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Abstract: Canopy structure parameters (e.g., leaf area index (LAI)) are key variables of most climate
and ecology models. Currently, satellite-observed reflectances at a few viewing angles are often
directly used for vegetation structure parameter retrieval; therefore, the information content of
multi-angular observations that are sensitive to canopy structure in theory cannot be sufficiently
considered. In this study, we proposed a novel method to retrieve LAI based on modelled multi-
angular reflectances at sufficient sun-viewing geometries, by linking the PROSAIL model with a
kernel-driven Ross-Li bi-directional reflectance function (BRDF) model using the MODIS BRDF
parameter product. First, BRDF sensitivity to the PROSAIL input parameters was investigated to
reduce the insensitive parameters. Then, MODIS BRDF parameters were used to model sufficient
multi-angular reflectances. By comparing these reference MODIS reflectances with simulated PRO-
SAIL reflectances within the range of the sensitive input parameters in the same geometries, the
optimal vegetation parameters were determined by searching the minimum discrepancies between
them. In addition, a significantly linear relationship between the average leaf angle (ALA) and the
coefficient of the volumetric scattering kernel of the Ross-Li model in the near-infrared band was
built, which can narrow the search scope of the ALA and accelerate the retrieval. In the validation, the
proposed method attains a higher consistency (root mean square error (RMSE) = 1.13, bias = −0.19,
and relative RMSE (RRMSE) = 36.8%) with field-measured LAIs and 30-m LAI maps for crops than
that obtained with the MODIS LAI product. The results indicate the vegetation inversion potential
of sufficient multi-angular data and the ALA relationship, and this method presents promise for
large-scale LAI estimation.

Keywords: vegetation estimation; leaf area index (LAI); average leaf angle (ALA); bidirectional
reflectance; kernel-driven Ross-Li model

1. Introduction

Vegetation monitoring is critical for the development of adaptation strategies to
address the challenges caused by climate change and human activities in ecosystems, such
as global warming and precision farming [1]. In particular, satellite remote sensing has
provided an effective way to perform quick global investigations [2], where the vegetation
structure and biochemical parameters commonly considered in monitoring are derived
from physical canopy reflectance models. Among the vegetation parameters, the leaf area
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index (LAI) has attracted the interest of many researchers due to its easy measurement
method, and the LAI has remained a key biophysical variable required in most global
models of climate, ecosystem productivity, biogeochemistry, hydrology, and ecology [3].

Generally, satellite-observed reflectances at limited sun-viewing geometries are usually
directly employed for LAI retrieval in large regions. Observations retrieved from VEGETA-
TION/SPOT, PROBA-V, Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra
+ Aqua, and Visible Infrared Imaging Radiometer Suite (VIIRS)/Suomi National Polar-
orbiting Partnership (SNPP) have been applied to generate LAI products, including
GEOV2 [4], GLASS [5], GLOMAP [6], MODIS [7,8], PROBA-V [9], and VIIRS [10] products.
Reflectances in the red and near-infrared (NIR) bands are commonly adopted due to their
sensitivity to vegetation parameters, and observations in the shortwave infrared and blue
bands are applied in GEOV2 and PROBA-V, respectively. Neural network regression (e.g.,
GEOV2, GLASS, and PROBA-V) and look-up tables (e.g., MODIS and VIIRS LAI products)
between the directional reflectance and vegetation parameters are usually considered in
the estimation. In addition, the LAI has been retrieved from physical models such as the
PROSAIL model and Two-Layer Canopy Reflectance Model (ACRM) based on reflectance
observations with novel algorithms [11,12]. To perform a quick estimation, relationships
between the land cover-specific LAI and vegetation indices have been determined to derive
the LAI, such as the GLOMAP LAI product [6], as well as the backup algorithm of the
MODIS LAI product [8].

However, the vegetation parameter retrieval accuracy can be affected by satellite limita-
tions in capturing anisotropic reflectances in the sun-viewing hemisphere and random noise
in satellite observations, which are highly sensitive to the vegetation structure [13]. Well-
designed ground experiments have demonstrated that sufficient bi-directional reflectance
distribution function (BRDF) data at wide geometries, especially including hotspots, can
significantly improve the estimation accuracy of the LAI and chlorophyll a and b contents
(Cab) than observations at a few angles [14]. Nevertheless, satellite observations can usually
obtain data at limited viewing angles [15], which cannot meet the high demand for suffi-
cient BRDF information in vegetation parameter retrieval. In addition, previous studies
have indicated that random noise in observed multi-angular reflectances caused by cloud
cover and other reasons can affect both BRDF and albedo retrieval [16,17].

To address these limitations in satellite observations, the semi-empirical, linear kernel-
driven Ross-Li model [13,18] has been widely adopted to reconstruct BRDF data in the sun-
viewing hemisphere from limited observations [19], and these customized multi-angular
data can be further utilized in the retrieval of vegetation parameters. Reconstructed BRDF
data theoretically consider an overall reasonable variance in BRDF, and these data can
thus help smooth observation noise [13,18]. Based on the Ross-Li model, MODIS [20,21]
and POLDER [22,23] BRDF parameter products have been generated from limited satellite
observations, which have been widely applied for parameter estimation. For example,
the canopy albedo can be calculated as the integral of the bi-directional reflectance in the
sun-viewing hemisphere [20,21,24–28], and vegetation biophysical/structure parameters,
including the clumping index (CI) [29–34], canopy height [35–37], and fractional vegetation
cover (FVC) [38], have been retrieved from customized reflectance data at sensitive sun-
viewing geometries. In particular, a hotspot-revised version of the Ross-Li model [39,40]
was employed to retrieve the CI highly sensitive to both hotspot and darkspot reflectances
in a recent study [29], which indicates an excellent ability in hotspot reconstruction. In ad-
dition, reflectances directionally normalized to the illumination and an observation zenith
angle of 0 [13] were used to retrieve the EUMESAT Polar System (EPS, V1.0) LAI prod-
uct [41]. These successful applications support the good performance of the reconstructed
BRDF information in vegetation inversion.

Considering the good performance of the reconstructed sufficient BRDF information
in retrieving the vegetation parameters, this study aims to further apply them to improve
the estimation accuracy of the essential vegetation structure parameter LAI. Meanwhile,
the MODIS LAI product were used for cross comparisons, which are generated based on



Remote Sens. 2021, 13, 4911 3 of 24

satellite observations at a few angles [7,8]. To utilize sufficient anisotropy reflectances,
multiangle data with a good sampling distribution at 397 sun-viewing angles were mod-
elled by the well-known MODIS BRDF parameter product and a hotspot-revised Ross-Li
model [39,40]. Despite of the different limitations behind the model mechanism, a good
BRDF agreement has been represented in linking the Ross-Li model and the PROSAIL
canopy BRDF model [42], which includes several essential vegetation parameters [43,44].
Therefore, the robust PROSAIL model was selected for LAI retrieval from these modelled
MODIS multi-angular data. First, the sensitivities of the BRDF variables to vegetation
parameters of the PROSAIL model were investigated to reduce the free variables in the
physical model inversion. Then, the estimated LAIs were validated based on field mea-
surements and high-resolution LAI maps, and the reasons for the estimation error were
analysed. Finally, some explanations, limitations, and future expectations were discussed.

