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Abstract: Wetland vegetation is an important component of wetland ecosystems and plays a crucial
role in the ecological functions of wetland environments. Accurate distribution mapping and
dynamic change monitoring of vegetation are essential for wetland conservation and restoration.
The development of unoccupied aerial vehicles (UAVs) provides an efficient and economic platform
for wetland vegetation classification. In this study, we evaluated the feasibility of RGB imagery
obtained from the DJI Mavic Pro for wetland vegetation classification at the species level, with a
specific application to Honghu, which is listed as a wetland of international importance. A total
of ten object-based image analysis (OBIA) scenarios were designed to assess the contribution of
five machine learning algorithms to the classification accuracy, including Bayes, K-nearest neighbor
(KNN), support vector machine (SVM), decision tree (DT), and random forest (RF), multi-feature
combinations and feature selection implemented by the recursive feature elimination algorithm (RFE).
The overall accuracy and kappa coefficient were compared to determine the optimal classification
method. The main results are as follows: (1) RF showed the best performance among the five machine
learning algorithms, with an overall accuracy of 89.76% and kappa coefficient of 0.88 when using 53
features (including spectral features (RGB bands), height information, vegetation indices, texture
features, and geometric features) for wetland vegetation classification. (2) The RF model constructed
by only spectral features showed poor classification results, with an overall accuracy of 73.66%
and kappa coefficient of 0.70. By adding height information, VIs, texture features, and geometric
features to construct the RF model layer by layer, the overall accuracy was improved by 8.78%, 3.41%,
2.93%, and 0.98%, respectively, demonstrating the importance of multi-feature combinations. (3) The
contribution of different types of features to the RF model was not equal, and the height information
was the most important for wetland vegetation classification, followed by the vegetation indices. (4)
The RFE algorithm effectively reduced the number of original features from 53 to 36, generating an
optimal feature subset for wetland vegetation classification. The RF based on the feature selection
result of RFE (RF-RFE) had the best performance in ten scenarios, and provided an overall accuracy
of 90.73%, which was 0.97% higher than the RF without feature selection. The results illustrate that
the combination of UAV-based RGB imagery and the OBIA approach provides a straightforward, yet
powerful, approach for high-precision wetland vegetation classification at the species level, in spite
of limited spectral information. Compared with satellite data or UAVs equipped with other types
of sensors, UAVs with RGB cameras are more cost efficient and convenient for wetland vegetation
monitoring and mapping.
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1. Introduction

A wetland is a transitional zone between terrestrial and aquatic ecosystems, with multi-
functions ranging from purifying the environment to regulating flood water, improving
water quality and protecting biodiversity, among others [1,2]. Wetland vegetation, an
important component of wetland ecosystems, plays a crucial role in the ecological functions
of wetland environments. The dynamic change in wetland vegetation is closely related
to the evolution of the environmental quality of the wetland [3]. Therefore, there is
an emerging demand for the accurate monitoring and mapping of wetland vegetation
distribution, which can provide a scientific basis for wetland protection and restoration [4].

Satellite remote sensing is an indispensable means for wetland assessment, providing
abundant spatial information over large areas and compensating for traditional field sur-
veys, which are expensive, time consuming, and scale-limited [5–11]. Previous studies have
successfully performed dynamic monitoring of wetland vegetation at different scales, from
the landscape [12] to community level [13], by using radar, multispectral and hyperspectral
imagery. However, it is difficult to realize wetland vegetation classification at the species
level with freely available medium–low-resolution satellite data, due to the high spatial and
temporal variability of wetland vegetation [14,15]. Lane et al. [8] successfully employed
Worldview-2 imagery with high spatial resolution (0.5 m) to identify wetland vegetation.
However, in general, high-resolution satellite images are too expensive for many scientific
studies. In addition to the resolution and price, weather conditions, a long returning period
and a fixed orbit also limit the application of satellite remote sensing [5,16].

In recent years, unoccupied aerial vehicles (UAVs) have been increasingly used in
environmental monitoring and management. As a new, low-altitude remote sensing tech-
nology, UAV remote sensing has the advantages of high flexibility, cost efficiency, and high
spatial resolution, ranging from the submeter to centimeter level [15,17–20]. UAVs serve
as platforms to carry different sensors, such as LiDAR, multispectral, hyperspectral, and
RGB cameras [21], to acquire image data, especially in areas with poor accessibility. In
particular, small consumer-level UAVs equipped with RGB cameras are more flexible and
more affordable than UAVs with other sensors, and RGB images are straightforward to pro-
cess and interpret [21–24]. Studies of forest monitoring, precision agriculture, and marine
environment monitoring have been performed with UAV-based RGB imagery [21,23,24]. A
review of the application of UAVs in wetlands [25] indicates that RGB sensors are the most
commonly used sensors. UAV-based RGB imagery has also developed as an indispensable
and promising means to conduct wetland vegetation monitoring and mapping [6,15,26–28].

However, the increased spatial resolution of UAV images also negatively impacts the
classification results due to the large variations in spectral information within the same
class, which is prone to the “salt-and-pepper” phenomenon when using the traditional
pixel-based classification approach [29,30]. Object-based image analysis (OBIA) is a new
classification method emerging as an alternative to traditional classification approaches
to process high-resolution images [31,32]. Previous studies have verified that OBIA is a
powerful approach for extracting multi-features, which benefits vegetation monitoring
and mapping from high-resolution images [33–35]. OBIA first segments the images into
homogeneous pixel aggregations using a segmentation algorithm, and then fully mines the
semantic features of the images, such as the spectrum, texture, shape, topology, and context
at the object level [36], which are set as the input to the machine learning algorithms,
to differentiate objects [37]. Several common machine learning algorithms have been
implemented in object-based wetland vegetation mapping, such as fully convolutional
networks (FCN), deep convolutional neural networks (DCNN) [37], random forest (RF) [38],
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and support vector machine (SVM) [32]. According to previous studies, RF and SVM are
the most widely used models in classification research [39–41]. In addition, Bayes, K-
nearest neighbor (KNN), and decision tree (DT) are also widely used in OBIA [42], such as
the mapping of asbestos cement roofs being implemented by Bayes and KNN [43], and
land cover classification being realized by DT [44]. However, massive features acquired
through OBIA may reduce the classification performance of machine learning algorithms
when there is a large number of features over a finite subset [45]. Feature selection is
a crucial step to optimize classification accuracy by eliminating irrelevant or redundant
variables [46]. Cao et al. [47] used OBIA to classify mangrove species based on UAV
hyperspectral images, and the results showed that feature selection effectively improved
the classification accuracy of the SVM model from 88.66% to 89.55%. Zuo et al. [48] also
pointed out that feature selection improved the accuracy of the RF model in object-based
marsh vegetation classification, with an overall accuracy of 87.12% and kappa coefficient of
0.850, and the overall accuracy of the RF model without feature selection was less than 80%.
Abeysinghe et al. [33] emphasized the influence of feature selection on machine learning
classifiers when mapping Phragmites australis based on UAV multispectral images.

Taking the cost of multispectral and hyperspectral sensors into consideration, UAVs
with RGB cameras are preferable for vegetation monitoring and mapping [25]. Digital
orthophoto maps (DOM), digital surface models (DSM), and point clouds derived from
RGB imagery provide multi-features for wetland vegetation classification. Therefore,
machine learning algorithms based on feature selection enable UAV-based RGB imagery
to achieve high-precision wetland vegetation classification, despite the limited spectral
information. Bhatnagar et al. [26] used RF and the convolutional neural network (CNN) for
raised bog vegetation mapping based on UAV RGB imagery, and the results showed that the
classification accuracy of the CNN, based on multi-features, was over 90%. Both the studies
of Boon et al. [49] and Corti Meneses et al. [27] highlighted that the combination of point
clouds, DSM, and DOM can provide a more accurate description of wetland vegetation.
Although good classification accuracy was achieved, few scholars have comprehensively
evaluated the importance of multi-features and the performance of different machine
learning algorithms based on UAV RGB imagery for wetland vegetation classification.

We aim to identify a cost-efficient and accurate method for wetland vegetation classifi-
cation by evaluating the contribution of multi-features and machine learning algorithms,
and exploring the applicability of UAV-based RGB imagery in wetland vegetation classi-
fication at the species level. We chose a vegetation-rich area in the south of the Honghu
wetland as the research area, and used DOM and DSM, derived from the UAV-based RGB
imagery, as the data source. The spectral information (RGB), vegetation indices (VIs),
texture features, and geometric features were fully extracted from DOM, and the relative
height information of vegetation was obtained from DSM. Specifically, we designed ten
object-based classification scenarios to achieve the following objectives: (1) comprehen-
sively compare the classification performance of Bayes, KNN, SVM, DT, and RF, to identify
the best machine learning algorithm; (2) assess the contribution of different features to the
best machine learning algorithm; (3) evaluate the effectiveness of feature selection to im-
prove the classification accuracy of the best machine learning algorithm. This paper looks
forward to realizing object-based classification of wetland vegetation in an economical,
efficient and high-precision way, by using UAV-based RGB imagery.

