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Abstract: Semantic segmentation is a fundamental task in remote sensing image analysis (RSIA).
Fully convolutional networks (FCNs) have achieved state-of-the-art performance in the task of
semantic segmentation of natural scene images. However, due to distinctive differences between
natural scene images and remotely-sensed (RS) images, FCN-based semantic segmentation methods
from the field of computer vision cannot achieve promising performances on RS images without
modifications. In previous work, we proposed an RS image semantic segmentation framework
SDFCNv1, combined with a majority voting postprocessing method. Nevertheless, it still has some
drawbacks, such as small receptive field and large number of parameters. In this paper, we propose
an improved semantic segmentation framework SDFCNv2 based on SDFCNv1, to conduct optimal
semantic segmentation on RS images. We first construct a novel FCN model with hybrid basic
convolutional (HBC) blocks and spatial-channel-fusion squeeze-and-excitation (SCFSE) modules,
which occupies a larger receptive field and fewer network model parameters. We also put forward a
data augmentation method based on spectral-specific stochastic-gamma-transform-based (SSSGT-
based) during the model training process to improve generalizability of our model. Besides, we
design a mask-weighted voting decision fusion postprocessing algorithm for image segmentation on
overlarge RS images. We conducted several comparative experiments on two public datasets and
a real surveying and mapping dataset. Extensive experimental results demonstrate that compared
with the SDFCNv1 framework, our SDFCNv2 framework can increase the mIoU metric by up to
5.22% while only using about half of parameters.

Keywords: fully convolutional networks (FCNs); convolutional neural networks (CNNs); deep
learning; semantic segmentation; remote sensing; SDFCN

1. Introduction

Due to the rapid and continuous development of space technology, remote sensing
image analysis (RSIA) has become a popular research field for earth observation [1,2].
As a fundamental task among RSIA, semantic segmentation on remote sensing images,
especially very high-resolution (VHR) remote sensing images, offers a variety of opportu-
nities and applications for land use and land cover (LULC) investigation [3], environment
monitoring [4], precision agriculture [5], urban planning [6], meteorology [7], etc.

Semantic segmentation aims to interpret images by segmenting them into semantic
objects and assigning each pixel to one of the predetermined category. In recent years, with
the continuous development and improvement of deep learning, fully convolutional neural
networks (FCNs) achieve more accurate and stable performance in semantic segmentation
tasks than traditional methods [8].
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FCNs were proposed by Long et al. in pixel-wise semantic segmentation tasks in
2015 [9], and they usually consist of two parts: encoders and decoders. Encoders are similar
to classic convolutional neural networks (CNNs), which aim to excavate deep abstract
features and generate feature maps with lower spatial dimensions and more channel
information. Decoders replace fully connected layers in CNNs with deconvolutional
or upsampling layers, convert the feature map into a classification map with the same
size as the input, and perform pixel-level predictions on images. Typical FCN models
based on the encoder–decoder architecture (EDA) have been developed and proved to be
effective in segmenting multi-class objects. Existing EDA-based FCN models for semantic
segmentation tasks on natural scene images in computer vision (CV) community include
FCN-8s [9], U-Net [10], SegNet [11], PSPNet [12], RefineNet [13], and DeepLab [14]. In
addition to the common serial EDA, there is another multi-branch parallel architecture
named HRNetV2 for labeling pixels, which is modified from the high-resolution network
(HRNet) originally developed for human pose estimation [15].