2. Data
2.1. Canopy BRDF Simulations with the PROSAIL Model

The robust canopy radiative transfer model, i.e., the PROSAIL model, was adopted
for vegetation parameter inversion, considering its simple input parameters and good
BRDF consistency with the Ross-Li model [42]. The latest 4SAIL canopy BRDF model
considering the hotspot effect and the PROSPECT-5 model, which describes the leaf opti-
cal reflectance and transmittance, are referenced in this study (http://teledetection.ipgp.
jussieu.fr/prosail/, accessed on 10 August 2021) [43–45]. This 1-D model adopts a sim-
plified assumption that considers horizontal homogeneity, where N layers of leaves are
contained in the model scene. The input model parameters are listed in Table 1, covering
the main structure and biology information of the vegetation. First, the leaf reflectance
ρl and transmittance τl can be calculated from leaf parameters, as given in Equation (1),
which are then input into the SAIL model to calculate the canopy reflectance ρc, as ex-
pressed in Equation (2). Following the general process, the PROSAIL model can simulate
canopy reflectance spectra in the optical domain from 400–2500 nm at a 1-nm resolution in
addition to BRFs in an arbitrary sun-viewing geometry, which have been widely applied in
vegetation inversion [11,43–50].

ρl(λ) & τl(λ) = PROSPECT(Ns, Cab, Car, Cbrown, Cw, Cm) (1)

ρc(λ) = 4SAIL(ρl(λ), τl(λ), LAI, ALA, Hspot, Psoil , SKYL, SZA, VZA, ϕ) (2)

To support vegetation inversion, a comprehensive simulation dataset containing
20,000 vegetation parameter combinations was generated with the Saltelli periodic func-
tion [51] via uniform sampling (Figure 1a) of seven leaf and canopy parameters. The
parameters varied within the ranges listed in Table 1, which references the experimental
designs of previous studies [39,52,53] except for Car, Cbrown, Hspot, and SKYL. Considering
that most leaves do not contain brown pigment [52] and that the intrinsic BRDF is not
necessarily related to the diffuse irradiance component [54], these two parameters were set
to zero. In addition, the insensitive parameters of Car and Hspot have typically been defined
as constants in vegetation inversion [11,14,52]. Compared to a previous study [42], Car and
Hspot were defined as constants, and more reasonable ranges were considered for Cab, LAI,
and average leaf angle (ALA) based on the application studies mentioned above.

Subsequently, we simulated the corresponding directional reflectance values with
the PROSAIL model by inputting the 20,000 sets of vegetation parameters. Most LAI
products are retrieved from data in the red and NIR bands due to their high sensitivity [55].
Therefore, PROSAIL simulations were performed at the central wavelength in these two
MODIS bands (645 and 858 nm). Moreover, 397 sun-viewing angles were selected to
simulate the BRFs, as indicated in Table 1 and Figure 1b, which can suitably reflect the
general BRDF variance [42,56]. The PROSAIL simulation dataset of the BRFs was applied
in this study, including for the sensitivity analysis and LAI estimation.

http://teledetection.ipgp.jussieu.fr/prosail/
http://teledetection.ipgp.jussieu.fr/prosail/
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Table 1. The input parameters of the PROSAIL model.

Parameters Unit Common Value Search Range (Step)

Leaf scale
leaf structure parameter (Ns) – 1.5 1–3

chlorophyll a and b content (Cab) µg/cm2 50 20–80
carotenoids content (Car) µg/cm2 12

brown pigment content (Cbrown) – 0
Equivalent water thickness (Cw) cm 0.015 0.004–0.04
leaf mass per unit leaf area (Cm) g/cm2 0.009 0.0019–0.0165

Canopy scale
leaf area index (LAI) m2/m2 3.5 0–10

average leaf angle (ALA) degrees (◦) 50 10–85
hot spot (Hspot) – 0.2

soil coefficient (Psoil) – 0.1 [0,1] 0–1
diffuse/direct radiation (SKYL) % 0

Observation geometry
solar zenith angle (SZA) degrees (◦) 30 0–60 (15)
view zenith angle (VZA) degrees (◦) 0 0–80 (10)

relative azimuth angle (RAA (ϕ)) degrees (◦) 0 0–330 (30)
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2.2. 500-m MODIS BRDF Parameter Product

The 500-m MODIS global BRDF parameter products provide the weight coefficients
of three typical scattering components in the Ross-Li model, including isotropic scat-
tering, volumetric scattering, and geometric-optical scattering [20,21]. The RossThick-
LiSparseReciprocal (RTLSR) model was chosen as the operational algorithm to generate the
MODIS BRDF parameter product [13,18], and its general expression is given in Equation
(3). Numerous validation studies have demonstrated the good accuracy of the Ross-Li
model [57–60]. In Equation (3), R denotes the surface directional reflectance as a function
of three angles (solar zenith angle (SZA) (θs), viewing zenith angle (VZA) (θv), and relative
azimuth angle (RAA) (ϕ)) and the waveband, which comprises three scattering kernel
types: isotropic scattering kernel (1.0), volumetric scattering kernel (Kvol), and geometric-
optical scattering kernel (Kgeo). By inputting multi-angular reflectance data into the model,
the three weight coefficients of fiso, fvol, and fgeo can be determined based on least-squares
regression. Notably, the three coefficients were restricted to be no less than 0.0 to repre-
sent a positive contribution of different kinds of scattering. Subsequently, the directional
reflectance at arbitrary orientations can be simulated.

R(θs, θv, ϕ, λ) = fiso(λ) + fvol(λ)Kvol(θs, θv, ϕ) + fgeo(λ)Kgeo(θs, θv, ϕ) (3)
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The latest Collection V006 daily BRDF parameter product (i.e., MCD43A1) and quality
data (i.e., MCD43A2) [20] (https://urs.earthdata.nasa.gov/, accessed on 10 August 2021)
were implemented in this study, which are concurrent with the field LAI measurements
and LAI maps introduced in Section 2.3. MCD43A1 data were retrieved from the RTLSR
model by inputting 16-day aggregation values of the multi-angular reflectance of the
MODIS sensors onboard the Terra (overpass occurs at 10:30 am) and Aqua (overpass
occurs at 1:30 pm) satellites. BRDF parameters were retrieved with the main algorithm
(full inversion, quality flag = 0/1) and backup algorithm (magnitude inversion, quality
flag = 2/3) in the red and NIR bands, respectively. High-quality BRDF data were retrieved
via the Ross-Li model with good angular sampling and small fitting root mean square
errors (RMSEs) in the inversion results. When a high-quality full inversion could not be
accomplished due to poor angular sampling or insufficient input observations (i.e., obs.
num. < 7), a priori knowledge method of the backup algorithm was employed (also called
a magnitude inversion), which performs quite well in many situations [20,21,59,61,62]. The
backup algorithm relies on an a priori archetypal BRDF shape with each pixel on the globe,
and then the satellite-observed directional reflectances are used to adjust these archetypal
shapes by a multiplicative factor to obtain suitable BRDF variances at each pixel [20,21].

These MODIS BRDF parameters were applied to model BRFs with angle sampling, as
shown in Figure 1b, using the hotspot-revised Ross-Li model [39,40], and these modelled
MODIS BRFs then functioned as reference data to search for the best vegetation estimation
among the 20,000 PROSAIL vegetation parameter datasets, as introduced in Section 2.1.

