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Introduction

This document provides descriptions of the image processing algorithms used in the
associated manuscript to orthorectify Long Wave Infrared (LWIR), Middle Infrared (MIR)
and visible (VIS) handheld helicopter-borne imagery collected during a prescribed burn
campaign conducted in savannah type fuel in Kruger National Park in South Africa.

S1. Orthorectification Using Background Image: Algorithms 1
S1.1. Theoretical Basis and Assumption:

This methodology is based on two algorithms: orthorectification with input from a
Digital Elevation Model (DEM) and GCPs, and image alignment (i.e., image registration)
that computes warping transformation on template image. The latter is at the core of the
proposed methodology. It corrects for camera motion, allowing for displacement to be
extracted from the image time series.

The limitation of this methodology is that parallax effects caused by the topography or
objects in the scene (e.g., trees) need to remain negligible, so that we can neglect computing
stereo-rectification, and only consider alignment by projective transformation. This implies
that several constraints need to be imposed on the experimental setup. In the scenarios
of our experiment, the higher the camera elevation, the lower the parallax effects would
be. However, with increasing hovering altitude, salient features would be less resolved,
making image registration less efficient. There is, therefore, a trade-off to reach between
parallax effects and feature detection. In that sense, we impose the camera line of sight to
remain near a mean direction. In other words, the hovering platform is not allowed to spin
around the scene. This constraint forces features in the scene to keep the same aspects on
the images. In addition to help image registration, images are required to include some
background areas, i.e. part of the background scene (as opposed to the fire scene) which is
outside the perimeter of the selected plot to be burned. This increases overlap between
consecutive images and provides more trustable features (not altered by the fire) that can
be tracked over longer time intervals, therefore facilitating alignment with images older
than the previous image. A last constraint comes from helicopter operation, for which
a lower altitude is better. As air get thinner with altitude, it becomes more difficult to
hover, the rotor needs to provide more lift, therefore requiring more power from the engine.
This results in (i) increasing gas consumption hence reducing flight time duration, and (ii)
engine overheating due to limited airflow during hovering flight mode.

To respect those constraints and in accord with the dimensions of the savanna plots
available in KNP (characteristic length of 300 m, see Table 1 in main document), we found
for plots smaller than 8 ha that a hovering altitude of around 600 m provided a good
balance between feature detection (e.g. bushes, tree), plot size (field of view including the
background area around the plot), and helicopter requirement (hovering time much longer
than the fire duration).

To simplify further the approach, we assume (a) a flat terrain, and (b) camera calibra-
tion based on pinhole models. The former is justified for the KNP14 data set by the low
standard deviation of the DEM departure to respective equivalent flat surface model (see
Table 1 in main document). The latter assumes that both LWIR and VIS cameras have good
enough optics to be modeled at first order with pinhole model. [1] propose a methodology
to calibrate a camera according to the pinhole model with lens distortion correction which
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is usually the major limitation of such model. These two assumptions have the advantages
of making the computation of orthorectification and image alignment equivalent (Irec

0 and
I0 are two planar representations of the same surface), and simpler, as two images of the
same planar surface can be related by a homography matrix H [2]. If Im

p is the image
Ip warped on the Im projection, and Xp is the pixel coordinate on Ip, the projected pixel
coordinates Xm

p are expressed with a linear transformation

λXm
p = Hp

mXp, (S1)

where Hp
m is a 3 × 3 matrix, the pixel coordinates are express in homogeneous space

Xp = (i, j, 1), and λ is a scaling factor. In the following, a simplified notation

Im
p w Hp

m Ip, (S2)

is used for the warping transformation of Ip on the Im perspective. It computes Xm
p as in

Equation (S1) and runs a 2D linear interpolation on the Im frame.
Two alignment methods are used in our approach: feature- and area- based methods.
Feature-based alignment methods are formed from a detector that select features of

interest in the input image, a matching scheme that finds corresponding matches in the
template image and a solver that computes the homography matrix in Equation (S1). For
the two first steps, the pyramidal implementation of the Lucas-Kanade feature tracker
coupled with an optical flow estimation between images is used hereafter PyLkOpt [3]. It
is robust against the degree of the geometric deformation, while it may fail when the image
content is weakly-textured. PyLkOpt maximizes brightness constancy between a window
located around a feature, iterating over image resolution starting at coarse resolution to
gradually include image details in the process (a.k.a. the pyramid implementation). The
associated solver is the RANSAC method [4], selected for its capability to filter outliers in
matching pixels pairs. The specific implementation of PyLkOpt in Algorithms 1 is sketched
in Figure S1.