In the field of RSIA, researchers have made remarkable efforts in semantic segmenta-
tion [16–23]. Many methods simply transplant network structures and strategies from the
CV community and apply them roughly to RS images. Neglecting the subtle differences
between natural scene images and RS images may lead to a series of inapplicability of these
methods, resulting in a decrease in classification accuracy. Compared with natural scene
images, VHR RS images usually possess distinctive characteristics such as top-down data
acquisition perspective, overlarge image size, different image resolutions, and variable
illumination conditions [24–26]. Some researchers have improved the encoder–decoder
structure of FCNs to balance strong semantic information and accurate boundary localiza-
tion [27–30]. For example, in a previous work [31], we proposed a VHR RS image semantic
segmentation framework based on the SDFCNv1 (Symmetrical dense-shortcut deep fully
convolutional networks) model and postprocessing methods, in an attempt to eliminate
the “salt and pepper” phenomenon and block effects in the prediction results. However,
the small model input size and receptive field (RF) limit the prediction and generalization
capabilities of these models [32]. Overfitting is another problem that limits the FCN model.
Oversize model with a large number of parameters requires more computing resources.
When training on a small-scale dataset with few categories, such as the ISPRS 2D semantic
labeling datasets [33], models are more likely to fall into overfitting. Besides, other factors
like seasonal changes, diverse image resolution and illumination conditions may also
cause model instability. To obtain more consistent results, ensemble learning methods
and CRF-based postprocessing methods are introduced in VHR image semantic segmenta-
tion [34–36]. Nevertheless, they cost extra training time and have little improvement in
inference accuracy, which limit their wide application.

In order to overcome the mentioned drawbacks of existing methods, we consequently
propose an improved RS image semantic segmentation framework SDFCNv2 (the second
version of SDFCN) in this paper. We conduct a series of experiments to evaluate our
framework on two public datasets and a real surveying and mapping dataset. The main
contributions are as follows:

1. We design a novel FCN backbone network with hybrid basic convolutional (HBC)
blocks and spatial-channel-fusion squeeze-and-excitation (SCFSE) modules for feature
recalibration to obtain larger receptive field and reduce network parameters.

2. We propose the SDFCNv2 framework, which includes a data augmentation method
based on spectral-specific stochastic-gamma-transform (SSSGT) to improve general-
izability of our model, and a mask-weighted voting decision fusion postprocessing
algorithm on overlarge RS image segmentation, in order to balance the final prediction
accuracy and computational cost.

The rest paper contains five sections. Section 2 provides related works of FCN-based
semantic segmentation frameworks in the RSIA field. In Section 3, we introduce the
SDFCNv2 framework, including HBC blocks, SCFSE modules, SSSGT data augmentation
method, and the mask-weighted voting decision fusion postprocessing methods. The
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results and corresponding analysis of experiments are carried out in Sections 4 and 5.
Conclusions and future works are drawn in Section 6.

2. Related Works

In this section, we draw attention to mainstream methods, focusing on how to expand
receptive field of FCN models, as well as overview methods for feature recalibration. Finally,
we briefly introduce the SDFCNv1 framework (the first version of SDFCN) proposed in [31].

2.1. Receptive Field (RF) of FCNS

RF is denoted as the region size mapped on the original input image by the pixels
in the specific feature map output by each layer of the CNN/FCN model [37]. Larger
RF can significantly improve prediction performance and has been widely applied in
Inception and ResNet [38,39]. Commonly used simple methods to enlarge RF are to
increase model input size and perform downsampling operation (known as pooling layers
in CNN/FCN models) [40]. However, overlarge model input size directly results in a huge
cost of computational resources, which makes it impossible to train such a large model
under limited video memory. Besides, in pixel-wise vision tasks like semantic segmentation,
pooling operations conducted in FCN models require compensatory upsampling operations
to recover the feature map to the same resolution as the model input, which may lead to
spatial information loss in the recovery process.

Dilated convolution, or atrous convolution, is an effective way to expand receptive
field by simply inserting holes between each pixel of a convolutional filter without re-
ducing the resolution of the feature map [41,42]. As shown in Figure 1, a common 3× 3
convolutional filter kernel (kernel size k is set to 3) without dilation operation is identical to
dilated convolution of rate 1 (rate r is denoted as 1). When rate r increases, paddings with
size of r− 1 are inserted into the convolutional kernel, and thus the RF size (denoted as RFs)
of the current layer will be enlarged linearly, which can be summarized in an equation like

RFs = k + (k− 1)(r− 1) (1)