2.3. LAI Measurements at the 500-m Plot Level and with 30-m LAI Maps

Field-measured LAI values at the 500-m plot level and 30-m LAI maps were adopted
for method validation, which encompassed two sites (Honghe and Hailun) in Heilongjiang
Province, northeastern China.

There were 180 sets in total of field-measured LAI data, which were collected by Fang
et al. in 2012, 2013, and 2016 (https://doi.pangaea.de/10.1594/PANGAEA.900090, accessed on
10 August 2021) [55,63,64]. Both sites cover a homogeneous area of approximately 30 km2,
and 5 plots were selected to perform measurements at each site. The first site is located
at Honghe Farm (47◦39′ N, 133◦31′ E), planted with paddy rice, and each plot covers an
area of 400 m × 600 m. To reduce the measurement disturbance, weekly measurements on
four elementary sampling units (ESU) in each plot were averaged to represent the plot LAI
value, from June 11 (day of year (DOY 163)) to September 17 (DOY 261) in 2012 and from
June 22 (DOY 173) to August 27 (DOY 239) in 2013. The second site is located in a farmland
near Hailun city (47◦24′ N~47◦26′ N, 126◦47′ E~126◦51′ E), planted with maize, soybean,
and sorghum, and each plot covers an area of 100 m × 500 m. Similarly, there were three
ESUs in each plot to obtain the plot LAI value from June 20 (DOY 172) to September 22
(DOY 266) in 2016. Finally, 110 sets of LAI measurements in Honghe and 70 sets in Hailun
at the 500-m plot level were obtained.

Field measurements were carried out under twilight and overcast conditions to avoid
direct sun flecks, from shortly after the crop greening stage to the harvest readiness stage.
LAI-2200 measurements were used in this study, which agreed well with the results
obtained via the destructive leaf sampling method in most of the growing seasons from
DOYs 160 to 230. These LAI measurements contained the main crop types, and they have
been considered in the validation of several essential satellite LAI products, such as the
MODIS LAI product generated by the main algorithm [55]. These field-measured LAI
values were used to validate the retrieval accuracy of the new method proposed in this
study, as described in Sections 3.3, 4.2 and 4.3.

In addition, LAI maps concurrent with these LAI measurements with a spatial reso-
lution of 30 m were applied for method validation, which were provided by a previous
study [55]. High-resolution reference LAI maps were derived from HJ-1, Landsat 7, and
Sentinel-2A images, which agree well with the field-measured LAI values. Moreover, these
maps were adopted in the validation of the moderate-resolution LAI products mentioned

https://urs.earthdata.nasa.gov/
https://doi.pangaea.de/10.1594/PANGAEA.900090
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above, where average values of 3× 3 pixels were considered to cross validate the moderate-
resolution LAI products and concurrent reference LAI maps. In this study, 284 sets of
aggregated LAI values at 1.5 km derived from 30-m LAI maps were used to cross validate
our proposed novel method, as introduced in Section 4.4, and the data numbers were 108
and 176 in Honghe and Hailun, respectively.

3. Methods

Considering the satellite limitations when capturing BRDF data in the viewing hemi-
sphere as well as their underlying observation noise, the semi-empirical Ross-Li BRDF
model has been widely adopted to model BRDF data at arbitrary sun-viewing geometries
of good quality from satellite-observed reflectances at a few viewing angles. In this study,
a novel method for the simultaneous retrieval of the LAI and other vegetation parameters
based on sufficient multi-angular reflectance data using the Ross-Li-derived MODIS BRDF
parameter product was developed, in conjunction with the hotspot-revised Ross-Li model
and physical PROSAIL BRDF model, considering their good BRDF consistency [42]. The
new method mainly includes two parts: sensitivity analysis and vegetation parameter
retrieval, and the flowchart is shown as Figure 2.

First, BRDF sensitivity to the PROSAIL input parameters was investigated to reduce
the number of insensitive parameters in the vegetation inversion. The analysis was per-
formed based on PROSAIL-simulated multi-angular reflectance data at 397 angles in the
red and NIR bands, as described in Section 2.1, as well as the corresponding BRDF variables
retrieved with the Ross-Li model, including the three kernel coefficients and anisotropy
flat index (AFX) [65]. To maintain consistency with the MODIS BRDF parameter product
used for LAI retrieval in this study, the RTLSR model was employed. Subsequently, the
extended Fourier amplitude sensitivity test (EFAST) method was implemented to explore
the sensitivity of the BRDF variance to the vegetation biophysical/structure parameters,
thereby further investigating the empirical relationship between these highly sensitive
parameters. Encouragingly, a significantly linear relation between the ALA and fvol in the
NIR band was established.
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Via the application of the obtained sensitivity analysis results, simultaneous retrieval
was accomplished to estimate the sensitive vegetation parameters, including the LAI, from
the MODIS BRDF parameter product by linking the PROSAIL and Ross-Li BRDF models.
BRFs with the same 397 angles of the PROSAIL simulations, as shown in Figure 1b, were
modelled using the MODIS BRDF parameters and Ross-Li model, and the latest hotspot-
corrected version of the Ross-Li model was employed here to better simulate the hotspot
reflectance [39,40]. Then, these MODIS multi-angular reflectance values functioned as
reference data to retrieve the optimal vegetation parameters by simultaneously searching
the minimum discrepancies and the PROSAIL-simulated reflectances from the PROSAIL
vegetation parameter database. Both wide and local searches with the empirically calcu-
lated ALA were designed. Finally, the reference LAI data in Section 2.3 were utilized for
method validation.

3.1. Sensitivity Analysis of the BRDF to Vegetation Parameters

Previous studies have indicated that compensation occurs between canopy variables
such as the LAI, leaf inclination, Cab, and leaf water content [45,66,67], and these mutually
dependent parameters can therefore be hard to accurately determine during retrieval.
Therefore, the sensitivity of the BRDF variance to vegetation parameters was investigated
to reduce the number of insensitive and dependent parameters. The vegetation parameters
refer to the simulated 20,000 PROSAIL parameter database, and the BRDF variables were
retrieved via the Ross-Li model corresponding to the simulated PROSAIL BRFs. Consider-
ing that the MODIS BRDF parameter product used for LAI retrieval was generated from
the RTLSR model, we further applied this model to calculate the BRDF variables in the
sensitivity analysis.

In detail, the directional reflectance values obtained from the PROSAIL model in
Section 2.1 were then input into the RTLSR model to invert the three kernel coefficients
(fiso, fvol, and fgeo) and BRDF index (AFX). The AFX was calculated as the ratio of the white
sky albedo (WSA) to fiso [65], which is sensitive to the scattering type. An AFX higher than
1.0 indicates that volumetric scattering is prominent, while an AFX lower than 1.0 indicates
dominant geometric-optical scattering. Based on the 20,000 sets of BRDF variables and
concurrent vegetation parameters, their sensitivity was investigated via the EFAST statistic
method and linear regression analysis.

The EFAST method was first used for the sensitivity analysis [68], which provides
the global sensitivity to evaluate the contribution of the input parameters to the output
by considering the interactions among the input data. The calculation process is given as
follows: first, the total variance in the model output attributed to the input parameters
was divided into two parts: the variance resulting from the specific Xi (Di) value and the
variance resulting from the interactions between the input parameters under multiple
combinations. Then, the local sensitivity Si and mutual sensitivity Si . . . k could be obtained
by dividing the total variance D by the corresponding individual and interaction variances,
respectively. Finally, the global sensitivity Si

T could be obtained as the accumulation of the
local sensitivity Si and all the mutual sensitivity values related to Xi. In total, the global
sensitivity of the four BRDF variables (fiso, fvol, fgeo, and AFX) to seven vegetation parameters
(Ns, Cab, Cw, Cm, LAI, ALA, and Psoil) was calculated to perform a qualitative analysis.