The second area-based method maximize the brightness constancy across the whole
image. Here, we used the Enhanced Correlation Coefficient (ECC) algorithm. Using the
estimation of Hp

m from PyLkOPt, ECC refines it to maximize the 2D correlation between
the images [5]. Considering two images Ip and Im, with mask Mp and Mm that mask
out undesirable pixels, the 2D correlation coefficient that controls image alignment is
defined by

ρECC(Ip, Im, Mp, Mm) = ∑
i∈Mp∩Mm

Ip
∧
(i)Im
∧

(i) (S3)

where i scans the intersection of both mask, and Î• = I•/
∥∥I•
∥∥ with I• the zeros mean cen-

tered vector of [I•(j), j ∈ M•]. We also introduce here the function ρnewVal
ECC that computes

the new value of ρECC associated with an homography transformation H applied to the
input image Ip as

ρnewVal
ECC (H, Ip, Im, Mp, Mm) = ρECC(Hp

m · Ip, Im, Hp
m ·Mp, Mm). (S4)

The strength of ECC is its objective function f (Hp
m)

f (Hp
m) = ρnewVal

ECC (Hp
m, Ip, Im, Mp, Mm) (S5)

which is approximate by a linear model making it time efficient [5]. However ECC needs a
good initial guess of Hp

m when the deformation is strong, to avoid being trapped in local
extrema.

The Implementation of ECC in Algorithms 1 is sketched in Figure S2.
It is based on fECC that is a pyramidal area-based alignment defined on the ECC

implementation of [5], see Figure S3.
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Figure S1. Flowchart representation of the feature-based alignment approach developed for
Algorithms 1. Variables and functions are defined in S1.1 and S1.2.

Figure S2. Pseudo code representation of the area-based alignment approach developed for
Algorithms 1. Variables are defined in S1.1 and S1.2. fECC is defined in Figure S3, while ρnewVal

ECC is
defined in Equation (S4).
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Figure S3. Pseudo code representation of fECC, a pyramidal area-based alignment algorithm imple-
mented over the Enhanced Correlation Coefficient (ECC) algorithm of [5]. The pyramidal approach
is restricted to 2D translation where at each resolution level a simple brute force scan is run over a
selected translation range, /ie function findTransformECC_bruteForce in the first two steps. Once
the best 2D translation is found, the ECC implementation of [5] (function findTransformECC_EP08 in
third step) is run. Variables are defined in S1.1 and S1.2.

S1.2. Algorithms 1 Implementation

The implementation of Algorithms 1 based on iterative image alignment with focus
on image background is sketched in Figure S4.

The first step consists in the manual orthorectification of the first image I0 that is
wrapped on a fixed grid centered on the plot with a spatial resolution that is set according
to the flight altitude, the sensor resolution, and the field of view of the optics to match
an estimate of the native image resolution. Here in our scenario, with a distance between
the camera and the plot center slightly higher than 600 m and using specs from the MIR
camera, a resolution of 1m is chosen, except for the Skukuza4 burn where a resolution of
50 cm is preferred as the plot is smaller and the helicopter is flying at lower altitude.

The implementation of our iterative orthorectification algorithm was developed to
work independently of the nature of the image, given that the background scene is seen by
the camera sensor. In that sense, the raw inputs ( BTLWIR for LWIR or RGB channels for
VIS) are converted to 8-bit image raster with histogram equalization [6] coupled with a low
pass filter that emphasizes background features for LWIR image (see step (2) in Figure S4 ;
BT < BTfire = 420 K, except for Skukuza4 BTfire = 370 K). At the same time, each image
raster Ip is coupled with a mask Mp that masks out (a) undesirable foreground object
(e.g. helicopter skid) and (b) hot fire pixel (BT < BTfire). The helicopter skid is masked
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using superpixel segmentation [7] and thresholding on gradient magnitude and BT for
LWIR, and on gradient direction and 8-bit pixel value for VIS.

Figure S4. Flowchart representation of Algorithms 1. Variables are defined in S1.1. Numbers in red
boxes refer to the algorithm steps discussed in S1.2. Image alignments set in step (5) are further
detailed in Figures S1 and S2.

Once Ip and Mp are generated, a reference image is then selected according to the the
evolution of ρECC time series (step (3) in Figure S4). If, on the last iteration, ρECC went
below a fixed threshold, ρ

Align
ECC , for the 4th consecutive time, then a new reference image,
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Im, is selected within the processed images that are older than a certain time ttail from the
current image time. This scheme is set to strengthen the stability of the iterative loop.