To expand the RF of the network models effectively, researchers have dedicated to
develop different forms and filter combinations of dilated convolutions. Yu et al. developed
a dilated convolutional module designed for dense prediction, in order to aggregate
multi-scale contextual information without losing resolution or coverage [43]. Dilated
residual networks (DRNs) proposed in [44] outperform non-dilated counterparts in image
classification, and an approach was developed to eliminate gridding artifacts introduced
by dilation. Chen et al. proposed the DeepLab v3+ model, which extended DeepLab v3
by adding a simple yet effective decoder module and applied the depthwise separable
convolution to Atrous Spatial Pyramid Pooling (ASPP) and decoder modules [41]. Liu et al.
built a fast and accurate detector upon the proposed RF Block (RFB) module, which takes
the relationship between the size and eccentricity of RF into account to enhance the feature
discriminability and robustness [45]. Mehta et al. introduced the ESPNetv2 to effectively
encode the spatial information in images by learning representations from a large effective
receptive field [46]. Takikawa et al. proposed a two-stream CNN architecture for semantic
segmentation called Gated-SCNN, which explicitly used gates structures to wire shape
information and classical information in parallel [47]. Li et al. proposed the TridentNet
by constructing a parallel multi-branch architecture in which each branch shares the same
transformation parameters but with different receptive fields in object detection tasks [48].

In the RSIA field, the authors of [49] designed the 3-D atrous denoising CNN for hy-
perspectral images denoising, which enlarges RF without significantly increasing network
parameters. To address the pairwise semantic stereo task, the authors of [50] proposed a
multi-level fusion framework cooperating disparity features from pyramid stereo matching
network with deep semantic features. In order to tackle grid artifacts caused by dilated
convolutions and reach a compromise between small and large objects in RSIA, the au-
thors of [51] proposed adaptive effective receptive convolution (AERFC) for VHR RS
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images, which controls the sampling location of convolution and adjusts the RF without
significantly increasing model parameter and computational cost.
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Figure 1. Convolutional layer with different dilated rates. Region covered in dark blue indicates the
receptive field. When r = 1, the RF size of a 3× 3 convolutional filter is equal to 3. When r = 2, the RF
size increase to 5. When r = 3, the RF size is equal to 7.

2.2. Feature Recalibration Modules

By stacking a series of nonlinear convolutional and downsampling layers, FCNs are
capable of capturing hierarchical patterns with receptive fields of input images. However,
current convolutional filters of networks are still facing with the low utilization problems.
Recent researchers have investigated a different aspect of the network architecture design
called attention mechanism, also known as feature recalibration [52]. Within convolutional
layers of network models, the attention mechanism not only guides these layers where to
focus, it also improves the representation of interests by focusing on informative features
and suppressing less useful ones. Through explicitly modeling the interdependencies of
convolutional features along channel and spatial dimensions, feature recalibration can
improve the representational ability of networks with a few additional network parameters.

The authors of [53] designed an attention-based architecture called Squeeze-and-
Excitation (SE) block (shown in Figure 2a), which adaptively recalibrates channel-wise
feature responses by modeling interdependencies between channels. Given a feature map
with the size of B× H ×W × N, the module first squeezes the input feature map into a
B× 1× 1× N channel-wise descriptor using global average pooling operation by forming
a bottleneck structure, where B denotes the batch size, W, H, and N represent width,
height, and number of channels, respectively. The bottleneck structure contains two fully
connected layers and non-linearity activation layers, where the first dense layer reduces
the input dimension of channel with a certain reduction ratio (the reduction ratio is set
to 4 in Figure 2a), and the second dense layer is used to restore the dimensionality. The
final output of the SE block is obtained by rescaling the transformation output with the
activations by dot product.