D =
n

∑
i=1

Di +
n

∑
i=1

n

∑
j=1,j 6=i

Dij + . . . + D1,2,...,n (4)

Si = Di/D (5)

Si...k =
Dij + Di...j+1 + . . . + Di...k

D
(j, k 6= i) (6)

ST
i = Si +

n

∑
j=1,j 6=i

Sij + . . . + S1,2,...,n (7)
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To further explore the quantitative relations between the BRDF variables and vege-
tation parameters, the highly sensitive parameters determined according to the EFAST
method were used for linear regression. Notably, only parameters that met the above
requirement were considered in the sensitivity analysis, where the fitting RMSE values
between the PROSAIL BRFs and BRFs inverted from the RTLSR model were smaller than
0.02 and 0.05 in the red and NIR bands, respectively [42]. To reduce the influence of data
uncertainty, the 10-fold cross-validation method was utilized in the regression, and 90% of
the data was selected for regression, and the remaining 10% was reserved for validation. In
total, 10 independent regressions were performed, and those linear relationships with the
minimum regression error were recorded as the final result. Encouragingly, a significantly
linear relationship between the ALA and fvol in the NIR band was established, which was
used to develop the LAI retrieval method.

3.2. LAI Estimation from MODIS BRDF Data by Linking the PROSAIL and Ross-Li Models

Based on the sensitivity analysis of the BRDF sensitivity to vegetation parameters in
Section 3.1, a general vegetation inversion method was proposed in this study to retrieve
these sensitive vegetation parameters. The MODIS BRDF parameter product was applied
for multi-angular reflectance modelling at sufficient sun-viewing geometries with the
Ross-Li model, which was then used to retrieve the vegetation parameters from the robust
PROSAIL physical BRDF model.

First, the modelled BRFs from the MODIS BRDF parameters were employed as refer-
ence data in the vegetation parameter inversion. BRFs considering 397 angles, as shown in
Figure 1b, were modelled with the Ross-Li model based on the daily MODIS BRDF param-
eters introduced in Section 2.2, and a hotspot-revised version of the Ross-Li model, namely,
RTLSR_C, was used here [39,40]. The revised model achieves a higher hotspot capability
than that of the RTLSR model by applying the corrected exponential hotspot function
developed by Chen and Cihlar [69] to the volumetric and geometric-optical scattering
kernels. The best hotspot parameters of the height (C1) and width (C2) of the RTLSR_C
model in several typical bands were given based on a wide search of sufficient hotspot
data, as listed in Table 2 [39], and the hotspot parameters at 645 and 858 nm for MODIS
(C1 = 0.5, C2 = 3.4◦ at 645 nm; C1 = 0.5, C2 = 3.0◦ at 858 nm) were used to model the MODIS
BRFs based on the obtained MODIS BRDF parameters.

Then, two search strategies, including wide and local search strategies based on the
fvol–ALA relationship, were developed to retrieve the optimal vegetation parameters from
the 20,000 vegetation parameter database introduced in Section 2.1. The cost function is
expressed below and calculates the discrepancies between the simulated PROSAIL BRFs
and reference MODIS BRFs, where ρi

reference and ρi
PROSAIL denote the simulated MODIS

BRFs and PROSAIL BRFs, respectively, for a specific group of PROSAIL input parameters
among the 20,000 vegetation parameter databases. Considering the BRFs in both the red
and NIR bands, the value of N is 397 times two (i.e., 794). Finally, the first 50 records with
the minimum cost values were selected, and the corresponding LAI values were averaged
as the retrieved LAI result.

Cost =

√√√√√ 1
N

N

∑
i=1

(
ρ

re f erence
i − ρPROSAIL

i

ρ
re f erence
i

)

2

(8)

In the wide search strategy, the optimal estimation is determined by traversing all
20,000 vegetation parameter datasets. In the local search strategy with the ALA, the linear
relationship between the ALA and fvol in the NIR band mentioned in Section 3.1 was
applied, and the empirical ALA could thus be obtained from the MODIS fvol value in the
NIR band. Consequently, this narrowed the search scope within the theoretical error range
of the empirical ALA rather than the whole reasonable range, which could greatly improve
the search speed.
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Table 2. The best C1 and C2 for MODIS in seven common bands.

Band (nm) 645 858 469 555 1240 1640 2130

C1 0.5 0.5 0.4 0.5 0.4 0.4 0.4
C2 (◦) 3.4 3.0 3.8 3.1 4.5 4.5 4.5

3.3. LAI Validation and Error Analysis

The 180 LAI measurements at the 500-m plot level and the 30-m LAI maps covering
the main crop types were utilized for method validation, as introduced in Section 2.3. The
evaluation indicators include the RMSE, relative RMSE (RRMSE), bias, and coefficient of
determination (R2) between the reference LAIs and retrieved data, where the RMSE and
RRMSE are expressed below. LAIi

obs and LAIi
estimate denote the reference LAI and the

estimated LAI with the PROSAIL model, respectively.

RMSE =

√√√√ 1
N

N

∑
i=1

(LAIobs
i − LAIestimate

i )
2 (9)

RRMSE =
RMSE

1
N

N
∑

i=1
LAIobs

i

(10)

Then, we investigated the error underlying the proposed method to further improve
the vegetation estimation accuracy. By comparing the LAI estimation accuracies based
on the MODIS BRDF data between the main and backup algorithms, we investigated the
influence of the MODIS BRDF quality on the LAI estimation accuracy. As expected, BRDF
data from the main algorithm have better LAI estimations than those from the backup
algorithm. Therefore, the BRDF data retrieved with the backup algorithm were alternated
by those retrieved with the main algorithm at the nearest time to reduce the impact of the
BRDF quality on the proposed method. In addition, the LAI estimation accuracy of the
new method proposed in this study was cross compared to published accuracy results
for MODIS LAI products generated from satellite-observed reflectances at a few viewing
angles [55]. Considering the effects of the point spread function and geometric distortion
of satellite data, 30-m LAI maps were further used for cross validation in the upscaling
process to obtain a 1.5 km × 1.5 km area [55].

4. Results and Analysis
4.1. Sensitivity of the BRDF to Vegetation Parameters
4.1.1. Analysis Based on EFAST

Based on the 20,000 sets of PROSAIL multi-angular canopy reflectance simulations
and BRDF variables retrieved from the Ross-Li RTLSR model, the global sensitivity of the
BRDF to the vegetation parameters was calculated, as shown in Figure 3. The sensitivity
of the nadir reflectance to the vegetation parameters has been investigated in previous
studies [52]. This study first analysed the results regarding BRDF indicators. Figure 3
shows that most BRDF variables are highly sensitive to many vegetation parameters in the
red band (Ns, Cab, LAI, ALA and Psoil). In the NIR band, Ns, LAI, and ALA appear to be
the most sensitive parameters, and fvol reveals the most significant sensitivity to the ALA
among all the statistics. It is foreseeable for the high sensitivity of canopy BRDF to the two
essential canopy structure parameters of LAI and ALA, which have shown similar results
associated to nadir reflectance [45,52]. In addition, the sensitivity to Cab may be caused by
high chlorophyll absorption in the red band, and the non-negligible BRDF change in the
background soil associated with Psoil also makes important contributions to the overall
canopy BRDF [70]. The leaf structure parameter Ns represents the number of compact
layers specifying the average number of air/cell wall interfaces within the mesophyll and
the leaf biochemical content, which changes with vegetation species and phenology that
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are sensitive to canopy BRDF [42,45]. Ns for the monocotyledons changes from 1.0 to 1.5,
while values for the dicotyledons range from 1.5 to 2.5. Meanwhile, the senescent leaves
always show an Ns larger than 2.5.

