description of the spatial-temporal
heterogeneity of sea-surface CO2 flux and for quantifying the ocean’s role in the global
carbon cycle [39,93,94]. Moderate-Resolution Imaging Spectroradiometer (MODIS) imagery
and MODIS-derived products are more commonly used in these pCO2 remote sensing
inversion processes [38,94–96]. Related studies using statistical approaches and machine
learning techniques have been conducted in many seas and coastal sites (Figure 4), e.g.,
the Gulf of Mexico [36,97,98], East China Sea [99,100], Caribbean Sea [94], Bering Sea [39],
and West Florida Shelf [93]. In general, the empirical algorithms (e.g., linear or multiple
regression relationships) and machine learning approaches can work reasonably well with
good pCO2 inversion results in the specified areas [36,38,98]. However, pCO2 in the open
ocean and coastal regions often exhibits a profound spatiotemporal heterogeneity and is
controlled by multiple factors. Due to incomprehension of pCO2 variability mechanisms,
these empirical algorithms can only function reliably for areas with available in situ pCO2
data. Thus, more complex semi-analysis algorithms, combined with the analysis of the
main mechanisms causing pCO2 variability, have been developed in different coastal
waters and seas, such as the first implementation of a mechanistic semi-analytic algorithm
(MeSAA) in the East China Sea [39,97,100]. A satellite-based semi-mechanistic model was
developed for the river-dominated Louisiana Continental Shelf [101], while a nonlinear
semi-empirical model with the self-organizing map (SOM) was implemented in the Pacific
coast of central North America [102]. Nevertheless, the existing semi-analytical algorithms
also have limited applicability in different regions, primarily because of the difficulty
in parameterizing and standardizing the physicochemical and biological influence on
pCO2 in sea and coastal waters. In the process of constructing the pCO2 remote sensing
algorithm/model, it is important to choose and develop accurate quantitative expressions
relating satellite-derived parameters based on controlling mechanistic analysis, which can
assist to better implement remote sensing of pCO2 in the similar oceanic conditions.

According to a survey of literature, the net sea–air CO2 flux of the global ocean is
approximately 1.4 Pg y−1 [103], and this value is subjected to large uncertainty. The air–
sea CO2 fluxes are different depending on the latitudinal and ecosystem diversity of the
coastal ocean (particularly near-shore systems). The physical-biogeochemical distinction
(including ocean-dominated margin and river-dominated ocean margin) has significant
influence on the sources’/sinks’ role of coastal waters [104]. In addition, the marginal seas
at high and temperate latitudes often act as sinks of atmospheric CO2; at subtropical and
tropical regions, the marginal seas in these two climatic zones act as sources of atmospheric
CO2 [105]. When integrating CO2 fluxes in the coastal ocean at the global scale, the diversity,
latitudes, and seasonal biological effect on ecosystems should be fully considered.
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Figure 4. Locations of published works on remote sensing of the surface pCO2 in sea and coastal waters.