In [54], Roy et al. further introduced variants of SE modules focusing on medical
image semantic segmentation, naming spatial and channel squeeze-and-excitation (scSE)
block (shown in Figure 2b), which not only learns channel-wise information, but also
recalibrates feature maps in spatial dimension concurrently. In [55], Woo et al. proposed
another attention-based block named Convolutional Block Attention Module (CBAM),
which sequentially infers attention maps along channel and spatial dimensions, then the
attention maps are multiplied to the input feature map for adaptive feature refinement.
In [56], Fu et al. proposed a Dual Attention Network (DANet) to integrate local features
with their global dependencies. Through appending two types of attention modules on
top of FCN model, namely the position attention (PA) module and channel attention
(CA) module, they can model the semantic interdependencies respectively in spatial and
channel dimensions.
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Figure 2. SE block and scSE block. (a) SE block; (b) scSE block.

2.3. Sdfcnv1 Model

In [31], we have proposed the SDFCNv1 model (the first version of SDFCN) combined
with a postprocessing method based on an overlay fusion strategy with simple majority
voting strategy. The SDFCNv1 model is conducted based on a symmetrical Encoder–
Decoder structure. The main modules of SDFCNv1 are stacked by several shortcut blocks.
Shortcut connections linked between encoders and decoders help the gradient flow from
the convolutional layers in decoder to the corresponding convolutional layers in encoder
during back-propagation.

Experiments of inner ablation study and external comparison are conducted on
two open semantic segmentation datasets: ISPRS Vaihingen dataset and the Potsdam
dataset [33]. Despite the SDFCNv1 framework got promising results in two open semantic
segmentation datasets, the receptive field of the model is relatively limited (see Section V-C
in [31]). The input size of model is only set to 128 × 128 pixels, pooling layers are adopted
in the constructed model instead of any dilation operation. Apart from this, the number of
parameters in SDFCNv1 model exceed 170.86 M according to Table 1. Overlarge model size
costs too much computation resources and limits the increase in the size of model input. In
this paper, we seek and introduce several advanced structures and modules based on the
SDFCNv1 model to improve the semantic segmentation performance on RS images.

Table 1. The number of parameters and compressed model file size of each FCN model

Model # of Parameters Model File Size

FCN-8s 184,631,780 704.39 MB
PSPNet 47,346,560 181.15 MB
Deeplab v3+ 41,254,358 158.39 MB
HRNetV2 9,524,696 37.12 MB
SDFCNv1 44,705,118 170.86 MB

SDFCNv2 18,606,430 71.42 MB
SDFCNv2 + SE 19,638,622 75.47 MB
SDFCNv2 + scSE 19,643,998 75.59 MB
SDFCNv2 + SCFSE 19,638,982 75.88 MB

3. SDFCNv2 Architecture

In this section, we introduce the SDFCNv2 framework, which is an improved version
of the previously proposed SDFCNv1 framework. Our SDFCNv2 framework includes
hybrid basic convolutional blocks to enlarge receptive field, new-designed Squeeze-and-
Excitation modules for feature recalibration, a spectral-specific stochastic gamma transform-
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based (SSSGT-based) data augmentation method, and a decision fusion procedure through
mask-weighted voting.

3.1. Hybrid Basic Convolutional (HBC) Block

In general, the model in our proposed framework shares a similar architecture with SD-
FCNv1, as shown in Figure 3. The structural difference between SDFCNv1 and SDFCNv2
first lies in the basic convolutional blocks.

The encoder and decoder of the FCN model are usually stacked by multiple basic
blocks. Each basic block consists of one or more convolutional layers, Batch Normalization
(BN) layers, and an activation layer. The pooling layers are distributed between the basic
blocks, enabling the model to extract multi-scale features.

Encoder SoftmaxInput Decoder Output

Conv Layer MaxPooling Hybrid Basic Block UpSampling Softmax

512×512 128×128 64×64 128×128 256×256 512×512 512×512 512×512256×256512×512

Identity Mapping Hybrid Basic Block

Figure 3. The backbone structure of SDFCN v2 model. The black arrow in the figure indicates a
shortcut connection.