These results generally comply with the sensitivity of the canopy nadir reflectance to
PROSAIL variables [45,52], although there are few connections between canopy reflectance
anisotropy and some vegetation parameters, especially for the chlorophyll and water
content in the NIR band. Nevertheless, all seven vegetation parameters have showed
evident sensitivities in the red or NIR bands, which can be considered to be an overall
sensitivity to the seven vegetation parameters. In addition, observations in the two bands
have been widely utilized together to generate a series of LAI products [55], and thus all
seven PROSAIL variables were applied in the vegetation inversion algorithm owing to
their sensitivity.
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4.1.2. Modelling and Evaluation of Linear Relationships

The sensitive parameters determined with the EFAST method were further utilized for
modelling and evaluation of their linear relations, where only the data meeting the fit-RMSE
requirements of the Ross-Li model in the red and NIR bands were selected. Among the
20,000 sets of PROSAIL canopy BRFs and corresponding Ross-Li BRDF variables, there are
15,707 sets of data where the fit-RMSE is less than 0.02 and 0.05 in the red and NIR bands,
respectively. When performing 10-fold cross regression and validation, all 15,707 datasets
were divided into 10 parts through equal-interval sampling.

Encouragingly, a significantly linear relationship between the ALA and fvol in the NIR
band was obtained. The regression coefficients and evaluation accuracies considering the
10 parts are listed in Table 3. The table indicates that the fit coefficients are extremely similar
for all 10 data groups, exhibiting a highly significant F at the significance level of 0.01 in
the F test. The equations of the F test are shown in (11)–(13), where F is calculated as the
ratio of the averaged regression sum of squares (SSR) to the averaged error sum of squares
(SSE). The variables yi, y , and ŷi refer to the values of the ith ALA, the averaged ALAs,
and the predicted ALAs by the linear regression relation, respectively. Considering that
only a small amount of data is sparsely distributed in the ALA evaluation, the accuracy
indicators were calculated according to all the evaluation data as well as the high-density
data, except the sparse evaluation data. By considering the errors in both regression and
evaluation, the fourth regression showed a relatively smaller error for both all data and
high-density data. Therefore, the results from the fourth data group were recorded as the
final regression results.

SSR =
n

∑
i=1

(ŷi − y)2 (11)

SSE =
n

∑
i=1

(yi − ŷi)
2 (12)

F =
SSR/1

SSE/(n− 2)
(13)
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The final optimal linear relation is shown in Equation (14), and the fitting results are
shown in the density scatter plots (Figure 4). The scatter plots are sliced into five equal-
density levels from 1 (highest) to 5 (lowest), by classifying the data number with intervals
of 1.0◦ and 0.01 for ALA and fvol, respectively. Considering the effective range of the ALA
from 10◦ to 85◦, as explained in Table 1, only fvol in the NIR band smaller than 0.3813
could be used to retrieve the empirical ALA based on this linear relationship. Figure 4
clearly shows that only a small amount of data is sparsely distributed in both the regression
and ALA evaluation, and most high-density data are clustered. The high R2 value of
0.98 and significance F value, as shown in Figure 4a, indicate that the linear relationship
achieves a high quality. Similarly, independent evaluation also reveals a high R2 value
between the reference ALA and estimated ALA based on 10% of the 15,707 datasets,
which is 0.87 for the total data and 0.99 for the high-density data. By removing a small
amount of sparse data, a generally good accuracy was attained for empirical ALA retrieval
based on Equation (14) (RMSE = 2.07◦, bias = −0.09◦, R2 = 0.99). The significant linear
relationship may be attributed to the intrinsic radiative transfer hypotheses of the PROSAIL
model, where multiple scattering (i.e., volumetric scattering) can easily arise in horizontal
homogeneous scenes [45]. In addition, the relationship in the NIR band complies with a
previous study, which indicates that volumetric scattering is prominent in the NIR band
for the PROSAIL model [42].

ALA = 186.54× f NIR
vol + 13.88(ALA ∈ [10◦, 85◦], f NIR

vol ∈ [0, 0.3813]) (14)

Table 3. Regression coefficients and accuracies of the linear relationships between the ALA and fvol in the NIR band.

Data for Linear Modelling
(90%, ALA = a × fvol_NIR + b) Data for Evaluation (10%)

Group a b R2 F RMSE_All Bias_All R2_All RMSE_HD Bias_HD R2_HD

1 186.66 13.87 0.98 565,079 7.35 −1.18 0.83 2.27 0.00 0.98
2 186.69 13.85 0.98 584,873 6.68 −1.18 0.86 2.43 −0.10 0.98
3 186.78 13.85 0.98 584,443 6.83 −1.08 0.85 2.96 −0.10 0.97
4 186.54 13.88 0.98 567,284 6.53 −1.06 0.87 2.07 −0.09 0.99
5 186.68 13.85 0.98 585,602 6.75 −1.05 0.85 2.95 −0.19 0.97
6 186.54 13.87 0.98 568,940 6.05 −1.07 0.88 2.22 −0.13 0.98
7 186.64 13.85 0.98 587,354 6.36 −1.00 0.87 2.29 −0.15 0.98
8 186.59 13.86 0.98 586,356 7.10 −1.25 0.84 1.98 −0.10 0.99
9 186.66 13.85 0.98 586,247 6.92 −1.17 0.85 2.10 −0.19 0.98

10 186.69 13.85 0.98 585,865 6.80 −1.07 0.86 2.30 −0.08 0.98
average – – 0.98 580,204 6.74 −1.11 0.86 2.36 −0.11 0.98

RMSE_all, Bias_all, and R2_all denote the results for all of the evaluation data, while RMSE_HD, Bias_HD, and R2_HD denote the results
for the high-density data in the scatter plot distribution between the reference ALA and estimated ALA among the evaluation data.
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4.2. Validation of the LAI Estimations Based on Field Measurements

A total of 180 LAI measurements at the 500-m plot level were used for algorithm
validation, including wide and local search strategies via the empirical ALA based on
Equation (14). Among the 180 sets of field-measured LAI values, nine sets of concurrent
MODIS BRDF parameters comprised fill values, for which BRDF data retrieved with
the main and backup algorithms at the nearest time were added as alternative data to
guarantee data integrity. There are 103 sets of BRDF data that yielded reasonable ALA
values ranging from 10◦ to 85◦, while the remaining data could not employ the local search
method because the fvol value in the NIR band was larger than 0.3813. Considering that
the theoretical estimation-based RMSE of the linear estimated ALA is 2.07◦, vegetation
parameter combinations with ALAs varying by ±3◦ around the empirical value were
used in the local search strategy. Notably, the local search range directly decreased to
approximately 1600 sets of data, while all 20,000 sets of data were traversed in the wide
search. As a result, the local search was 11.5 times faster than the wide search, which
greatly improved the retrieval speed.