Step (4), compute the initial value of ρnewVal
ECC (Hp

m, Ip, Mp, Im, Mm + Pm) with no projec-
tion applied to Ip (Hp

m is initialized as the identity matrix). Ip alignment on Im perspective
is then computed in step (5). PyLkOpt is used first to locate matching features between
Ip and a stack of ntail warped images. Here, Mp is used to remove fire front pixels in
PyLkOpt matching, and using the RANSAC algorithm introduced above, a first guest of
the homography Hp

m is estimated. Then comes the area-based optimization (ECC) where
Hp

m is optimized against template images Iq selected within previously warped images
(see Figure S2 for more details). The new projection transformation is only accepted if
it improves ρECC, the 2D correlation of Ip and Im. At this level, the combination of Mp
and the plot mask P projected to the template image mask Mq are used to avoid local bias
in ECC optimization which has tendency to align close bright pixels together while in
presence of non perfectly matching images (e.g. due to fire activity). The plot mask P is not
used in PyLkOpt when tracking features, at this stage we rely on RANSAC to filter outliers
induced by the moving features (e.g. front, plume).

ρECC is regularly updated in step (5) to control the progress of the alignment. Two
thresholds are introduced: ρRef

ECC is used if an image can be used later as reference image,

and ρ
Align
ECC that tests if alignment is acceptable. The latter is used to speed up the feature

matching alignment (see Figure S1). Experience shows that having ρ
Align
ECC < ρRef

ECC does not
affect the performance of the algorithm, but can greatly improve its completion time.

Once Ip is aligned to the Im perspective, it can be warped on to the initial image
I0
p = Hm

0 · Hp
m · Ip and orthorectified Irec

p using H0
rec, see last two lines in Algorithms 1

and step (6) and (7) in Figure S4. To easily retrieve the projection transformation between
images, I0 perspective is used a reference, and only the homography matrix Hp

0 is saved.
The camera pose, which includes the camera position and orientation in the geograph-

ical system, is output at this time of the iterative loop as a diagnostic. For the sake of
energy conservation, LWIR images are converted to radiance before application of the
transformation Hmap

0 · H0
m · Hm

p that warp it on the fixed grid.
Several parameters were introduced above to control the mechanisms of the algorithm

(i.e. ttail, ntail, ρRef
ECC, ρ

Align
ECC ). A sensitivity analysis is proposed in Section 6.1.1 of the main

document to estimate them.

S2. LWIR Alignment Optimization based on the Cooling Area: Algorithms 2
S2.1. Implementation

The algorithm presented in this section is designed to optimize the orthorectification
transformation estimated in the previous section. Like Algorithms 1, it is designed with an
iterative loop (see Algorithms 2) that uses similarity between the current image and the
stack of the previous 10 images. It uses a combination of the feature (PyLkOpt) and area
(ECC) based alignment described in Figure S5.

The implementation of Algorithm 2 is sketched in Figure S6.
Like in Algorithms 1, a reference image Irec

m is used to compute the 2D correlation
coefficient ρECC that monitors the stability of the loop (step (1) in Figure S6). Im is updated
whenever the fire alteration of the scene becomes too important. Because the loop is
here iterating on already orthorectified images, the rule for updating Im is modified to
make it less aggressive: the new image Im is the image showing the best ρECC within
[Ip−2νtail , . . . , Ip−νtail ] when the moving average of ρECC over the last νtail images is 1%
lower than the correlation at the time of Im.
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Figure S5. Pseudo code representation of the function fwarp used in Algorithms 2 that combined
feature and area based alignment onto the same projection reference. Variables are defined in S2.1.
The function fECC is defined in Figure S3.

The main difference between Algorithms 1 and 2 is in the mask computation Mrec
p .

It is here performed in step (2) as the intersection of (a) the plot mask dilated to include
the road that formed the fire break around the plot and (b) the cooling area mask which is
formed by the pixels that have been visited by the fire at least a time tresi before the current
time tp of image Ip. This is easily computed from the Arrival Time Map which is updated
at the end of each iteration (step 6). Although the time tresi is equivalent to a residence time,
that should adapt to the local front ROS and front depth, we choose here to use a constant
value for the duration of the fire. This does not maximize the cooling area size, however
experience shows that a conservative value of tresi gives good enough improvement of the
alignment without having to deal with ROS and flame depth at this stage. Once Mp is
computed (note we remove the low pass temperature filter present in Algorithms 1), ρECC
is first calculated for Irec

p in step (3) using the formulation of Equation (S4) which yields to

ρECC = ρnewVal
ECC (Hp

adj, Irec
p , Irec

m , Mrec
p , Mrec

m ) (S6)

where Hp
adj = 1 for the initialization of step (3). Then ρECC is updated to control the

advancement of the alignment processes when Hp
adj is optimized in steps (4) and (5).