In our SDFCNv2 model, following the principles of reducing parameters and ex-
panding receptive field, we design a hybrid basic convolutional (HBC) block with dilated
convolutional layers and a depthwise convolutional layer. Figure 4a denotes the structure
of the HBC block. The HBC block in SDFCNv2 contains a main branch (the dashed box
on the left of the Figure 4a) and a shortcut branch (the dashed box on the right of the
Figure 4a). The main branch of the HBC block first splits input feature maps into four
small branches by four dilated convolutional layers with different dilated rates of 1, 2, 3,
and 5, which can eliminate gridding effect caused by accumulatively adopting dilation
layers with single rate in a model [44]. Then, four branches are concatenated and sent to
a depthwise convolutional layer. The main branch can be written in form of a function
HBCmain(·) as follows:

HBCmain(x) = BN( ∑
i∈{1,2,3,5}

DC3×3(Convi
3×3(x, W1), W2))) (2)

where x is the input feature map, DC3×3(·) denotes a depthwise convolution operator with
a window size of 3× 3, Convi

3×3(·) denotes a dilated convolution with a dilated rate of i,
W1 and W2 indicate weights to be trained, and BN means the batch normalization process.
The shortcut branch in HBC blocks can be represented by HBCshortcut(·):

HBCshortcut(x) = BN(Conv1×1(x, W0)) (3)

where Conv1×1(·) denotes a convolution operator with a window size of 1× 1 and W0
denotes the weight parameters. The output of one HBC block can be denoted as HBC(·):

HBC(x) = Relu(HBCmain(x) + HBCshortcut(x)) (4)

where Relu(x) = max(x, 0).
Multiple HBC blocks with identity mapping as a shortcut branch (called identity

mapping basic blocks, IMHBC) can be stacked to make model deeper. The authors of [57]
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proved that identity mapping will not cause the gradient to vanish. The function of shortcut
branch of the identity mapping basic block IMHBCshortcut(·) is as follows:

IMHBCshortcut(x) = x (5)

Similarly, the output of one IMHBC block can be represented by IMHBC(·):

IMHBC(x) = Relu(HBCmain(x) + IMHBCshortcut(x)) (6)

Consequently, there are two or three identity mapping basic blocks after each HBC
block in one block group Group(x), as shown in Figure 3.

Group(x) = MaxPooling(IMHBC(IMHBC(HBC(x)))) (7)

Input

+

ReLU

Output

BN

BN

Conv 
N × 1×1

Dilation rate: 1

Conv 
0.25N×3×3

Dilation rate: 1
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(a)

Input

+
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Output
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0.25N×3×3
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0.25N×3×3
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SCFSE Module

Depthwise Conv 
3×3
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(b)

Figure 4. Structures of the Hybrid Basic Convolutional (HBC) Block and the Identity Mapping Hybrid
Basic Convolutional (IMHBC) Block. (a) Hybrid Basic Convolutional (HBC) Block; (b) Identity
Mapping Hybrid Basic Convolutional (IMHBC) Block.
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3.2. Spatial and Channel Fusion Squeeze-and-Excitation (SCFSE) Module

To improve the performance of the HBC block, we further propose an attention-based
spatial and channel fusion Squeeze-and-Excitation (SCFSE) module to recalibrate feature
maps in terms of channel and space. Figure 5 presents the structure of SCFSE module,
which contains three branches. We suppose the input data of the SCFSE module has a
size of B×W × H × N. The left branch (denoted as the Channel-wise branch in Figure 5)
has the same function as the SE block [53], and is used to recalibrate feature maps in a
channel-wise manner and generate the weight of each channel. Unlike the scSE block [54],
the two branches on the right side of the SCFSE module (denoted as the Spatial-wise
branches in Figure 5) are used to recalibrate features on the X-axis (the horizontal axis) and
Y-axis (the vertical axis). Considering to take full advantage of adjacency, a 1-D convolution
operator is used instead of the fully connected (Dense) layer. The three branches are merged
through an average fusion process, and the final output of the SCFSE module is obtained
by multiplying the original input data by element.