3.2. Remote Sensing of pCO2 and CO2 Fluxes for Inland Waters

Typically, inland waters are characterized by the supersaturated, dissolved CO2 con-
centrations. However, there are huge differences in optical properties, physicochemical
environments, trophic status, and circulation of materials between inland waters and
ocean/coastal waters [11,13,40,41]. Some effective remote sensing algorithms and models
for pCO2 in ocean/coastal waters cannot be used directly for that in inland waters. Con-
sidering the influencing factors and mechanisms of surface pCO2 in inland waters, some
remote sensing algorithms for pCO2 in inland waters have been developed based on the
relationship between pCO2 and the retrieved water biogeochemical and optical parameters,
e.g., chromophoric dissolved organic matter (CDOM) optical property, algal productivity,
and water surface temperature [41]. Earlier studies demonstrated that the temporal and
spatial distributions of pCO2 in inland waters often exhibited high heterogeneity, which
resulted in a large uncertainty in lake CO2 flux calculations. Satellite observations of pCO2
in inland waters could achieve a relatively high frequency and continuous, large-scale, and
long-term data compared to field surveys. There are growing studies in this area in recent
years despite a small number of published works. Combining with a high-resolution (25-m
resolution), stream network map based on remote sensing, a Random Forest model was
applied to predict the stream pCO2 with an average of 1134 µatm (range: 154–8174 µatm)
in Denmark, Sweden, and Finland [106]. Estimations of inland waters’ CO2 emissions have
been realized in relation to terrestrial net primary production, which can be obtained from
a global data set based on remote sensing, such as in a temperate stream network [107]
and in boreal lakes [13]. More recently, optical indicators generated from satellite-derived
variables have been utilized to estimate pCO2 indirectly in some rivers and lakes based
on the strong relationship between them, such as CDOM optical properties used in the
Lower Amazon River [31] and a turbidity index used in the Swedish lakes Mälaren and
Tämnaren [30]. Nevertheless, the direct application of the long-term satellite products
to estimate pCO2 or dissolve CO2 in inland waters is still in its infancy. The long-term
series mapping of dissolved CO2 pattern based on the remote sensing technology was
conducted in Lake Taihu, China, which developed a dissolved CO2 estimation model based
on MODIS-derived products. It was applied to perform the spatiotemporal distribution
analysis of dissolved CO2 concentrations from 2003 to 2018 [22]. MERIS products have also
been used to estimate lake pCO2 [40].

When using long-term remote sensing imagery to directly estimate the CO2 concen-
tration or pCO2 in waters or retrieving pCO2 in water from some relevant environmental
remote sensing indicators based on stable relationship [38,41,101], it should be noted that
the retrieved CO2 concentration or pCO2 values are the instantaneous value at the satellite
transit time. The previous studies showed some pronounced changes in the CO2 con-
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centration over a day and seasons [15,22,52]. To achieve the transformation of retrieved
pCO2 values from an instant to hours/days, some researchers have established the relation-
ship between instantaneous lake CO2 concentration/pCO2 at the regular satellite flyover
and the daily/weekly mean value [15,22,45] by using the satellite estimation results to
extrapolate the daily/weekly CO2 mean values. In addition, combined with the in situ
measured values of the diurnal pCO2 variation and seasonal pCO2 variation in a lake, we
could realize the conversion of the daily value to the seasonal mean value of the lake’s CO2
through cross verification between different sensors with different time resolutions. More
observations and additional efforts would be needed to achieve them in the further studies.

In fact, researchers have a full understanding of biogeochemical mechanism of CO2
generation and consumption in inland waters. Most of the determining and influence
factors of pCO2 or dissolved CO2 in different inland waters have been elucidated. Some of
these factors can be derived from satellite data, e.g., lake surface temperature, chlorophyll-a
concentration, latitude, dissolved organic carbon (DOC), and solar radiation absorption.
Therefore, in principle, it is possible to identify the spatiotemporal distribution of pCO2
in a specific lake or river using the satellite-derived variables and realize the long-term
estimations. However, the accuracy and universality of the prediction models should
be developed and evaluated as a priority in the large-scale estimation. Nevertheless, it
is known that the relationships in the prediction models can vary among different lakes
and lake regions, which is the current challenge of the pCO2 remote sensing in inland
waters [22,40,41,45,47,100,101,108,109]. Due to the great influence of outside source input,
the geochemical processes of inland lakes can show strong spatial heterogeneity, and the
influence factors of the pCO2 in surface water are often coupled together. This leads to
the unstable, non-universal relationship between pCO2 and its indicators among different
lakes and lake regions and the large uncertainties from such extrapolations. Consequently,
the development of the inverse models based on dissolved biogeochemical processes
and the machine learning algorithm based on lots of measurement data may have better
applicability over longer periods and across larger spatial scales.