These two steps are built on the warping function fwarp defined in S2.1 which applies
PyLkOpt and ECC successively to align the image Irec

p to a given template image Irec
q .

Step (4) calls fwarp a single time using masked BT field from image Ip and template image
Ip−1. Step (5) calls fwarp mutiple times using locally normalized BT field from image Ip
and template images scanning a stack formed of the 10 previous images and the reference
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image Im. The local normalization filter is defined as an adaptative histogram equalization
applied to normalized BT clipped to the temperature range [300− 600 K] (see example
in Step (5) of Figure S6). It takes as an input parameter the window size lLN that defines
the size of the pixels window used in the calculation of the transformation function that
performs the local equalization. It enhances low contrast in the cooling area by spreading
out the most frequent intensity of the normalized clipped BT distribution. It is important
to apply this filter on the orthorectified image. In such cases, all pixels have the same
size which makes the adaptative equalization respond better to a temperature distribution
resulting from the smoldering structures. Once the adjustment of Irec

p is done, the new
orthorectified image is saved and the new state of the fire front is passed to the Arrival
Time Map that stored the time advancement of the front. Here are the focus is on the
cooling area, a simple threshold temperature (BTLWIR > 600 K) rule is set to determine
when the fire reaches a pixel. This choice is largely impacted by flame activity especially in
the LWIR spectral range, however experience shows that it gives acceptable cooling area
mask estimate when coupled with a conservative value of tresi.

Figure S6. Flowchart representation of Algorithms 2. Variables are defined in S2.1. Numbers in red
boxes refer to the algorithm steps discussed in S2.1. fwarp is defined in Figure S5. ρnewVal

ECC is defined
in Equation (S4).

S2.2. Parameter Calibration

See Table S1.
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Table S1: Parameter values used in Algorithms 2 for the orthorectification of LWIR images
for the 4 burns. Parameters are manually evaluated on a fire basis to match the particular
fire, e.g. average front depth, orthorectification resolution.

parameter Sk
uk

uz
a4

Sk
uk

uz
a6

Sh
ab

en
i1

Sh
ab

en
i3

Comments

Tthresh
Algo2 (K) 410 450 420 450 temperature threshold to flag fire pixels in Mp.

SSIMthresh
Algo2 (−) 0.45 0.6 0.45 0.5 threshold used in the computation of the steady

Mask Mp. Pixel with a mean SSIMprev over the
last 20 frames are disregarded when they are
below SSIMthresh

Algo2 . A lower value helps to keep a
larger mask.

tresi (s) 30 40 60 30 A residence time marking the depth of the fire
front. At time t of the images time series, pixels
with fire front arrival time larger than t − tresi

are removed from Mp.

lLN (px) 60 30 20 40 window size used in the local normalization fil-
ter ∇LN: bigger values help to highlight bigger
structure or minimize BT noise.

S3. MIR Orthorectification: Algorithms 3–Algorithms 4
S3.1. Algorithms 3 Implementation

Algorithms 3 is designed to align MIR imagery to available concurrent LWIR imagery
and used the LWIR orthorectification projection to warp the MIR imagery on the fixed
coordinate system grid. Its implementation is sketched in Figure S7.