Input
B × H ×W × N

Output
B × H ×W × N

Average Fusion
B × H ×W × N

×

Channel-wise Spatial-wise

Global Average Pooling
Channel-Axis

B × N

Dense
Nodes：N/4

B × N/4

Dense
Nodes ：N

B × N

ReLU

Sigmoid
B × 1 × 1 × N

Global Average Pooling
X-Axis

B ×W

1D Conv
filter: 1，kernel: 5. stride: 2

B ×W/2

1D Conv
filter: 1，kernel: 5. stride: 1

B ×W

ReLU

Sigmoid
B × 1 ×W × 1

1D UpSampling
B ×W

Global Average Pooling
Y-Axis

B × H

1D Conv 
filter: 1，kernel: 5. stride: 2

B × H/2

1D Conv
filter: 1，kernel: 5. stride: 1

B × H

ReLU

Sigmoid
B × H × 1 × 1

1D UpSampling
B × H

Figure 5. Spatial and Channel Fusion Squeeze-and-Excitation (SCFSE) Module. The Channel-wise
branch is used to recalibrate feature map in a channel-wise manner. The Spatial-wise branches are
used to recalibrate features on the X-axis and Y-axis, respectively.

By inserting an SCFSE module in the main branch of the HBC block, the utiliza-
tion of different filters of the SDFCNv2 model can be improved, at the cost of adding a
small number of parameters. As shown in Table 1, the size of the SDFCNv2 model is
almost half the size of the SDFCNv1 model, while the SCFSE module only adds 5.5% of
additional parameters.

3.3. Spectral-Specific Stochastic-Gamma-Transform-Based Data Augmentation

In SDFCNv1 framework, we adopt three data augmentation methods:

• Random scaling in the range of [1, 1.2];
• Random translation by [−5, 5] pixels;
• Random vertically and horizontally flipping.

However, these three methods only focus on geometry transformations. Facing with
seasonal changes, diverse image resolution, and illumination conditions, etc., it may cause
significant differences in RS images and affect the model training process. In this section,
we conduct a new data augmentation method for multi-spectral images, called spectral-
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specific stochastic gamma transform (SSSGT), which aims to simulate real multi-source
data owing to limited training samples and avoid models overfitting.

Gamma transform is a common nonlinear operation used to adjust the luminance in a
video or image system, and is defined as follows:

Vout = AVγ
in (8)

where input value Vin is raised to the power γ and multiplied by the constant A to acquire
the output value Vout. Usually, A is set to 1, the input and output value are both in
range of [0, 1].

Global gamma transform (GGT) is one of the popular data augmentation methods.
All spectral bands of an image are processed by gamma transform with A = 1 and a
global-wise random value γ, which obeys the uniform distribution of [0.5, 1.5]. Figure 6a
shows four examples processed by GGT. Augmented images only reveal their changes in
image luminance and contrast.

A variant of GGT method is the spectral-independent gamma transform (SIGT), in
which the γ values of each band are uniformly distributed independently of each other.
From four examples in Figure 6b, the SIGT method tends to generate images with larger
color shifts, which are difficult to appear in real scenes.

𝛾 = 1.19 𝛾 = 0.74 𝛾 = 1.13𝛾 = 0.95

𝛾𝑟 = 0.55, 𝛾𝑔 = 0.94, 𝛾𝑏 = 0.84 𝛾𝑟 = 1.38, 𝛾𝑔 = 1.47, 𝛾𝑏 = 1.03 𝛾𝑟 = 0.75, 𝛾𝑔 = 0.54, 𝛾𝑏 = 1.49𝛾𝑟 = 0.98, 𝛾𝑔 = 0.52, 𝛾𝑏 = 0.56

𝛾𝑟 = 1.16, 𝛾𝑔 = 1.10, 𝛾𝑏 = 1.16 𝛾𝑟 = 0.87, 𝛾𝑔 = 0.87, 𝛾𝑏 = 0.74 𝛾𝑟 = 0.73, 𝛾𝑔 = 0.68, 𝛾𝑏 = 0.85𝛾𝑟 = 1.03, 𝛾𝑔 = 0.97, 𝛾𝑏 = 0.99

(a) Global gamma transform.