2. Material and Methods
2.1. Study Area

Honghu wetland (29◦41′–29◦58′N, 113◦12′–113◦28′E; Figure 1) is located in Southern
Hubei Province and has a surface area of approximately 414 km2. As the seventh largest
freshwater lake in China, Honghu was listed as an international important wetland under
the Ramsar Convention in 2008 [50]. The study area belongs to a subtropical humid
monsoon climate, with mean air temperatures ranging from +3.8 ◦C in January to +28.9 ◦C
in July and annual mean precipitation ranging from 1000 mm to 1300 mm. Honghu Lake is
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a typical shallow lake formed by sediment silt with flat terrain, showing a zonal distribution
of plants. More than 100 species of vegetation have been found in Honghu wetland during
the field survey after 2010 [51], such as Humulus scandens, Alternanthera philoxeroides, Setaria
viridis, Acalypha australis, Polygonum lapathifolium, Polygonum perfoliatum, Nelumbo nucifera,
Zizania latifolia, Phragmites communis, Eichhornia crassipes, Potamogeton crispus, etc. The high
plant biodiversity in Honghu wetland makes it a suitable and representative place for
wetland vegetation classification.
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Figure 1. Research area in the Honghu Lake wetland. (a) Location of the Honghu Wetland Nature
Reserve in Hubei Province, China (upper left); extent of the study area in Honghu as shown by a
Sentinel-2 image and marked in yellow (in the lower left); (b) location of 205 verification samples in
the study area as shown by UAV-based RGB images.

2.2. Data Acquisition and Pre-Processing

We conducted a wetland vegetation field survey on 12 May 2021, and collected UAV-
based RGB imagery from 11:00 a.m. to 12:00 p.m. using a DJI Mavic Pro with an L1D-20c
camera. The UAV task was deployed at an altitude of 50 m, forward overlap of 80% and
lateral overlap of 70% with clear and windless weather conditions. A total of 314 RGB
images were obtained with a ground resolution of 1.16 cm. Pix4Dmapper was used to pre-
process RGB images in the following three steps: (1) import 314 images into the software;
(2) point cloud encryption and matching; (3) generation of DOM and DSM. We clipped
image data and selected areas containing abundant aquatic vegetation as the study area
according to the research requirement.

A ground verification sample collection was carried out simultaneously, and a total
of 205 samples were obtained to assess the accuracy of ten classification scenarios. A
handheld GPS was used to record the exact location of the samples in the accessible area. A
DJI Mini2 was deployed to take photos in hovering mode at a height of 5–10 m to acquire
verification samples from inaccessible areas. The vegetation type of these photographic
verification samples was identified with the assistance of aquatic vegetation experts. Based
on the official website, the horizontal positioning accuracy of DJI Mini2 is within ±0.1 m
when the weather is cloudless and windless. Therefore, the location information of the
verification samples was obtained from the photos, and it met the research requirements
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for wetland vegetation classification. According to the field survey, the following eight
aquatic vegetation classes and two non-vegetation classes were identified in the study area:
Zizania latifolia, Phragmites australis, Nelumbo nucifera, Alternanthera philoxeroides, Sambucus
chinensis, Polygonum perfoliatum, Triarrhena lutarioriparia, water, tree shrubs (including Melia
Azedarach, Pterocarya stenoptera, Broussonetia Papyrifera, Populus Euramevicana, and Sapium
Sebiferum) and other (non-vegetation and non-water bodies).

2.3. Study Workflow

In this study, UAV-based RGB imagery was used to classify wetland vegetation with
OBIA and feature selection. The methodology included the following six main phases: (1)
optimal segmentation parameter determination and image segmentation; (2) 53 features
derived from DOM and DSM; (3) comparison of machine learning algorithms based on 53
features; (4) evaluation of the contribution of different types of features; (5) effectiveness
evaluation of feature selection; (6) accuracy assessment of ten object-based classification
scenarios. Figure 2 shows the workflow of this study.

2.3.1. Image Segmentation

In our study, Trimble eCognition Developer 9.0, an object-based image analysis soft-
ware, was used to implement efficient image segmentation through the multi-resolution
segmentation algorithm [52]. The image segmentation process adopts the bottom-up
region merging technique to merge adjacent pixels together based on the principle of
minimum heterogeneity [53] to generate objects with similar or identical features. The
multi-resolution segmentation algorithm contains the following four important parame-
ters: layer weights, scale, shape index and compactness [54]. The setting of segmentation
parameters affects the classification accuracy. The determination of segmentation parame-
ters is generally performed by identifying the optimal parameter combination screened
by repeated experiments and manual interpretation. In order to reduce the influence of
subjective factors, we applied the estimation of scale parameter 2 (ESP2), a fast optimal
segmentation scale selection tool. ESP2 generates the curves of local variance (LV) and
rate of change (ROC) as a function of scale parameters, and the peak of the ROC curve
represents the possible optimal segmentation scale [29].

2.3.2. Features Derived from DOM and DSM

Wetland vegetation distribution is greatly affected by factors such as water, soil and
weather. It is challenging to distinguish wetland vegetation with homogenous spectral
information from only optical information. Up to date, many scholars have explored the
integration of multi-types of features to enhance the separability of vegetation [55–57]. In
addition to spectral features (RGB), this paper also extracted height information, vegetation
indices, texture and geometric features of the image objects generated by image segmen-
tation for a total of 53 features for the next step of wetland vegetation classification and
interpretation. The specific features are listed in Table 1.



Remote Sens. 2021, 13, 4910 6 of 21
Remote Sens. 2021, 13, x FOR PEER REVIEW  6 of 21 
 

 

 

Figure 2. Workflow for object‐based wetland vegetation classification using the multi‐feature selection of UAV‐based RGB 

imagery. DOM: digital orthophoto map; DSM: digital surface model; RGB: red, green and blue; KNN: K‐nearest neighbor; 

SVM: support vector machine; DT: decision tree; RF: random forest; RF‐RFE: random forest based on recursive feature 

elimination algorithm. 

2.3.1. Image Segmentation 

In our study, Trimble eCognition Developer 9.0, an object‐based image analysis soft‐

ware, was used to implement efficient image segmentation through the multi‐resolution 

segmentation algorithm [52]. The image segmentation process adopts the bottom‐up re‐

gion merging technique to merge adjacent pixels together based on the principle of mini‐

mum heterogeneity [53] to generate objects with similar or identical features. The multi‐

resolution  segmentation  algorithm  contains  the  following  four  important  parameters: 

layer weights, scale, shape index and compactness [54]. The setting of segmentation pa‐

rameters  affects  the  classification  accuracy.  The  determination  of  segmentation 

Figure 2. Workflow for object-based wetland vegetation classification using the multi-feature selection of UAV-based RGB
imagery. DOM: digital orthophoto map; DSM: digital surface model; RGB: red, green and blue; KNN: K-nearest neighbor;
SVM: support vector machine; DT: decision tree; RF: random forest; RF-RFE: random forest based on recursive feature
elimination algorithm.



Remote Sens. 2021, 13, 4910 7 of 21

Table 1. Description of object features used in classification.

Feature Type Feature Names Feature Description Feature Number

Spectral feature

Mean R, mean G, mean B,
standard deviation R, standard

deviation G, standard deviation B

R, G and B represent the DN value
of red, green, and blue bands,
respectively. Mean value and

standard deviation for each object
in the red, blue and green bands,

calculated from the DN value of the
object’s pixel.

7

Brightness
Brightness is calculated from the

combination of the DN value of the
object’s pixel

Height information Mean DSM, standard deviation
DSM

Mean value and standard deviation
for each object in DSM 2

Vegetation indices Shown in Table 2 14

Texture feature

GLCM_Mean r, GLCM_Mean g,
GLCM_Mean b, GLCM_ StdDev r,

GLCM_ StdDev g, GLCM_
StdDev b, GLCM_ Ent r, GLCM_
Ent g, GLCM_ Ent b, GLCM_ASM
r, GLCM_ASM g, GLCM_ASM b,

GLCM_ Cor r, GLCM_ Cor g,
GLCM_ Cor b, GLCM_ Dis r,
GLCM_ Dis g, GLCM_ Dis b,
GLCM_Con r, GLCM_Con g,
GLCM_Con b, GLCM_Hom r,

GLCM_Hom g, GLCM_Hom b

Standard deviation (StdDev),
entropy (Ent), angular second

moment (ASM), correlation (Cor),
dissimilarity (Dis), contrast (Con),

homogeneity (Hom), r: red band, g:
green band, b: blue band

Texture features are derived from
red, green and blue bands by using

gray-level co-occurrence
matrix (GLCM).

24

Geometric feature Area, compactness, roundness,
shape index, density, asymmetry

Geometric features are calculated
from the geometry information of

the object.
6

(1) Spectral features are the basic features of wetland vegetation identification. Mean
value and standard deviation of the red, green, blue bands and brightness were ex-
tracted.

(2) DSM was used to represent the relative height of wetland vegetation. Height informa-
tion can increase the separability between vegetation types, especially in areas with
dense vegetation [58]. Therefore, the mean value and standard deviation of DSM
were also used for wetland vegetation classification.

(3) Vegetation indices, serving as a supplement of vegetation spectral information, were
constructed using the available red, green and blue spectral bands [59]. They effec-
tively distinguish vegetation from the surrounding terrain background and greatly
improve the application potential of UAV-based RGB imagery. A total of 14 frequently
used vegetation indices were calculated (Table 2).

(4) Texture features have been frequently applied for terrain classification [57] and suc-
cessfully improved the accuracy of image classification and information extraction.
The gray-level co-occurrence matrix (GLCM) was used to extract 24 texture features,
including mean, standard deviation (StdDev), entropy (Ent), angular second moment
(ASM), correlation (Cor), dissimilarity (Dis), contrast (Con) and homogeneity (Hom)
of red, green and blue bands [60].