Figure 5 and Table 4 illustrate the validation results of the estimated LAIs using the
proposed method based on LAI field measurements. During the late growing season after
DOY 240 (bluish points), the estimated LAIs were lower than the reference LAIs, which
agrees with the validation results of the MODIS LAI product [55]. The local search method
based on the empirical ALA is not applicable mainly to paddy rice in Honghe, where fvol
in the NIR band for 70 sets of data was larger than 0.3813 among all 110 sets. Regarding
the crops in Hailun, only in 7 sets of data did the retrieved empirical ALA occur beyond
the range in the 70 sets. With the use of the same data, the LAI estimation accuracy was
obviously improved with the local search method (the third column of Figure 5) over the
wide search method (the second column of Figure 5). Consequently, fusion results could
be obtained by combining all of the results obtained in the local search and the remaining
results of the wide search. As expected, the fused LAI retrievals of these two methods (the
fourth column of Figure 5; RMSE = 1.34, bias = −0.52, R2 = 0.49, RRMSE = 41.3%) exhibited
a higher LAI estimation accuracy than that achieved with the wide search method (the first
column of Figure 5), as well as the MODIS LAI product generated with the main algorithm
(RMSE = 1.57, bias = −0.21, R2 = 0.24, RRMSE = 48.3%) [8] given the same data, as listed in
Table 4. The results highlight the importance of sufficient BRDF information in vegetation
parameter retrieval over the utilization of satellite observation data at a few viewing angles,
such as the MODIS LAI product.
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Table 4. Estimation accuracy of the LAI for pixel-to-plot comparison.

Dataset Method Data Number RMSE BIAS R2 RRMSE(%)

Honghe

MODIS 110 1.55 −0.28 0.13 50.2
wide search 110 1.35 −0.75 0.34 43.7

wide search of
local search data 40 1.79 −1.45 0.55 65.0

local search by
the ALA 40 1.54 −1.09 0.52 55.9

fused results 110 1.23 −0.62 0.40 39.8

Hailun

MODIS 70 1.59 −0.10 0.35 45.4
wide search 70 1.64 −1.09 0.53 46.9

wide search of
local search data 63 1.73 −1.24 0.57 49.1

local search by
the ALA 63 1.58 −0.42 0.55 44.9

fused results 70 1.50 −0.36 0.55 42.9

All crops

MODIS 180 1.57 −0.21 0.24 48.3
wide search 180 1.47 −0.89 0.44 45.3

wide search of
local search data 103 1.75 −1.32 0.57 54.4

local search by
the ALA 103 1.56 −0.68 0.54 48.5

fused results 180 1.34 −0.52 0.49 41.3
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There are five methods included in total: (1) MODIS refers to the latest Collection V006
MODIS LAI product (i.e., MCD15A2H), where only data generated by the main algorithm
are used [55]; (2) wide search refers to results retrieved by the wide research method; (3)
wide search of local search data refers to results retrieved with the wide research method
considering the same LAI data as those considered under the local search method; (4)
local search by the ALA refers to results retrieved with the local research method; (5)
fused results refers to the combined results obtained from the local search method and the
remaining results of the wide search method.

4.3. Error Analysis and Method Improvement

We further analyzed the reason for the estimation error, especially in the quality of the
MODIS BRDF parameters. The ALA validation results for the MODIS BRDF parameters of
different qualities are shown in Figure 6, and the estimation accuracy based on high-quality
BRDF data (QA = 0/1) is obviously higher than that based on data retrieved from the
backup algorithm (QA = 2/3). The difference in LAI estimation accuracy resulting from the
BRDF quality is easy to understand because the backup algorithm is employed when the
main algorithm cannot be implemented due to poor angular sampling or insufficient input
observations [20,21,59,61,62]. The analysis further emphasizes the significance of sufficient
high-quality BRDF information for vegetation parameter retrieval.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 23 
 

 

algorithm are used [55]; (2) wide search refers to results retrieved by the wide research 
method; (3) wide search of local search data refers to results retrieved with the wide re-
search method considering the same LAI data as those considered under the local search 
method; (4) local search by the ALA refers to results retrieved with the local research 
method; (5) fused results refers to the combined results obtained from the local search 
method and the remaining results of the wide search method. 

4.3. Error Analysis and Method Improvement 
We further analyzed the reason for the estimation error, especially in the quality of 

the MODIS BRDF parameters. The ALA validation results for the MODIS BRDF parame-
ters of different qualities are shown in Figure 6, and the estimation accuracy based on 
high-quality BRDF data (QA = 0/1) is obviously higher than that based on data retrieved 
from the backup algorithm (QA = 2/3). The difference in LAI estimation accuracy resulting 
from the BRDF quality is easy to understand because the backup algorithm is employed 
when the main algorithm cannot be implemented due to poor angular sampling or insuf-
ficient input observations [20,21,59,61,62]. The analysis further emphasizes the signifi-
cance of sufficient high-quality BRDF information for vegetation parameter retrieval. 

    
(a) (b) (c) (d) 

Figure 6. Comparison of the estimated LAI values to the field-measured data for the MODIS BRDF parameters of different 
qualities: (a,b) refer to the results for the wide search method based on BRDF data retrieved by the main algorithm (QA = 
0/1) and backup algorithm (QA = 2/3), respectively, and the total number of data points is 180; (c,d) are similar to (a,b) but 
for the local search method, and the total number of data points is 103. 

To reduce the impact of the BRDF quality on the proposed method and further im-
prove the LAI retrieval accuracy, BRDF data obtained from the backup algorithm were 
tentatively alternated by data retrieved from the main algorithm at the nearest time. This 
strategy follows the assumption that there exists a similar BRDF pattern in half to all of 
the months as the MODIS [20] and POLDER BRDF products [22]. The updated validation 
results of the estimated LAI values using high-quality MODIS BRDF data are shown in 
Figure 7 and Table 5, which indicate a better accuracy than that using BRDF data with 
both the main and backup algorithms in Section 4.2. Similarly, the local search method via 
the ALA attains better estimations than does the wide search method for the same data, 
and the fused results yield the optimal LAI estimations (RMSE = 1.28, bias = −0.46, R2 = 
0.45, RRMSE = 39.5%) among all the methods proposed in this study. Unfortunately, es-
timation cannot be accomplished by the local search method considering more data 
than before. Similarly, the local search method still failed for mainly paddy rice in 
Honghe, but the data number increased from 70 to 93. For the crops in Hailun, the 
number of data points that failed to implement the local search method increased from 
7 to 11. 

Figure 6. Comparison of the estimated LAI values to the field-measured data for the MODIS BRDF parameters of different
qualities: (a,b) refer to the results for the wide search method based on BRDF data retrieved by the main algorithm
(QA = 0/1) and backup algorithm (QA = 2/3), respectively, and the total number of data points is 180; (c,d) are similar to
(a,b) but for the local search method, and the total number of data points is 103.