4. Challenges and Limitations of pCO2 Remote Sensing Algorithms

As presented in this review, there are still many uncertainties about the pCO2 dynamics
of inland waters affected by human activities and climatic change. Due to the variations of
pCO2 in surface water, a significant challenge exists in the quantification of regional air–
water CO2 flux. Satellite remote sensing has been successfully implemented in the synoptic
estimation of oceanic surface pCO2, with its unique advantages of spatiotemporal resolution
and coverage. Moreover, recent studies have revealed the presence of four interrelated
processes closely related to water surface pCO2, i.e., biological activities, physical mixing,
a thermodynamic process, and the air–water gas exchange. In principle, understanding
these control processes of pCO2 in the inland waters and unearthing the environmental
variables linking to these processes, which can be derived from satellite data, are the
key to successfully achieving remote sensing of pCO2 in inland waters. In addition, a
longstanding challenge to upscaling based on environmental variables to remote sensing
pCO2 at the larger scale is the limited availability of spatially explicit data sets on inland
water characteristics, such as the seasonal fluctuations of area and the ephemeral and
intermittent water occurrence.

Some tentative studies have used remote sensing data to estimate pCO2 or CO2 flux
in inland waters [22,40]. These studies enabled high-resolution mapping of the whole-lake
pCO2 compared to field surveys. The sensors used in the current studies (Landsat, Sentinel-
2, MODIS, and MERIS) have provided either high spatiotemporal coverage or sufficient
radiometric sensitivity, which can assist reliable estimations of pCO2 or CO2 flux in single
specific water [80,110,111]. For inland waters (except the optical indicators of surface water
used indirectly to estimate pCO2), direct satellite estimation of pCO2 or dissolved CO2
concentrations are required to construct a spatiotemporal map of pCO2. Additional works
will be needed to develop more comprehensive pCO2 remote algorithms/models in inland
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waters to improve the long-term and large-scale reliability and universality of models,
particularly for inaccessible and remote sites. Considering the working conditions and the
validity of remote sensing models, further model evaluation will be needed in other types
of lakes or rivers to make it more general than for the particular water bodies for which
it was developed. The remote sensing model sensitivity evaluation and model deviation
caused by the input variables should be evaluated before model utilization. Furthermore,
some typical challenges caused by clouds or algal blooms in satellite images can also reduce
model accuracy and increase the uncertainty of pCO2 estimations.

5. Conclusions

This paper reviewed the temporal and spatial variability of pCO2 in inland waters
(including lakes, reservoirs, rivers, and streams). Existing analyses indicated significant
daily variation in pCO2 in lakes, with a consistently declining trend of pCO2 from early
morning to late afternoon. Meanwhile, pCO2 values in inland waters also exhibit seasonal
variation at a global scale, and the ice-melt period is a critical time window for CO2
emission from boreal lakes. Overall, tropical waters typically experience higher pCO2 than
temperate, boreal, and arctic waters, while rivers and streams demonstrate higher pCO2
than in lakes and reservoirs. While rivers and streams occupy a smaller proportion in
global inland waters’ area, their CO2 flux contributions to atmosphere are not less than
those from the lakes and reservoirs. This review also summarized previous investigations
on remote sensing of pCO2 in sea and coastal waters, which is essential to the accurate
description of the spatial-temporal heterogeneity of sea-surface CO2 flux. Given that
the pCO2 in sea surface cannot be directly derived from satellite radiance, the remote
sensing models of sea surface pCO2 often employ the environmental variables related to
the pCO2 controlling processes as the indicators. The pCO2 in inland waters is driven by
multiple complex factors and mechanisms (e.g., watershed environment, human activities
interference, and water quality factors), which are completely different from those in oceans.
Despite the studies on the satellite observations of pCO2 in inland waters increasing rapidly
in recent years, only a handful of them have been published. The optical indicators of
water (e.g., CDOM optical properties and turbidity index) have been adopted to estimate
pCO2 indirectly in some inland waters. Future research on direct application of long-
term satellite products to estimate pCO2 in inland waters will be needed for mapping
the long-term and large-scale pCO2 distribution patterns. Reliable and generalized pCO2
remote sensing models/algorithms in inland waters will need to be developed in future
studies. In addition, how to achieve the transformation of retrieved instantaneous pCO2
values to days/months remains a major technical challenge, which is crucial to the accurate
estimation of global CO2 flux from inland waters based on remote sensing technology.
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