(5) Geometric features have been shown to have a positive effect on vegetation classifica-
tion [38,61], and the following six frequent geometric features were utilized in this
study: area, compactness, roundness, shape index, density and asymmetry.
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Table 2. Vegetation indices derived from RGB imagery (R, G and B represent the DN value of red, green, and blue
bands, respectively).

Vegetation Indices Full Name Formulation Reference

ExG Excess green index 2G− R− B [62]
ExGR Excess green minus excess red index ExG− 1.4R− G [35]
VEG Vegetation index G/R0.67B0.33 [35]
CIVE Color index of vegetation 0.44R− 0.88G + 0.39B + 18.79 [63]
COM Combination index 0.25ExG + 0.3ExGR + 0.33CIVE + 0.12VEG [64]
COM2 Combination index 2 0.36ExG + 0.47CIVE + 0.17VEG [63]
NGRDI Normalized green–red difference index (G− R)/(G + R) [35]
NGBDI Normalized green–blue difference index (G− B)/(G + B) [65]
VDVI Visible-band difference vegetation index (2G− R− B)/(2G + R + B) [65]
RGRI Red–green ratio index R/G [66]
BGRI Blue–green ratio index B/G [67]

WI Woebbecke index (G− B)/(R− G) [62]
RGBRI Red–green–blue ratio index (R + B)/2G [68]
RGBVI Red–green–blue vegetation (G2 − (R ∗ B))/

(
G2 + (R ∗ B)

)
[22]

2.3.3. Machine Learning Algorithm Comparison

Previous studies have determined that different machine learning algorithms may
show different classification performances [44,69,70]. Comparing machine learning al-
gorithms often helps increase classification accuracy. In this study, five commonly used
classifiers were applied to conduct object-based supervised classification in eCognition 9.0,
for Bayes, KNN, DT, SVM and RF, respectively. In order to compare the performance of
these classifiers in the application of wetland vegetation classification, all the 53 features
were applied in the classifier training procedure, and the best classifier was selected for the
follow-up research. The classifiers are introduced below.
• Bayes

Bayes is a simple probabilistic classification model based on the Bayesian theorem and
assumes that features are unrelated to each other [43]. This algorithm uses training samples
to estimate the mean vectors and covariance matrices for each class and then applies them
for classification [44]. Bayes does not require many parameters, but may be subjective.
• K-nearest neighbor (KNN)

KNN is a commonly used nonlinear classifier and assumes similarities of neighboring
objects. This algorithm seeks the K nearest neighbors in the feature space for the unclas-
sified objects and identifies the unclassified objects through the features of its K nearest
neighbors [43,44]. The parameter K is essential for the performance of the KNN classifier.
• Decision tree (DT)

DT is a typical non-parametric rule-based classifier and has great capability to handle
data sets with large numbers of attributes. The algorithm is constructed from the training
sample subset [71] and is composed of a root node with all the training samples, a set of
internal nodes with splits, and a set of leaf nodes [72,73]. The class label of the unclassified
objects is determined according to the leaf node to which the object belongs.
• Support vector machine (SVM)

SVM is a non-parametric algorithm based on the statistical learning theory that was
first proposed by Vapnik and Cortes in 1995 [74]. It attempts to define the optimal linear
separating hyperplane from the training samples based on the maximum gap and then
identifies any two classes [70]. Polynomial and radial basis function kernels are often used
to project non-linear classes into separable linear ones in a higher dimension [44]. SVM
does not rely on the distribution of the data and is robust to train small training sample
sets [42,75].
• Random forest (RF)

RF, first proposed by Breiman in 2001, is a novel machine learning method based
on the statistical learning theory and composed of multiple decision trees [76]. Unlike
traditional classification models with poor generalization ability, RF can significantly
improve the accuracy of classification results, reduce the influence of outliers and avoid
over-fitting [39]. The realization steps of RF are briefly summarized as follows: (1) use the
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bootstrap resampling method to select k training sample sets randomly with replacement;
(2) build k decision trees for k sample sets; (3) select m features randomly from the original
features and set m as per tree splitting node; (4) form the random forest with k constructed
decision trees and use the random forest to predict the classification result. The RF model
shows stable robustness in processing complex data and has been shown to have excellent
predictive capability in ecology [77].

2.3.4. Contribution of Different Types of Features Evaluation

Multi-features derived from UAV-based RGB imagery are of great significance for
wetland vegetation classification. Scholars are concerned about the contribution of different
types of features to the performance of the classifier. Therefore, many studies gradually add
different types of features into the same classifier layer by layer, analyzing the contribution
of the features through the overall classification accuracy [38,48,78,79]. From the results of
Section 3.2, RF provided higher accuracy than the other four machine learning algorithms.
Therefore, spectral features, height information, VIs, texture features and geometric features
are added layer by layer to construct the RF classifier to evaluate the contribution of
different types of features.

2.3.5. Effectiveness Evaluation of Feature Selection

Feature selection plays a critical role in object-based classification processes [45].
Studies have shown that features that were generally chosen by experience have high
subjectivity and unequal contributions to classification accuracy. Furthermore, redundant
features will bring negative effects to the performance and stability of a classification
model [56]. Therefore, it is necessary to optimize and reduce the number of features by
eliminating those that are not relevant and achieve, simultaneously, the highest intra-
cluster similarity and the lowest inter-cluster similarity [53]. There are three popular
feature selection strategies, which are as follows: filter, wrapper and embedded methods.
Filter methods rely on variable ranking techniques to select the feature subset with no
irrelevance to the modeling algorithm, but generate a large scale of feature subsets [80].
Wrapper methods use the performance of the learning algorithm as the feature selection
criterion. It has been confirmed that wrapper methods can generate more appropriate
feature subsets than filter methods, but are more time consuming [81]. Feature selection
procedures and learning algorithms are achieved synchronously in embedded methods
with higher treatment efficiency, but often cause over-fitting and poor robustness [80,82].

Recursive feature elimination (RFE) is a typical wrapper method based on a greedy
algorithm, first proposed by Guyon et al. [83] in 2002. The essence of RFE is removing one
of the least relevant features through cyclic iteration until all features are traversed, and
outputting the feature ranking list [41]. In this study, the RFE algorithm was implemented
using the “caret” package within statistical software R. A 10-fold cross-validation was
applied to evaluate the optimal feature subset [84] in the RFE algorithm. According to
the feature selection result, the last RF classifier was constructed by the optimal feature
subset (RF-RFE).

2.3.6. Ten Object-Based Classification Scenarios Design and Accuracy Assessment

In order to explore the performance of different machine learning algorithms, the
contribution of different types of features and the effectiveness of feature selection, ten
scenarios were designed for object-based wetland vegetation classification (Table 3). We
interpreted and classified a total of 1722 objects to serve as the training samples of ten
classification scenarios, including 42 Triarrhena lutarioriparia objects, 24 Polygonum per-
foliatum objects, 387 Zizania latifolia objects, 73 Sambucus chinensis objects, 228 Nelumbo
nucifera objects, 296 Phragmites australis objects, 135 other objects, 232 tree shrub objects, 72
Alternanthera philoxeroides objects and 233 water objects.
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Table 3. Ten object-based classification scenarios design.

Scenario Classification Model Classification Features Feature Number

1 Bayes RGB+DSM+VIs+Texture+Geometry 53
2 KNN RGB+DSM+VIs+Texture+Geometry 53
3 SVM RGB+DSM+VIs+Texture+Geometry 53
4 DT RGB+DSM+VIs+Texture+Geometry 53
5 RF RGB+DSM+VIs+Texture+Geometry 53
6 RF RGB 7
7 RF RGB+DSM 9
8 RF RGB+DSM+VIs 23
9 RF RGB+DSM+VIs+Texture 47

10 RF-RFE Optimized feature subset 36

Firstly, scenarios 1–5 were designed to compare the performance of Bayes, KNN,
SVM, DT and RF based on 53 features. Then, scenarios 5–9 were designed to evaluate the
contribution of different types of features by adding spectral features, height information,
vegetation indices, texture features and geometric features, layer by layer, to the RF classifier.
Finally, scenarios 5 and 10 were used to verify the effectiveness of the feature selection on
the classification accuracy of the RF classifier.

In order to identify the optimal scenario for object-based wetland vegetation classifica-
tion using UAV-based RGB imagery, the confusion matrix provided the overall accuracy,
the kappa coefficient, producer’s accuracy (PA) and user’s accuracy (UA) for each scenario.