To reduce the impact of the BRDF quality on the proposed method and further improve
the LAI retrieval accuracy, BRDF data obtained from the backup algorithm were tentatively
alternated by data retrieved from the main algorithm at the nearest time. This strategy
follows the assumption that there exists a similar BRDF pattern in half to all of the months
as the MODIS [20] and POLDER BRDF products [22]. The updated validation results of
the estimated LAI values using high-quality MODIS BRDF data are shown in Figure 7
and Table 5, which indicate a better accuracy than that using BRDF data with both the
main and backup algorithms in Section 4.2. Similarly, the local search method via the
ALA attains better estimations than does the wide search method for the same data, and
the fused results yield the optimal LAI estimations (RMSE = 1.28, bias = −0.46, R2 = 0.45,
RRMSE = 39.5%) among all the methods proposed in this study. Unfortunately, estimation
cannot be accomplished by the local search method considering more data than before.
Similarly, the local search method still failed for mainly paddy rice in Honghe, but the data
number increased from 70 to 93. For the crops in Hailun, the number of data points that
failed to implement the local search method increased from 7 to 11.
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Table 5. Estimation accuracy of the LAI for pixel-to-plot comparison based on high-quality MODIS BRDF data.

Dataset Method Data Number RMSE BIAS R2 RRMSE(%)

Honghe

wide search 110 1.17 −0.60 0.36 37.8
wide search of

local search data 17 1.65 −1.25 0.58 55.7

local search by
the ALA 17 1.33 −0.94 0.66 45.1

fused results 110 1.10 −0.55 0.41 35.8

Hailun

wide search 70 1.53 −0.97 0.57 43.5
wide search of

local search data 59 1.56 −1.00 0.59 45.0

local search by
the ALA 59 1.55 −0.22 0.53 44.8

fused results 70 1.52 −0.32 0.50 43.4

All crops

wide search 180 1.32 −0.74 0.47 40.6
wide search of

local search data 76 1.58 −1.05 0.58 47.2

local search by
the ALA 76 1.50 −0.38 0.54 45.0

fused results 180 1.28 −0.46 0.45 39.5

The four methods are the same as those in Table 4.
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4.4. General Flowchart for LAI Estimation and Validation Based on LAI Maps

According to the validation and error analysis results for the proposed method based
on field measurements, a general flowchart for LAI retrieval by using the novel method is
shown in Figure 8. The process describes the flow scheme to estimate LAI via wide and
local search strategies based on the MODIS BRDF parameter product.

Before method application, the data and methods should be prepared, including the
PROSAIL model, hotspot-corrected Ross-Li RTLSR_C model, 20,000 PROSAIL vegetation
parameter datasets, 397 angle samplings, and empirical function between the ALA and fvol
in the NIR band, as expressed in Equation (14).

After preparation, we can start the estimation process. First, the quality of the MODIS
BRDF parameters should be examined, and lower-quality BRDF data are alternated by
high-quality data at the nearest time. Then, a second evaluation is performed to determine
whether the value of fvol in the NIR band is less than 0.3813. If fvol satisfies this condition,
the local search method is applied to estimate the final LAI, which searches the 20,000 vege-
tation parameter database only for those values approaching the empirical ALA calculated
by the fvol-ALA relationship. In contrast, when the value of fvol exceeds the critical value,
the wide search method is applied to estimate the LAI by searching the optimal results
from the total 20,000 dataset. In this way, a continuous LAI estimation both in time and
space can be obtained by jointly applying these two search methods.
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ter product.

Following the flowchart, 500-m LAI values estimated from the MODIS BRDF parame-
ters concurrent with the high-resolution LAI maps were calculated. Comparisons of the
retrieved LAI to the upscaled 30-m reference LAI maps at 500-m and 1.5-km resolutions
(3 × 3 MODIS pixels) are shown in Figure 9. Generally, the estimated LAIs based on the
proposed method present a variance trend similar to that of the reference data throughout
the whole growing season, especially in Hailun, while the estimations are lower than the
reference LAI data at the senescence stage, as shown in Figure 9a,c. Based on the scatter
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plots, an overall underestimation can be observed for paddy rice in Honghe, which agrees
with the validation analysis at the 500-m plot level. For the maize, soybean, and sorghum
crops in Hailun, a better fitting line close to the 1:1 line was obtained. Finally, the total
accuracy for the crops at both sites (RMSE = 1.13, bias = −0.19, R2 = 0.64, RRMSE = 36.8%)
was higher than that at the plot level in Section 4.3 (RMSE = 1.28, bias = −0.46, R2 = 0.45,
RRMSE = 39.5%). Moreover, the estimated LAI values also indicate a better consistency
with the reference data than does the MODIS LAI product (RMSE = 1.50, bias = −0.23,
R2 = 0.24, RRMSE = 47.1%) [55]. Similarly, there exists a better agreement with the LAI
maps for the retrieved LAIs using the flowchart in this study than that for the MODIS
LAI product, as described in Sections 4.2 and 4.3, which further indicates that modelled
multi-angular reflectance data at sufficient sun-viewing geometries can provide effective
BRDF information and thus can be applied in vegetation parameter retrieval.
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colours indicate the different observation dates.

5. Discussion

The intrinsic surface anisotropic reflectance (i.e., the BRDF effect) is sensitive to
vegetation structure parameters, and satellite-observed reflectance data can in turn promote
global vegetation parameter retrieval. Nevertheless, BRDF information retrieved from
satellite observations at a few viewing angles cannot sufficiently be considered in general.
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Therefore, modelled multi-angular reflectance values at sufficient sun-viewing geometries
were used in this study, which were calculated based on the kernel-driven Ross-Li BRDF
model by inputting the MODIS BRDF parameter product. As a result, compared to
direct satellite observations, these modelled, multi-angular data encompass sufficient
angles, by which BRDF information can be better considered in theory. Moreover, cloud
cover and other reasons often lead to noise in satellite observations, which may, in turn,
affect the retrieval accuracy of vegetation parameters by directly using these observed
data. However, the widely employed Ross-Li model for BRDF reconstruction (e.g., using
the global MODIS BRDF parameter product) provides an advantage in terms of greatly
smoothing random noise in satellite observations by theoretically considering the overall
BRDF variance [13,18].

Based on these advantages, the potential of sufficient modelled BRDF data as input
for LAI retrieval was explored in this study by coupling the robust PROSAIL model
with the hotspot-corrected Ross-Li model using the MODIS BRDF parameter product
as input. One of the main contributions of this study is to find a significantly linear
relationship between the ALA and fvol of the Ross-Li model in the NIR band, which was
used to narrow the search scope of the ALA. The local search method based on the ALA
relationship is approximately 11.5 times faster than the wide search method, and therefore,
it is promising for rapid large-scale inversion. In addition, the local search method also has
a better inversion accuracy of LAI than the wide search method, as validated in Section
4. However, the two search methods also need to be jointly applied, due to the constraint
of the fvol-ALA relationship that is applicable for fvol values ranging from 0 to 0.3813. The
LAIs subsequently retrieved by combining the two search methods attain good accuracy,
especially for high-quality MODIS BRDF data, which presents the importance of quality in
modelling multi-angular data. A higher accuracy was achieved for crops than does the
MODIS LAI product generated based on limited observations [55], which demonstrates the
significance of modelled, sufficient BRDF information in parameter retrieval. For medium-
resolution, multi-angular satellites with a few sun-viewing geometries, this novel method
can help surface inversion and even attain a higher accuracy. For high-resolution satellites
that usually do not have multi-angular observations, these modelled, sufficient BRDF data
from the Ross-Li model are promising to act as the compensation.