The is the only algorithm among the four presented in this work that is not recursive.
The main loop scans the LWIR images generated with Algorithms 2 as they are available at
a lower frame rate than the MIR images. The first 2 steps of an iteration focus on selecting
the concurrent MIR image, applying geometrical camera calibration, and setting up a first
projective transformation based on the LWIR perspective using the homography matrix
derived from MIR and LWIR cameras relative location and orientation on the camera
mount. Step (3) computes for both LWIR and MIR the normalized gradient of the locally
normalized BT, i.e. the ∇LN filter introduced in Section 5.2 of the main document which
is designed to emphasize edge contour patterns. The window size lLN used in the local
normalization of ∇LN is the only parameter of Algorithms 3. The associated mask to
∇LN Ilwir and ∇LN Imir used to hide unwanted image area from the alignment are also set
in step (3). As MIR images only show fire pixels, to keep large areas in both images to
run this first alignment only unwanted foreground objects (i.e. helicopter skid showing
in the LWIR) are masked out. The aim of Algorithms 3 is to provide a good estimation
of the MIR/LWIR alignment, to compute a first estimate of MIR orthorectification that is
then later optimized in Algorithms 4 while focusing on the cooling area. Therefore, even if
the flame front is certainly looking different in near-synchronized MIR and LWIR images,
step (4) runs the pyramidal area-based alignment with fECC set with 3 levels (5, 2, and 1 m,
see fECC in Figure S3). This is assuming that the rear of the front would drive ECC core
optimization. The orthorectification of the MIR image is finally completed in step (5) using
the combination of the MIR/LWIR alignment and the LWIR orthorectification projection
from Algorithms 2.
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Figure S7. Flowchart representation of Algorithms 3. 00Hlwir
mir is the homography matrix projecting

MIR image on LWIR perspective from the pose difference on the camera mount. As cameras are
not time synchronized, it is only used as a first guess in step (2). ∇LN is the normalized gradient
of locally normalized brightness temperature defined in Section 5.2 of the main document. fECC is
defined in Figure S3. It is a pyramidal area-based alignment set around the ECC implementation
of [5].

S3.2. Algorithms 4 Implementation

Algorithms 4 aims to use information from the available orthorectified image of
Algorithms 3 to orthorectify the full MIR image time series. A flowchart of its implementa-
tion is sketched in Figure S8.
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Figure S8. Flowchart representation of Algorithms 4. The algorithm uses as input available orthorec-
tified MIR image from Algorithms 3, and is based on two nested loops. The outer loop runs FilterSSIM

MIR
(see Section S3.3) and the inner loop scans the unprocessed MIR images to run area-based alignment
(see fECC in Figure S3) between consecutive images. Outlier images flagged in the outer loop are
passed to the inner loop as unprocessed images.

The algorithm is design to couple outlier filtering and alignment in a recursive manner.
Two nested loops are present. The outer loop runs the image filter to flag poorly orthorec-
tified images, setting them to the unprocessed image stack (see step 1). The inner loop
aligns every unprocessed image to its nearest processed image (see step 2). At the end,
Algorithms 4 is able to orthorectify most of the MIR image time series, only missing in the
worst scenario (i.e. Shabeni3 burn) about 10% of the input raw images.

The image to image alignment is set using a pyramidal area-based alignment (see
fECC in Figure S3) that is applied to the filtered image ∇LN Ip and the nearest available
template image ∇LN Iq. fECC is called two times successively at each iteration of the inner
loop, once to align ∇LN I to ∇LN Iref, using the full image as in Algorithms 3 (empty mask
in fECC), and a second time to align it to the same image but with masks set to only keep the
cooling area. For this purpose, the masks M′p and M′q are defined (see Figure S8) with a fire
temperature threshold Tfire

Algo4 that removes fire pixels. Furthermore, M′q is complemented
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with the projection of the fire front delimitation at time tq that is captured from the arrival
time map computed in Algorithms 2 and projected on the template perspective. As it is
applied on raw images, Tfire

Algo4 is set according to the hovering altitude. Tfire
Algo4 = 700 K

for all burns except for Skukuza4 where Tfire
Algo4 = 650 K. Another lower temperature

threshold is also used in Algorithms 4 to control the added value of the second call of fECC.
Tcool

algo4 = 600K is set as a constant and used to define a new pair of masks (Mp and Mq, see
Figure S8) which allows a test of the robustness of alignment improvement.

S3.3. FilterSSIM
MIR

The time dependent metric (rlow
SSIM) used for the filtering is the ratio of the number

of pixel with low SSIMcentre
2D to the total number of pixel present in the cooling area mask

Mp of Section 5.2 of the main document. SSIMcentre
2D is defined for a pixel (i, j) as the 20%

percentile of SSIM(Iij
p , Iij

y ) with y ∈ [p− 5 : p + 5]. A Hampel filter is then used to flag
image outlier. It is based on a rolling median with a sliding window lHamp coupled with
a standard deviation set according to the median absolute deviation [8]. An image is
flagged as an outlier if rlow

SSIM differs from its local median by more than nHamp standard
deviation. The Filter FilterSSIM

MIR is made of a recursive loop that takes the full image time
series, computes rlow

SSIM, applies the Hampel filter and re-iterates with the new clean image
time series until no outliers are present. For all fires, we choose lHamp = 40 and nHamp = 3.
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