3. Results and Discussion
3.1. Analysis of Image Segmentation Results

Three critical segmentation parameters (scale, shape index, and compactness) were
selected through an iterative “trial and error” approach (Figure 3). Firstly, shape index and
compactness were determined. With a fixed scale (100) and default compactness (0.5), the
shape index was set to 0.1, 0.3, 0.5, and 0.7 in separate tests (Figure 3a). When the shape
index was set to 0.3, 0.5, and 0.7, the number of generated objects increased significantly,
resulting in the segmentation of wetland vegetation being excessively fragmented. Then,
with the shape index defined as 0.1 and the scale fixed at 100, the compactness was
set as 0.1, 0.3, 0.5, and 0.7, respectively (Figure 3b). When the compactness was 0.5,
the different vegetation boundaries were well separated. As a result, equal weight was
assigned to each layer, and the shape index and compactness were defined as 0.1 and
0.5, respectively. Combined with the defined parameters and the results generated by
ESP2, four possible optimal segmentation scales were tested, which were 60, 106, 146, and
196 (Figure 3c). The results show that when the scale parameter was set to 60, Nelumbo
nucifera, Phragmites australis, and Zizania latifolia had visible “over-segmentation”, and this
phenomenon reduced the processing efficiency of the subsequent image classifications.
When the segmentation scale was set to 146 and 196, the vegetation with small leaves
and relatively independent distribution was “under-segmented” with the water body,
and there was also visible confusion in the segmentation between Zizania latifolia and
Alternanthera philoxeroides. Different vegetation was divided into the same object, and
the segmentation effect was non-ideal. By contrast, the boundary of various vegetation
types was visually best distinguished when the segmentation scale was set to 106, and
“under-segmentation” or “over-segmentation” were not common. After comparison, it
was determined that a scale of 106 had the best segmentation effect. Therefore, the scale,
shape index, and compactness were set to 106, 0.1, and 0.5, respectively. Under the optimal
parameter combination, wetland vegetation was effectively distinguished, and the size of
the generated object was suitable for subsequent classification processing.
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3.2. Performance Comparison of Machine Learning Algorithms on Wetland
Vegetation Classification

As shown in Table 4, the performance of five machine learning algorithms, based on 53
original features, was compared through the overall accuracy and the kappa coefficient. It
was found that the performance of RF provided a higher classification accuracy compared
to the other corresponding models, which had an overall accuracy of 89.76% and a kappa
coefficient of 0.88. DT, SVM, and Bayes provided an overall accuracy greater than 84%, and
KNN had the worst classification effect, with an overall accuracy lower than 60%.

Table 4. Summary of classification accuracies of scenarios 1–5.

Class
Scenario 1 Bayes Scenario 2 KNN Scenario 3 SVM Scenario 4 DT Scenario 5 RF

UA PA UA PA UA PA UA PA UA PA

Triarrhena lutarioriparia 100 50.00 36.36 50.00 100 62.5 87.50 87.5 87.50 87.5
Polygonum perfoliatum 100 65.00 86.67 65.00 100 85.00 94.12 80 100 80.00

Zizania latifolia 69.23 81.82 30.95 59.09 67.86 86.36 62.96 77.27 72.41 95.45
Sambucus chinensis 100 87.50 66.67 31.25 100 96.88 91.43 100 96.88 96.88
Nelumbo nucifera 100 97.14 100 71.43 100 97.14 100 91.43 100 97.14

Phragmites australis 63.33 82.61 36.11 56.52 83.33 86.96 67.86 82.61 81.82 78.26
other 93.33 100 66.67 71.43 100 92.86 100 100 100 100

tree shrubs 64.00 94.12 43.75 41.18 63.64 82.35 80.00 70.59 73.68 82.35
Alternanthera philoxeroides 88.24 71.43 73.33 52.38 88.89 76.19 93.75 71.43 88.89 76.19

water 100 100 86.67 100 100 100 100 100 100 100
Overall accuracy (%) 84.88 58.05 88.78 86.34 89.76

Kappa 0.83 0.53 0.87 0.85 0.88

The PA and UA were calculated to evaluate the capability to discriminate single vege-
tation species of different classifiers. Non-vegetation (water and others) and vegetation
were effectively distinguished, and misclassification and omission rarely occurred in the
five scenarios. Compared with other classifiers, RF reduced the misclassification and
omission of Zizania latifolia, and the PA and UA were, respectively, 95.45% and 72.41%. RF
also showed a slight advantage in distinguishing Alternanthera philoxeroides. Although RF
could not improve the PA and UA of all the species, most the misclassifications and omis-
sions of wetland vegetation were reduced. In addition, DT had a significant advantage in
distinguishing Nelumbo nucifera, and the PA and UA were 91.43% and 100.00%, respectively.
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Compared with other species, Phragmites australis was most prone to misclassification
and omission. Comparatively, SVM had a better effect on the classification of Phragmites
australis, with a PA and UA of about 85%. The five types of machine learning algorithms
produced different classifications of wetland vegetation [28]. These results are consistent
with previous studies [39] showing that RF had the best performance in classifying invasive
plant species, compared with the other four classifiers.

3.3. Contribution of Different Types of Features to Wetland Vegetation Classification

RF has been shown to have better performance than other machine learning algo-
rithms in this study. Therefore, the contribution of multi-features in wetland vegetation
classification was evaluated based on RF. Scenarios 5–9 showed that the combination of
different features improved the classification accuracy by varying degrees when spectral
features, height information, vegetation indices, texture features, and geometric features
were gradually introduced into the RF layer by layer. As shown in Table 5, the initial overall
accuracy of the RF constructed only by spectral features (scenario 6) was only 73.66%, and
the kappa coefficient was 0.70. When the classification features added height information
(scenario 7), the overall accuracy rapidly increased to 82.44%, which was 8.78% higher
than in scenario 6, indicating that the DSM data were important for wetland vegetation
classification. By adding vegetation indices (scenario 8) and texture features (scenario 9) to
the RF classifier, the overall accuracy was 85.85% and 88.78%, respectively. When geometric
features were also added to the classification features (scenario 5), the overall accuracy
increased by 16.1% compared with scenario 6. Misclassification and omission were signifi-
cantly reduced when different types of features were introduced into the RF layer by layer.
The UA and PA of all the species were limited, except in the non-vegetation class, in which
only spectral features were applied for classification. With the introduction of multi-types
of features, the classification accuracy of Zizania latifolia was improved the most. When
only spectral features were involved in the classification, the PA and UA of Zizania latifolia
were only 36.36% and 66.67%, respectively; after adding height information and VIs, they
increased to 54.55% and 75%, respectively, and they significantly increased to 95.45% and
72.41% with the addition of texture and geometric features. However, the continuous
increase in features does not necessarily mean that the PA and UA of all species will be
improved equally. The PA and UA of tree shrubs were 82.35% and 100%, respectively,
when classified by only spectral features and height information, which were higher than
other scenarios.

Table 5. Summary of classification accuracies of scenarios 6–10.

Class
Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 10

UA PA UA PA UA PA UA PA UA PA

Triarrhena lutarioriparia 55.56 62.50 77.78 87.50 77.78 87.50 87.50 87.50 87.50 87.5
Polygonum perfoliatum 88.89 80.00 94.12 80.00 88.89 80.00 100 80.00 100 80.00

Zizania latifolia 66.67 36.36 55.56 45.45 75.00 54.55 67.74 95.45 75.00 95.45
Sambucus chinensis 87.10 84.38 100 87.50 96.77 93.75 96.77 93.75 96.97 100
Nelumbo nucifera 83.78 88.57 100 91.43 91.89 97.14 100 94.29 100 97.14

Phragmites australis 70.59 52.17 61.29 82.61 90.00 78.26 85.71 78.26 85.71 78.26
other 100 92.86 70.00 100 100 100 100 100 100 100

tree shrubs 50.00 70.59 100 82.35 65.22 88.24 71.43 88.24 71.43 88.24
Alternanthera philoxeroides 45.16 66.67 69.57 76.19 70.83 80.95 88.24 71.43 94.12 76.19

water 100 100 100 100 100 100 100 100 100 100
Overall accuracy (%) 73.66 82.44 85.85 88.78 90.73

Kappa 0.70 0.80 0.84 0.87 0.90

This result illustrates that all types of features had positive effects on the vegeta-
tion classification procedure. Due to the complexity of wetland vegetation, the clas-
sification accuracy based only on spectral information is limited; the effective combi-
nation of different features can provide additional classification evidence for wetland
vegetation mapping [55,57,85].
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3.4. Analysis of Recursive Feature Elimination Results

In this study, a total of 53 features were extracted, and each of them contributed
differently to the vegetation classification results. The RFE algorithm was performed to
sort the importance of each feature. As shown in Figure 4, the overall accuracy and the
kappa coefficient improved significantly with the increase in feature variables. When
the number of feature variables was 20, the overall accuracy was 89.84% (85.02%–94.66%,
95% confidence interval) and the kappa coefficient was 0.88. When the number of feature
variables exceeded 20, the curve showed a slight fluctuation trend first and then tended
to be stable. When the number of feature variables reached 36, the overall accuracy was
91.06% (85.59%–96.53%, 95% confidence interval) and the kappa coefficient was 0.90. After
that, the continuous increase in feature variables could not improve the overall accuracy
significantly. This indicates that an excessive number of features causes data redundancy
and over-fitting, thus affecting the accuracy of the classifier.
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According to the result of RFE, the top 36 important features were determined as the
optimal feature subset for wetland vegetation classification. As shown in Table 6, thirteen
VIs, fifteen texture features, four spectral features, two geometric features, and two height
features were selected from the original 53 features. The importance of height information
(DSM) ranked first, and the homogeneity derived from green, red and blue bands were
second, third and sixth, respectively. The results indicate that height information is of great
significance and becomes the primary feature to discriminate wetland vegetation at the
species level, due to the relative similarity of the spectral characteristics. Al-Najjar et al. [58]
demonstrated that height information can ameliorate differences between vegetation,
especially in dense vegetation areas. Cao et al. [47] also demonstrated the effectiveness
of height information in the classification of mangrove species. Most vegetation indices
also played an important role in classification, and most of them ranked within the top
ten, such as COM2, NGBDI, VEG, BGRI, VDVI, and WI. Vegetation indices are used as
predictors in many studies that use UAVs equipped with RGB cameras, such as Phragmites
australis and mangrove mapping [27,47], wetland vegetation classification [38,48], crop
mapping [86], mangrove and marsh vegetation biomass retrieval [87,88], coastal wetland
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restoration [89], and estimating the potassium (K) nutritional status of rice [90]. These
studies have highlighted the high application value of vegetation indices. At the same
time, texture features effectively compensate for the lack of spectral information [56],
and also play an auxiliary role in wetland vegetation classification. In our study, 15
texture features were chosen by the RFE algorithm, with only five ranking among the top
twenty. Pena et al. [53] also stated that the contribution of vegetation indices to the crop
classification model was much higher than that of texture features, although texture features
were necessary in crop classification. Compared with other features, the contribution of
geometric features was significantly slight, and only area and shape index were selected
by the RFE algorithm, ranking 29 and 35, respectively. Yu et al. [61] pointed out that
the gaps and textures in high-resolution images caused the objects to have no obvious
geometric pattern, so geometric features could not become the dominant feature to identify
wetland vegetation. Specifically, wetland vegetation is affected by water levels, climate,
soil, and other factors. The existing forms and growth conditions of vegetation in the same
region are diverse; therefore, it is difficult for geometric features to discriminate wetland
vegetation independently. In our study, some Zizania latifolia were affected by Alternanthera
philoxeroides, and they were mixed in other vegetations in the form of lodging, showing
morphological differences to the normal growth of Zizania latifolia. Therefore, the pattern
of the generated objects showed a large difference in the same type of vegetation.