This study linked the semi-empirical Ross-Li model and the PROSAIL physical model,
and the existing model inconsistencies between them may lead to some confusion. The
initial two primary components of the Ross-Li model include the volumetric scattering and
geometric-optical scattering, which were divided into three parts after employing many
simplifications to keep a linear function that is applicable for different spatial scaling [13].
The items associated with background reflectance and a series of parameters of elements
(e.g., the height, length and LAI of protrusions) in the whole scene are integrated into three
kernel coefficients. Therefore, these non-negative kernel coefficients (i.e., fiso, fvol, and fgeo)
are strongly associated with canopy structure, which can roughly indicate the weight of
the scattering type. Through numerous validations, the RTLSR model was demonstrated
to be robust among a series of kernel combinations, and then it was used as the operational
algorithm for generating the global MODIS BRDF parameter product. The hotspot revised
version (i.e., the RTLSR_C model) used in this study has significantly improved the accuracy
in modelling hotspot reflectance, which also presents a high inheritance from the RTLSR
model in the remaining geometries. For the PROSAIL model, more elaborate descriptions
of light scattering have been considered, following radiative transfer theory [43,44]. Despite
model differences, a previous study represented an overall good BRDF agreement in linking
the two models with a wide change in the PROSAIL input parameters [42], which lays a
foundation for this study.

In terms of the newly built empirical fvol–ALA relationship, several associated model
inconsistencies were discussed here in detail. First, the relationship does not seem to be
rigorous, without a clear physical meaning. In fact, both the volumetric scattering Rossthick
kernel and the SAIL model are developed based on radiative transfer theory [13,44], which



Remote Sens. 2021, 13, 4911 19 of 24

is highly sensitive to the leaf structure inside the canopy, such as the ALA and LAI.
Therefore, it is generally understandable for the empirical relationship between the ALA
and the fvol that acts as the weight coefficients of the volumetric scattering Rossthick
kernel. Second, only single scattering is considered in the Rossthick model, while both
single scattering and multiple scattering are included in the SAIL model. Towards the
initial volumetric scattering component of the Ross-Li model, the isotropic contribution
resulting from multiple scattering has been included in the Lambertian term [13], so
multiple scattering has indirectly been considered. Finally, the Rossthick model has also
been simplified to describe a spherical distribution of the leaf inclination angle with a large
LAI [13], while the PROSAIL model has a wide change in the ALA and LAI. In fact, the
broad adaptability of the RTLSR model has been presented in various land cover types
from soil to forest–shrub–grass areas [21,57,59,60], and therefore, the model is expected to
be applied much more than a specific range of the ALA and LAI, such as the global MODIS
BRDF data. This performance may be attributed to the semi-empirical property of the
Ross-Li model, where the final fitting accuracies are greatly affected by the observations
apart from the theoretical variance of these kernels.

The possible limitations of this study and future expectations of similar studies were
also analyzed. First, the following points need to be noted in terms of algorithm accuracy:
(1) In the validation of five mainstream global LAI products based on the field-measured
crop LAIs used in this study [55], the RMSEs change from 1.24 to 1.77, except for that
of the GLASS LAI (i.e., 0.92) for pixel-to-pixel comparisons. In this case, the RMSE of
1.13 for this proposed method shows a relatively good accuracy compared to these LAI
products. (2) This study focuses on the improvement of LAI retrieval by using sufficient
multiangle reflectances modelled from MODIS BRDF parameters, which was demonstrated
by the better estimation accuracy of the novel method than that of the Collection 6 MODIS
LAI product generated from observations at a few angles (i.e., RMSE = 1.50). (3) Even so,
the accuracy of this study still seems to be large considering the target accuracy (±0.5)
required by the Global Climate Observing System (GCOS) [8]. Based on global sites over
forest–shrub–grass surfaces, validations of the Collection 6 MODIS LAI product show a
smaller RMSE of 0.66 [8]; therefore, the accuracies of this novel method at sufficient sites
and vegetation types need to be further investigated. Notably, the reliability of the LAI
indirectly validated the retrieval accuracy of the ALA. Then, the potential issue of the Ross-
Li model regarding large angles (e.g., SZA values > 70◦) [71,72] may lead to insufficiency
constraints of the corresponding BRDF data when performing retrieval. In addition, the
PROSAIL model is more applicable for homogeneous continuous surfaces, such as the
crops associated in this study, and geometric-optical physical models (e.g., 5-scale) can be
used for heterogeneous discrete canopies, such as forests, in the future. More importantly,
the general flowchart of LAI estimation in this study can be applied to different physical
and semi-empirical/empirical models [73–80] to retrieve various vegetation parameters,
which is one of the main implications for the field of surface parameter estimation. Before
model linking, the BRDF consistency should be investigated to reduce model coupling
errors [42].

6. Conclusions

Satellite data play an essential role in surface parameter inversion for monitoring
changes in global climate and ecology. Currently, satellite-observed reflectances at a few
viewing angles are often directly used for vegetation structure parameter retrieval; however,
noise in observations as well as these insufficient sun-viewing geometries always bring
difficulties to accurate inversion, generally from physical BRDF models. To address these
limitations, modelled sufficient multi-angular reflectances through BRDF models have
been widely used as supplemented anisotropy information, which has achieved good
performance in the retrieval of several essential vegetation parameters. In this study,
we attempted to apply this reconstructed BRDF information to better retrieve LAI from
the physical PROSAIL BRDF model using the widely used semi-empirical Ross-Li BRDF
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model by inputting the MODIS BRDF parameter product. As a contrast, we compared the
estimated LAIs with the MODIS LAI product that are retrieved from satellite-observed
reflectances at a few angles, which aims to evaluate the potential of the sufficiently modelled
BRDF information in the improvement of LAI retrieval. Specifically, an empirical linear
relationship between the ALA and fvol of the Ross-Li model in the NIR band was built,
which was used for a local search compared to the wide search strategy to determine the
optimal combinations of the PROSAIL model parameters. By combining the two search
strategies, the novel method attains a good LAI retrieval accuracy, especially given high-
quality MODIS BRDF data. Both the validation results at the field-measured plot level
(i.e., RMSE = 1.28, bias = −0.46, RRMSE = 39.5%) and 30-m LAI maps (i.e., RMSE = 1.13,
bias = −0.19, RRMSE = 36.8%) for crops achieve higher accuracies than the MODIS LAI
product, which is generated based on observed reflectance data at a few angles.

The good performance of the novel method demonstrates the significance of the
modelled, sufficient BRDF information in parameter retrieval, and the obtained ALA–
fvol relationship can significantly accelerate the inversion process and improve accuracy.
Despite several limitations in our method, as introduced in the Discussion section, the
developed method is promising for LAI estimation in large homogeneous regions, and the
flowchart of this study can be applied to a series of empirical/semi-empirical and physical
BRDF models for retrieving various surface parameters. Meanwhile, more algorithm
validations at widespread sites for homogeneous canopies need to be performed in future
work. In addition, efforts should be made to reduce the uncertainties of the Ross-Li BRDF
model at large angles to provide more accurate anisotropy reflectance reconstructions, and
geometric-optical physical BRDF models can be joined to retrieve vegetation parameters
from heterogeneous surfaces.
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