(b) Spectral-independent gamma transform.

(c) Spectral-specific stochastic gamma transform.

Original Image

Figure 6. Results of different data augmentation methods based on global gamma transform (GGT),
spectral-independent gamma transform (SIGT), and our spectral-specific stochastic gamma transform
(SSSGT).

In order to overcome the drawbacks of the above two methods, we propose a Spectral-
specific stochastic-gamma-transform (SSSGT) method. In this method, we first define a
global random variable γglobal as the base value, obeying a uniform distribution U[0.5, 1.5],
namely, γglobal ∼ U[0.5, 1.5]. We suppose that the i-th spectral band has its own disturbance
random value γD

i and γD
i ∼ U[−0.2, 0.2]. The final gamma value for the i-th spectral band

γi is then defined as follows:
γi = γglobal + γD

i (9)
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Four examples of our proposed method are listed in Figure 6c. Our SSSGT method is
able to synthesize more kinds of hue transformation than GGT method and is closer to the
real multi-source data situation than SIGT method.

3.4. Decision Fusion Postprocessing via Mask-Weighted Voting

In order to realize the prediction of the overlarge RS image, many methods adopt the
overlay fusion prediction strategy with majority voting in the sliding-window mode to
postprocess the model prediction results. They simply merge the patch predictions and
average the predictions of the overlapping regions to obtain the final predictions of the
overlarge images. However, there is an inherent contradiction between the accuracy of this
method and the amount of calculation caused by the increase of the degree of overlap of the
sliding window [31]. Specifically, a small overlap may lead to discontinuous block effects
in the final prediction result, while a large overlap will obtain higher prediction accuracy
but increase the amount of calculation exponentially. Therefore, this paper attempts to
propose a new postprocessing method to solve this contradiction, which not only reduces
the calculation amount, but also improves the prediction accuracy.

In FCN models, a zero-padding operation is commonly applied to the marginal area
of feature map during convolutional or pooling operations to ensure that the input and
output feature maps are of the same size or have multiple relationship. However, the
theoretical receptive field of the marginal pixels of the input feature map is smaller than
that of the center pixels. The prediction accuracy of the network model for the middle
region of the input image is higher than that of the marginal region, resulting in the above-
mentioned block effect. In order to further analyze the difference in the spatial distribution
of the accuracy of the FCN model at different pixel positions of the input image, we
conduct statistics on the spatial distribution of the sample prediction accuracy in the test
sets of the Potsdam, Evlab, and Songxi datasets. The input sample size of the model is
512× 512 pixels, and the accuracy distribution results are shown in Figure 7. According to
the accuracy distributions on the three datasets, the prediction accuracies of pixels around
the four corners and marginal area are lower than that of the pixels in the middle region.

(a) (b) (c)

Figure 7. Average accuracy distribution of feature maps at 512 × 512 patch-size on different datasets.
(a–c) are accuracy distributions on testsets of the Potsdam, the Evlab, and the Songxi dataset.

Inspired by the spatial distribution difference of the accuracy of the FCN model,
we propose an improved postprocessing methods called mask-weighted voting decision
fusion. As shown in Figure 8, we first initialize a mask with the same size as the model
input. Taking 512× 512 pixels as the model input size, we set the weight for the middle
region (384× 384 pixels) to 1, and the weight of the marginal area of the mask to 0.5. We
then multiply the patch-wise predictions with the constructed weighted-mask, and merge
the multiplied results into the overlay fusion strategy. Compared with the classic overlay
fusion strategy, it can effectively suppress the weight of the result of the marginal area,
while the calculation amount of the model prediction remains similar.
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Figure 8. An illustration of decision fusion post-processing via mask-weighted voting.