Table 6. Optimized feature subset and feature importance ranking.

Feature
Ranking Feature Name Feature

Ranking Feature Name Feature
Ranking Feature Name

1 Mean DSM 13 Standard deviation b 25 GLCM_Ent r
2 GLCM_Hom g 14 GLCM_StdDev g 26 GLCM_Ent g
3 GLCM_Hom r 15 NGRDI 27 Standard deviation DSM
4 COM2 16 ExG 28 GLCM_StdDev r
5 NGBDI 17 RGRI 29 Area
6 GLCM_Hom b 18 Standard deviation G 30 GLCM_StdDev b
7 VEG 19 Standard deviation R 31 GLCM_Dis g
8 BGRI 20 GLCM_ASM r 32 GLCM_Dis r
9 VDVI 21 CIVE 33 COM

10 WI 22 GLCM_Ent b 34 GLCM_Cor g
11 RGBRI 23 GLCM_ASM b 35 Shape index
12 RGBVI 24 GLCM_ASM g 36 Mean B

3.5. Analysis of the Effectiveness of Feature Selection

Comparing scenario 5 and 10 (Table 5), the overall accuracy of RF-RFE was 90.73%,
which was 0.97% higher than that of RF based on the 53 original features. The confusion
matrix showed that RF-RFE successfully reduced the misclassification and omission be-
tween vegetation species. The PA and UA of Sambucus chinensis were 100% and 96.97%,
respectively, which were 3.12% and 0.09% higher than those in scenario 5. Similarly, feature
selection also improved the UA of Zizania latifolia, Phragmites australis, Alternanthera philoxe-
roides, and Sambucus chinensis. Although RF-RFE provided a lower PA of 71.43% for tree
shrubs than that in scenario 5, with a PA of 73.68%, RF-RFE was an optimal classification
model for the differentiation of all vegetation species.

The results showed that the combination of multi-features can greatly improve the
classification accuracy, but high-dimensional features will reduce the classification model
efficiency. Feature selection is capable of screening out the best feature subset, which is
an indispensable step to classify wetland vegetation by multi-features. Zuo et al. [48]
designed 12 groups of comparative experiments using different feature combinations
during marsh vegetation mapping, and they verified that the classification accuracy after
RFE feature selection was higher than without feature selection. Zhou et al. [79] also
showed that the RFE feature selection algorithm can select the most favorable features
for forest stand classification, successfully improving the classification accuracy from
80.57% to 81.05%. Previous studies have also demonstrated the advantages of the RFE
feature selection method in many research areas [41,91–93], such as agricultural pattern
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recognition, mangrove species classification, and landslide susceptibility mapping. Using
high-resolution remote sensing images to monitor and map wetland vegetation is becoming
more common, and the RF-RFE model is a promising method for wetland vegetation
classification.

3.6. Comparison of Object-Based Classification Results

The object-based classification results of ten object-based classification scenarios are
presented in Figure 5. The classification maps of scenario 2 and scenario 6 had the worst
classification effect, with many misclassifications. Based on the field survey, the vegetation
distribution of the other eight scenarios is nearly consistent with the original image. The
RF-RFE model has the best classification effect, and is effective at distinguishing Nelumbo
nucifera, Zizania latifolia, and dead plants in the southwestern portion of the study area.

Our study shows that UAV-based RGB imagery has great potential in wetland vege-
tation classification. One key advantage of high-resolution UAV imagery is that the data
collection is much more flexible and cost efficient. Additionally, it can provide massive
shape, geometry and texture features to make up for the lack of spectral information,
allowing high-accuracy classification to be achieved in this complex wetland environment.
Combining the OBIA method with machine learning algorithms is a promising way to
achieve high-precision wetland vegetation classification at the species level, and the RFE
feature selection method is an important step to improve the accuracy of the classifier. Our
results provide a basis for monitoring and mapping wetland vegetation in an efficient and
economical way.

Although object-based wetland vegetation classification produces a good result using
RF-RFE, some limitations remain. Firstly, previous studies pointed out that the accuracy of
the vegetation classification varied seasonally [94]; therefore, the feasibility of the method
applied in this paper remains to be explored for other seasons. Secondly, emerging machine
learning algorithms still have some issues [95]. The classification model parameters were
fixed in this study. Optimizing the model parameters, or combining different classifiers
together, is a practicable way to achieve improved classification results in a complex
wetland environment. Zhang et al. [40] produced both community- and species-level
classifications of object-based marsh vegetation, combining SVM, RF, and minimum noise
fraction, with an overall accuracy of over 90%. Zhang et al. [96] showed that there are
no perfect image classifiers and different classifiers may complement each other, and
their results showed that the integration of classifiers provided more accurate vegetation
identification than a single classifier. Hao et al. [97] also found that single classifiers and
hybrid classifiers performed differently under different conditions. Specifically, hybrid
classifiers performed better with a small training sample, and a single classifier achieved
good performance with abundant training samples. Furthermore, high-resolution images
result in a huge amount of data with longer computing times. The development of an
efficient and universal classification model based on UAV-based RGB imagery, which could
be implemented with less professional expertise, is the focus of our future research, as it
would contribute to vegetation monitoring and mapping of inaccessible wetlands. The
contribution of additional features and feature selection methods can also be evaluated
and assessed in future work.
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4. Conclusions

In this study, we evaluated the feasibility of using UAV-based RGB imagery for
wetland vegetation classification at the species level. OBIA technology was employed
to overcome the limitation of traditional pixel-based classification methods. After multi-
feature extraction and selection, we designed ten scenarios to compare the contributions
of five machine learning algorithms, multi-feature combinations, and feature selections to
the classification results. The optimal configuration for wetland vegetation classification
was selected based on the overall accuracy, kappa coefficient, PA, and UA. Based on the
analysis of ten scenarios, the following conclusions could be drawn:
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(1) When object-based wetland vegetation classification was carried out with all the
original features, RF performed better than Bayes, KNN, SVM, and DT.

(2) Multi-feature combination can help UAV-based RGB imagery realize wetland vegeta-
tion classification. Different types of features contributed unequally to the classifier.
Owing to the similarity of the spectral information in wetland vegetation, height
information became the primary feature discriminating wetland vegetation. The con-
tribution of vegetation indices to wetland vegetation classification was irreplaceable,
and texture features were less important than vegetation indices, but still indispens-
able.

(3) The classification effect of RF-RFE was the best among the ten scenarios. Feature
selection is an effective way to improve the performance of the classifier. A large
number of features of redundant or irrelevant information negatively affects the
classification. The RFE feature selection algorithm can effectively select the best
feature subset to improve the classification accuracy.

This paper demonstrates that UAVs with RGB cameras have the advantages of stronger
operability, higher universality, and lower cost, which make them a powerful platform
for wetland vegetation monitoring and mapping. The UAV images with high temporal
and spatial resolution provide rich image features that can be used to produce wetland
vegetation classification at the species level, overcoming the difficulties of traditional
wetland vegetation surveys. The method proposed in this paper is more convenient to
implement from data acquisition to data processing, simultaneously achieving rapid and
high-precision wetland vegetation mapping without the sufficient professional background
knowledge of relevant personnel. The approach presented in this paper can be applied to
execute long-term and accurate dynamic monitoring of wetland vegetation.

Author Contributions: Conceptualization, R.Z. and C.Y.; data curation, R.Z., C.Y., E.L., J.Y. and Y.X.;
formal analysis, R.Z., C.Y. and E.L.; funding acquisition, C.Y.; methodology, R.Z. and C.Y.; software,
R.Z.; supervision, E.L. and C.Y.; writing—original draft, R.Z.; writing—review and editing, R.Z., C.Y.,
E.L. and X.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
No. 41801100).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We want to express our gratitude to the Honghu Wetland Nature Reserve
Administration for the access to the study area and field facilities. In addition, we thank Key
Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei for providing the
UAV equipment and data processing software.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zedler, J.B.; Kercher, S. Wetland resources: Status, trends, ecosystem services, and restorability. Annu. Rev. Environ. Resour. 2005,

30, 39–74. [CrossRef]
2. Zhang, Y.L.; Lu, D.S.; Yang, B.; Sun, C.H.; Sun, M. Coastal wetland vegetation classification with a landsat thematic mapper

image. Int. J. Remote Sens. 2011, 32, 545–561. [CrossRef]
3. Taddeo, S.; Dronova, I. Indicators of vegetation development in restored wetlands. Ecol. Indic. 2018, 94, 454–467. [CrossRef]
4. Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland

vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [CrossRef]
5. Adeli, S.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.J.; Brisco, B.; Tamiminia, H.; Shaw, S. Wetland monitoring using sar data:

A meta-analysis and comprehensive review. Remote Sens. 2020, 12, 2190. [CrossRef]
6. Boon, M.A.; Greenfield, R.; Tesfamichael, S. Wetland assessment using unmanned aerial vehicle (uav) photogrammetry. In

Proceedings of the 23rd Congress of the International-Society-for-Photogrammetry-and-Remote-Sensing (ISPRS), Prague, Czech
Republic, 12–19 July 2016; pp. 781–788.

http://doi.org/10.1146/annurev.energy.30.050504.144248
http://doi.org/10.1080/01431160903475241
http://doi.org/10.1016/j.ecolind.2018.07.010
http://doi.org/10.1007/s11273-009-9169-z
http://doi.org/10.3390/rs12142190


Remote Sens. 2021, 13, 4910 18 of 21

7. Guo, M.; Li, J.; Sheng, C.L.; Xu, J.W.; Wu, L. A review of wetland remote sensing. Sensors 2017, 17, 777. [CrossRef] [PubMed]
8. Lane, C.R.; Liu, H.X.; Autrey, B.C.; Anenkhonov, O.A.; Chepinoga, V.V.; Wu, Q.S. Improved wetland classification using

eight-band high resolution satellite imagery and a hybrid approach. Remote Sens. 2014, 6, 12187–12216. [CrossRef]
9. Martinez, J.M.; Le Toan, T. Mapping of flood dynamics and spatial distribution of vegetation in the amazon floodplain using

multitemporal sar data. Remote Sens. Environ. 2007, 108, 209–223. [CrossRef]
10. Pengra, B.W.; Johnston, C.A.; Loveland, T.R. Mapping an invasive plant, phragmites australis, in coastal wetlands using the eo-1

hyperion hyperspectral sensor. Remote Sens. Environ. 2007, 108, 74–81. [CrossRef]
11. Wright, C.; Gallant, A. Improved wetland remote sensing in yellowstone national park using classification trees to combine tm

imagery and ancillary environmental data. Remote Sens. Environ. 2007, 107, 582–605. [CrossRef]
12. Hess, L.L.; Melack, J.M.; Novo, E.; Barbosa, C.C.F.; Gastil, M. Dual-season mapping of wetland inundation and vegetation for the

central amazon basin. Remote Sens. Environ. 2003, 87, 404–428. [CrossRef]
13. Belluco, E.; Camuffo, M.; Ferrari, S.; Modenese, L.; Silvestri, S.; Marani, A.; Marani, M. Mapping salt-marsh vegetation by

multispectral and hyperspectral remote sensing. Remote Sens. Environ. 2006, 105, 54–67. [CrossRef]
14. Lu, B.; He, Y.H. Species classification using unmanned aerial vehicle (uav)-acquired high spatial resolution imagery in a

heterogeneous grassland. ISPRS-J. Photogramm. Remote Sens. 2017, 128, 73–85. [CrossRef]
15. Ruwaimana, M.; Satyanarayana, B.; Otero, V.; Muslim, A.M.; Syafiq, A.M.; Ibrahim, S.; Raymaekers, D.; Koedam, N.; Dahdouh-

Guebas, F. The advantages of using drones over space-borne imagery in the mapping of mangrove forests. PLoS ONE 2018, 13,
e0200288. [CrossRef] [PubMed]

16. Zhang, S.M.; Zhao, G.X.; Lang, K.; Su, B.W.; Chen, X.N.; Xi, X.; Zhang, H.B. Integrated satellite, unmanned aerial vehicle (uav)
and ground inversion of the spad of winter wheat in the reviving stage. Sensors 2019, 19, 1485. [CrossRef] [PubMed]

17. Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11,
138–146. [CrossRef]

18. Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation
monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [CrossRef]

19. Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B.
Intercomparison of uav, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990.
[CrossRef]

20. Joyce, K.E.; Anderson, K.; Bartolo, R.E. Of course we fly unmanned-we’re women! Drones 2021, 5, 21. [CrossRef]
21. Diez, Y.; Kentsch, S.; Fukuda, M.; Caceres, M.L.L.; Moritake, K.; Cabezas, M. Deep learning in forestry using uav-acquired rgb

data: A practical review. Remote Sens. 2021, 13, 2837. [CrossRef]
22. Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining uav-based plant height from

crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf.
2015, 39, 79–87. [CrossRef]

23. Jiang, X.P.; Gao, M.; Gao, Z.Q. A novel index to detect green-tide using uav-based rgb imagery. Estuar. Coast. Shelf Sci. 2020, 245,
106943. [CrossRef]

24. Sugiura, R.; Tsuda, S.; Tamiya, S.; Itoh, A.; Nishiwaki, K.; Murakami, N.; Shibuya, Y.; Hirafuji, M.; Nuske, S. Field phenotyping
system for the assessment of potato late blight resistance using rgb imagery from an unmanned aerial vehicle. Biosyst. Eng. 2016,
148, 1–10. [CrossRef]

25. Dronova, I.; Kislik, C.; Dinh, Z.; Kelly, M. A review of unoccupied aerial vehicle use in wetland applications: Emerging
opportunities in approach, technology, and data. Drones 2021, 5, 45. [CrossRef]

26. Bhatnagar, S.; Gill, L.; Ghosh, B. Drone image segmentation using machine and deep learning for mapping raised bog vegetation
communities. Remote Sens. 2020, 12, 2602. [CrossRef]

27. Corti Meneses, N.; Brunner, F.; Baier, S.; Geist, J.; Schneider, T. Quantification of extent, density, and status of aquatic reed beds
using point clouds derived from uav-rgb imagery. Remote Sens. 2018, 10, 1869. [CrossRef]

28. Fu, B.L.; Liu, M.; He, H.C.; Lan, F.W.; He, X.; Liu, L.L.; Huang, L.K.; Fan, D.L.; Zhao, M.; Jia, Z.L. Comparison of optimized
object-based rf-dt algorithm and segnet algorithm for classifying karst wetland vegetation communities using ultra-high spatial
resolution uav data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 15. [CrossRef]

29. Dragut, L.; Tiede, D.; Levick, S.R. Esp: A tool to estimate scale parameter for multiresolution image segmentation of remotely
sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [CrossRef]

30. Zheng, Y.H.; Wu, J.P.; Wang, A.Q.; Chen, J. Object- and pixel-based classifications of macroalgae farming area with high spatial
resolution imagery. Geocarto Int. 2018, 33, 1048–1063. [CrossRef]

31. Estoque, R.C.; Murayama, Y.; Akiyama, C.M. Pixel-based and object-based classifications using high- and medium-spatial-
resolution imageries in the urban and suburban landscapes. Geocarto Int. 2015, 30, 1113–1129. [CrossRef]

32. Pande-Chhetri, R.; Abd-Elrahman, A.; Liu, T.; Morton, J.; Wilhelm, V.L. Object-based classification of wetland vegetation using
very high-resolution unmanned air system imagery. Eur. J. Remote Sens. 2017, 50, 564–576. [CrossRef]

33. Abeysinghe, T.; Milas, A.S.; Arend, K.; Hohman, B.; Reil, P.; Gregory, A.; Vazquez-Ortega, A. Mapping invasive phragmites
australis in the old woman creek estuary using uav remote sensing and machine learning classifiers. Remote Sens. 2019, 11, 1380.
[CrossRef]

http://doi.org/10.3390/s17040777
http://www.ncbi.nlm.nih.gov/pubmed/28379174
http://doi.org/10.3390/rs61212187
http://doi.org/10.1016/j.rse.2006.11.012
http://doi.org/10.1016/j.rse.2006.11.002
http://doi.org/10.1016/j.rse.2006.10.019
http://doi.org/10.1016/j.rse.2003.04.001
http://doi.org/10.1016/j.rse.2006.06.006
http://doi.org/10.1016/j.isprsjprs.2017.03.011
http://doi.org/10.1371/journal.pone.0200288
http://www.ncbi.nlm.nih.gov/pubmed/30020959
http://doi.org/10.3390/s19071485
http://www.ncbi.nlm.nih.gov/pubmed/30934683
http://doi.org/10.1890/120150
http://doi.org/10.1109/TGRS.2008.2010457
http://doi.org/10.3390/rs70302971
http://doi.org/10.3390/drones5010021
http://doi.org/10.3390/rs13142837
http://doi.org/10.1016/j.jag.2015.02.012
http://doi.org/10.1016/j.ecss.2020.106943
http://doi.org/10.1016/j.biosystemseng.2016.04.010
http://doi.org/10.3390/drones5020045
http://doi.org/10.3390/rs12162602
http://doi.org/10.3390/rs10121869
http://doi.org/10.1016/j.jag.2021.102553
http://doi.org/10.1080/13658810903174803
http://doi.org/10.1080/10106049.2017.1333531
http://doi.org/10.1080/10106049.2015.1027291
http://doi.org/10.1080/22797254.2017.1373602
http://doi.org/10.3390/rs11111380


Remote Sens. 2021, 13, 4910 19 of 21

34. Feng, Q.L.; Liu, J.T.; Gong, J.H. Uav remote sensing for urban vegetation mapping using random forest and texture analysis.
Remote Sens. 2015, 7, 1074–1094. [CrossRef]

35. Torres-Sanchez, J.; Pena, J.M.; de Castro, A.I.; Lopez-Granados, F. Multi-temporal mapping of the vegetation fraction in early-
season wheat fields using images from uav. Comput. Electron. Agric. 2014, 103, 104–113. [CrossRef]

36. Blaschke, T. Object based image analysis for remote sensing. ISPRS-J. Photogramm. Remote Sens. 2010, 65, 2–16. [CrossRef]
37. Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing fully convolutional networks, random forest, support vector

machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small
unmanned aircraft system. GISci. Remote Sens. 2018, 55, 243–264. [CrossRef]

38. Geng, R.F.; Jin, S.G.; Fu, B.L.; Wang, B. Object-based wetland classification using multi-feature combination of ultra-high spatial
resolution multispectral images. Can. J. Remote Sens. 2020, 46, 784–802. [CrossRef]

39. Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T. Random forests for classification in ecology. Ecology 2007, 88,
2783–2792. [CrossRef]

40. Zhang, C.Y.; Xie, Z.X. Object-based vegetation mapping in the kissimmee river watershed using hymap data and machine
learning techniques. Wetlands 2013, 33, 233–244. [CrossRef]

41. Zhou, X.Z.; Wen, H.J.; Zhang, Y.L.; Xu, J.H.; Zhang, W.G. Landslide susceptibility mapping using hybrid random forest with
geodetector and rfe for factor optimization. Geosci. Front. 2021, 12, 101211. [CrossRef]

42. Balha, A.; Mallick, J.; Pandey, S.; Gupta, S.; Singh, C.K. A comparative analysis of different pixel and object-based classification
algorithms using multi-source high spatial resolution satellite data for lulc mapping. Earth Sci. Inform. 2021, 14, 2231–2247.
[CrossRef]

43. Gibril, M.B.A.; Shafri, H.Z.M.; Hamedianfar, A. New semi-automated mapping of asbestos cement roofs using rule-based
object-based image analysis and taguchi optimization technique from worldview-2 images. Int. J. Remote Sens. 2017, 38, 467–491.
[CrossRef]

44. Qian, Y.G.; Zhou, W.Q.; Yan, J.L.; Li, W.F.; Han, L.J. Comparing machine learning classifiers for object-based land cover
classification using very high resolution imagery. Remote Sens. 2015, 7, 153–168. [CrossRef]

45. Laliberte, A.S.; Browning, D.M.; Rango, A. A comparison of three feature selection methods for object-based classification of
sub-decimeter resolution ultracam-l imagery. Int. J. Appl. Earth Obs. Geoinf. 2012, 15, 70–78. [CrossRef]

46. Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less is more: Optimizing classification
performance through feature selection in a very-high-resolution remote sensing object-based urban application. GISci. Remote
Sens. 2018, 55, 221–242. [CrossRef]

47. Cao, J.J.; Leng, W.C.; Liu, K.; Liu, L.; He, Z.; Zhu, Y.H. Object-based mangrove species classification using unmanned aerial
vehicle hyperspectral images and digital surface models. Remote Sens. 2018, 10, 89. [CrossRef]

48. Zuo, P.P.; Fu, B.L.; Lan, F.W.; Xie, S.Y.; He, H.C.; Fan, D.L.; Lou, P.Q. Classification method of swamp vegetation using uav
multispectral data. China Environ. Sci. 2021, 41, 2399–2410.

49. Boon, M.A.; Tesfamichael, S. Determination of the present vegetation state of a wetland with uav rgb imagery. In Proceedings
of the 37th International Symposium on Remote Sensing of Environment, Tshwane, South Africa, 8–12 May 2017; Copernicus
Gesellschaft Mbh: Tshwane, South Africa; pp. 37–41.

50. Zhang, T.; Ban, X.; Wang, X.L.; Cai, X.B.; Li, E.H.; Wang, Z.; Yang, C.; Zhang, Q.; Lu, X.R. Analysis of nutrient transport and
ecological response in honghu lake, china by using a mathematical model. Sci. Total Environ. 2017, 575, 418–428. [CrossRef]

51. Liu, Y.; Ren, W.B.; Shu, T.; Xie, C.F.; Jiang, J.H.; Yang, S. Current status and the long-term change of riparian vegetation in last fifty
years of lake honghu. Resour. Environ. Yangtze Basin 2015, 24, 38–45.

52. Flanders, D.; Hall-Beyer, M.; Pereverzoff, J. Preliminary evaluation of ecognition object-based software for cut block delineation
and feature extraction. Can. J. Remote Sens. 2003, 29, 441–452. [CrossRef]

53. Pena-Barragan, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural
features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [CrossRef]

54. Gao, Y.; Mas, J.F.; Maathuis, B.H.P.; Zhang, X.M.; Van Dijk, P.M. Comparison of pixel-based and object-oriented image classification
approaches - a case study in a coal fire area, wuda, inner mongolia, china. Int. J. Remote Sens. 2006, 27, 4039–4055.

55. Lin, F.F.; Zhang, D.Y.; Huang, Y.B.; Wang, X.; Chen, X.F. Detection of corn and weed species by the combination of spectral, shape
and textural features. Sustainability 2017, 9, 1335. [CrossRef]

56. Zhang, H.X.; Li, Q.Z.; Liu, J.G.; Du, X.; Dong, T.F.; McNairn, H.; Champagne, C.; Liu, M.X.; Shang, J.L. Object-based crop
classification using multi-temporal spot-5 imagery and textural features with a random forest classifier. Geocarto Int. 2018, 33,
1017–1035. [CrossRef]

57. Zhang, L.; Liu, Z.; Ren, T.W.; Liu, D.Y.; Ma, Z.; Tong, L.; Zhang, C.; Zhou, T.Y.; Zhang, X.D.; Li, S.M. Identification of seed maize
fields with high spatial resolution and multiple spectral remote sensing using random forest classifier. Remote Sens. 2020, 12, 362.
[CrossRef]

58. Al-Najjar, H.A.H.; Kalantar, B.; Pradhan, B.; Saeidi, V.; Halin, A.A.; Ueda, N.; Mansor, S. Land cover classification from fused dsm
and uav images using convolutional neural networks. Remote Sens. 2019, 11, 1461. [CrossRef]

59. Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric.
2008, 63, 282–293. [CrossRef]

http://doi.org/10.3390/rs70101074
http://doi.org/10.1016/j.compag.2014.02.009
http://doi.org/10.1016/j.isprsjprs.2009.06.004
http://doi.org/10.1080/15481603.2018.1426091
http://doi.org/10.1080/07038992.2021.1872374
http://doi.org/10.1890/07-0539.1
http://doi.org/10.1007/s13157-012-0373-x
http://doi.org/10.1016/j.gsf.2021.101211
http://doi.org/10.1007/s12145-021-00685-4
http://doi.org/10.1080/01431161.2016.1266109
http://doi.org/10.3390/rs70100153
http://doi.org/10.1016/j.jag.2011.05.011
http://doi.org/10.1080/15481603.2017.1408892
http://doi.org/10.3390/rs10010089
http://doi.org/10.1016/j.scitotenv.2016.09.188
http://doi.org/10.5589/m03-006
http://doi.org/10.1016/j.rse.2011.01.009
http://doi.org/10.3390/su9081335
http://doi.org/10.1080/10106049.2017.1333533
http://doi.org/10.3390/rs12030362
http://doi.org/10.3390/rs11121461
http://doi.org/10.1016/j.compag.2008.03.009


Remote Sens. 2021, 13, 4910 20 of 21

60. Agapiou, A. Vegetation extraction using visible-bands from openly licensed unmanned aerial vehicle imagery. Drones 2020, 4, 27.
[CrossRef]

61. Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation classification. With airborne
high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [CrossRef]

62. Woebbecke, D.M.; Meyer, G.E.; Vonbargen, K.; Mortensen, D.A. Color indexes for weed identification under various soil, residue,
and lighting conditions. Trans. ASAE 1995, 38, 259–269. [CrossRef]

63. Guerrero, J.M.; Pajares, G.; Montalvo, M.; Romeo, J.; Guijarro, M. Support vector machines for crop/weeds identification in maize
fields. Expert Syst. Appl. 2012, 39, 11149–11155. [CrossRef]

64. Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.J.; Burgos-Artizzu, X.P.; Ribeiro, A. Automatic segmentation of relevant textures
in agricultural images. Comput. Electron. Agric. 2011, 75, 75–83. [CrossRef]

65. Du, M.M.; Noguchi, N. Monitoring of wheat growth status and mapping of wheat yield’s within-field spatial variations using
color images acquired from uav-camera system. Remote Sens. 2017, 9, 289. [CrossRef]

66. Wan, L.; Li, Y.J.; Cen, H.Y.; Zhu, J.P.; Yin, W.X.; Wu, W.K.; Zhu, H.Y.; Sun, D.W.; Zhou, W.J.; He, Y. Combining uav-based vegetation
indices and image classification to estimate flower number in oilseed rape. Remote Sens. 2018, 10, 1484. [CrossRef]

67. Calderon, R.; Navas-Cortes, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery
for early, detection of verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens.
Environ. 2013, 139, 231–245. [CrossRef]

68. Xie, B.; Yang, W.N.; Wang, F. A new estimate method for fractional vegetation cover based on uav visual light spectrum. Sci. Surv.
Mapp. 2020, 45, 72–77.

69. Shiraishi, T.; Motohka, T.; Thapa, R.B.; Watanabe, M.; Shimada, M. Comparative assessment of supervised classifiers for land
use-land cover classification in a tropical region using time-series palsar mosaic data. IEEE J. Sel. Top. Appl. Earth Observ. Remote
Sens. 2014, 7, 1186–1199. [CrossRef]

70. Wieland, M.; Pittore, M. Performance evaluation of machine learning algorithms for urban pattern recognition from multi-spectral
satellite images. Remote Sens. 2014, 6, 2912–2939. [CrossRef]

71. Murthy, S.K. Automatic construction of decision trees from data: A multi-disciplinary survey. Data Min. Knowl. Discov. 1998, 2,
345–389. [CrossRef]

72. Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61,
399–409. [CrossRef]

73. Apte, C.; Weiss, S. Data mining with decision trees and decision rules. Futur. Gener. Comp. Syst. 1997, 13, 197–210. [CrossRef]
74. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
75. Gxokwe, S.; Dube, T.; Mazvimavi, D. Leveraging google earth engine platform to characterize and map small seasonal wetlands

in the semi-arid environments of south africa. Sci. Total Environ. 2022, 803, 12. [CrossRef] [PubMed]
76. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
77. Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for

ecological prediction. Ecosystems 2006, 9, 181–199. [CrossRef]
78. Wang, X.F.; Wang, Y.; Zhou, C.W.; Yin, L.C.; Feng, X.M. Urban forest monitoring based on multiple features at the single tree scale

by uav. Urban For. Urban Green. 2021, 58, 10. [CrossRef]
79. Zhou, X.C.; Zheng, L.; Huang, H.Y. Classification of forest stand based on multi-feature optimization of uav visible light remote

sensing. Sci. Silvae Sin. 2021, 57, 24–36.
80. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
81. Hsu, H.H.; Hsieh, C.W.; Lu, M.D. Hybrid feature selection by combining filters and wrappers. Expert Syst. Appl. 2011, 38,

8144–8150. [CrossRef]
82. Wang, A.G.; An, N.; Chen, G.L.; Li, L.; Alterovitz, G. Accelerating wrapper-based feature selection with k-nearest-neighbor.

Knowledge-Based Syst. 2015, 83, 81–91. [CrossRef]
83. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn.

2002, 46, 389–422. [CrossRef]
84. Mao, Y.; Pi, D.Y.; Liu, Y.M.; Sun, Y.X. Accelerated recursive feature elimination based on support vector machine for key variable

identification. Chin. J. Chem. Eng. 2006, 14, 65–72. [CrossRef]
85. Griffith, D.C.; Hay, G.J. Integrating geobia, machine learning, and volunteered geographic information to map vegetation over

rooftops. ISPRS Int. J. Geo-Inf. 2018, 7, 462. [CrossRef]
86. Randelovic, P.; Dordevic, V.; Milic, S.; Balesevic-Tubic, S.; Petrovic, K.; Miladinovic, J.; Dukic, V. Prediction of soybean plant

density using a machine learning model and vegetation indices extracted from rgb images taken with a uav. Agronomy 2020, 10,
1108. [CrossRef]

87. Morgan, G.R.; Wang, C.Z.; Morris, J.T. Rgb indices and canopy height modelling for mapping tidal marsh biomass from a small
unmanned aerial system. Remote Sens. 2021, 13, 3406. [CrossRef]

88. Tian, Y.C.; Huang, H.; Zhou, G.Q.; Zhang, Q.; Tao, J.; Zhang, Y.L.; Lin, J.L. Aboveground mangrove biomass estimation in beibu
gulf using machine learning and uav remote sensing. Sci. Total Environ. 2021, 781. [CrossRef]

89. Dale, J.; Burnside, N.G.; Hill-Butler, C.; Berg, M.J.; Strong, C.J.; Burgess, H.M. The use of unmanned aerial vehicles to determine
differences in vegetation cover: A tool for monitoring coastal wetland restoration schemes. Remote Sens. 2020, 12, 4022. [CrossRef]

http://doi.org/10.3390/drones4020027
http://doi.org/10.14358/PERS.72.7.799
http://doi.org/10.13031/2013.27838
http://doi.org/10.1016/j.eswa.2012.03.040
http://doi.org/10.1016/j.compag.2010.09.013
http://doi.org/10.3390/rs9030289
http://doi.org/10.3390/rs10091484
http://doi.org/10.1016/j.rse.2013.07.031
http://doi.org/10.1109/JSTARS.2014.2313572
http://doi.org/10.3390/rs6042912
http://doi.org/10.1023/A:1009744630224
http://doi.org/10.1016/S0034-4257(97)00049-7
http://doi.org/10.1016/S0167-739X(97)00021-6
http://doi.org/10.1007/BF00994018
http://doi.org/10.1016/j.scitotenv.2021.150139
http://www.ncbi.nlm.nih.gov/pubmed/34525685
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1007/s10021-005-0054-1
http://doi.org/10.1016/j.ufug.2020.126958
http://doi.org/10.1016/j.compeleceng.2013.11.024
http://doi.org/10.1016/j.eswa.2010.12.156
http://doi.org/10.1016/j.knosys.2015.03.009
http://doi.org/10.1023/A:1012487302797
http://doi.org/10.1016/S1004-9541(06)60039-6
http://doi.org/10.3390/ijgi7120462
http://doi.org/10.3390/agronomy10081108
http://doi.org/10.3390/rs13173406
http://doi.org/10.1016/j.scitotenv.2021.146816
http://doi.org/10.3390/rs12244022


Remote Sens. 2021, 13, 4910 21 of 21

90. Lu, J.S.; Eitel, J.U.H.; Engels, M.; Zhu, J.; Ma, Y.; Liao, F.; Zheng, H.B.; Wang, X.; Yao, X.; Cheng, T.; et al. Improving unmanned
aerial vehicle (uav) remote sensing of rice plant potassium accumulation by fusing spectral and textural information. Int. J. Appl.
Earth Obs. Geoinf. 2021, 104, 15. [CrossRef]

91. Jiang, Y.F.; Zhang, L.; Yan, M.; Qi, J.G.; Fu, T.M.; Fan, S.X.; Chen, B.W. High-resolution mangrove forests classification with
machine learning using worldview and uav hyperspectral data. Remote Sens. 2021, 13, 1529. [CrossRef]

92. Liu, H.P.; Zhang, Y.X. Selection of landsat8 image classification bands based on mlc-rfe. J. Indian Soc. Remote Sens. 2019, 47,
439–446. [CrossRef]

93. Ma, L.; Fu, T.Y.; Blaschke, T.; Li, M.C.; Tiede, D.; Zhou, Z.J.; Ma, X.X.; Chen, D.L. Evaluation of feature selection methods for
object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers.
ISPRS Int. J. Geo-Inf. 2017, 6, 51. [CrossRef]

94. Gibson, D.J.; Looney, P.B. Seasonal-variation in vegetation classification on perdido key, a barrier-island off the coast of the florida
panhandle. J. Coast. Res. 1992, 8, 943–956.

95. Zhang, Q. Research progress in wetland vegetation classification by remote sensing. World For. Res. 2019, 32, 49–54.
96. Zhang, X.Y.; Feng, X.Z.; Wang, K. Integration of classifiers for improvement of vegetation category identification accuracy based

on image objects. N. Z. J. Agric. Res. 2007, 50, 1125–1133. [CrossRef]
97. Hao, P.Y.; Wang, L.; Niu, Z. Comparison of hybrid classifiers for crop classification using normalized difference vegetation index

time series: A case study for major crops in north xinjiang, china. PLoS ONE 2015, 10, e0137748. [CrossRef]

http://doi.org/10.1016/j.jag.2021.102592
http://doi.org/10.3390/rs13081529
http://doi.org/10.1007/s12524-018-0932-6
http://doi.org/10.3390/ijgi6020051
http://doi.org/10.1080/00288230709510394
http://doi.org/10.1371/journal.pone.0137748

	Introduction 
	Material and Methods 
	Study Area 
	Data Acquisition and Pre-Processing 
	Study Workflow 
	Image Segmentation 
	Features Derived from DOM and DSM 
	Machine Learning Algorithm Comparison 
	Contribution of Different Types of Features Evaluation 
	Effectiveness Evaluation of Feature Selection 
	Ten Object-Based Classification Scenarios Design and Accuracy Assessment 


	Results and Discussion 
	Analysis of Image Segmentation Results 
	Performance Comparison of Machine Learning Algorithms on Wetland Vegetation Classification 
	Contribution of Different Types of Features to Wetland Vegetation Classification 
	Analysis of Recursive Feature Elimination Results 
	Analysis of the Effectiveness of Feature Selection 
	Comparison of Object-Based Classification Results 

	Conclusions 
	References