4. Dataset Construction and the Whole Framework
4.1. Dataset Construction

To evaluate our proposed framework, we construct a novel large-scale dataset from
our collected real land-cover mapping data. The land-cover data we collected is full-
covered polygon data from the Chinese Geographic Condition Survey and Mapping
Project (CGCSMP) with categorical information, which cannot be directly used for FCN
model’s training. Acquired with a series of optical RS images and the corresponding
full-covered vector data in the same region, we design an automatic process to effectively
generate datasets suitable for model training. The processing flow is listed as follows:

1. Data registration. RS images are first aligned with the corresponding label vector
data in the identical coordinate system. For optical RS images, we need to further
unify their spatial resolution, radiometric resolution and image spectral bands. In
this paper, we convert all RS images into 8-bit raster data with a spatial resolution of
0.5 m, containing three spectral bands of red, green, and blue. Besides, we crop the
vector data according to the rectangular area of the RS raster data, and we need to
filter out the partly overlapping area.

2. Categorical mapping. We extract the attributes of the category codes from the cropped
vector data, convert them into category labels and encode them. (For example we
encode ten categories from 0 to 9).

3. Rasterization. We rasterize the cropped vector data according to the spatial resolution
of the RS images and generate labeled raster data, where each pixel value represents
a specific category code.

4. Invalid label cleaning. In full-covered label vector data, invalid labels due to incom-
plete coverage, edge connection errors, and label errors may appear with extremely
low probability. Therefore, it is necessary to classify invalid labels into a certain
category for cleaning up.

5. Data partition. The image–label pairs are divided into training set, validation set, and
test set according to the designed proportion.

6. Generating metadata. In accordance with the partitioned dataset, we need to record
the dataset name, partition results, basic attributes of images, categories, file naming
rules as metadata to facilitate dataset management and model training.

7. Manual verification. Check the generated dataset to avoid problems in the above process.
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In this paper, we collected a series of optical digital orthophoto maps (DOMs) and
corresponding full-covered label vector data in Songxi County, Fujian Province, China. The
administrative area of Songxi County is approximately 1043 square kilometers. According
to the CGCSMP specification, the DOMs and the corresponding vector data in 10 land
cover categories are shown in Figure 9. There are 58 DOMs in Songxi region, collected
from different sources including aerial images, Pleiades satellite RS images, and QuickBird
satellite RS images. The average image size is 12900× 9800 pixels. All DOMs are reprojected
to the same coordinate system and resampled to the same 0.5 m spatial resolution.

We then follow the above process to automatically construct the Songxi dataset. The
number of eligible DOMs (the boundaries of which are completely within the range of the
vector data) is 26. We divide the constructed image-label pairs into training set (12 DOMs),
validation set (5 DOMs), and test set (9 DOMs).

(a) (b)

(c)

Figure 9. DOMs and the corresponding full-covered label vector data in Songxi County. (a) shows
DOMs in Songxi dataset; (b) shows vector data of the Songxi dataset; (c) is the legend of the Songxi
dataset.

4.2. The Whole Sdfcnv2 Framework

Our entire RSIA semantic segmentation framework consists of dataset construction,
model training, and inference, as shown in Figure 10. Combining a series of optical RS
images and labeled vector data, the dataset construction process is able to automatically
generate a large-scale sample dataset suitable for FCN model training. After using the
improved SDFCNv2 model to train the constructed dataset, we use the trained model to
predict test images, and merge the patch predictions with the decision fusion through mask
weighted voting. Finally, a vectorization process is conducted on entire raster prediction to
generate vector data and each object contains a category code.
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Figure 10. Our proposed SDFCNv2 framework. It includes constructing training datasets from
original RS images with labelled vector data, model training and model inference process.

5. Experimental Results and Analysis
5.1. Experiment Datasets

In this section, we conducted experiments on two public datasets (Potsdam dataset [33],
Evlab dataset [58]) and one constructed dataset (Songxi dataset).

The Potsdam dataset is provided by the International Society for Photogrammetry and
Remote Sensing (ISPRS), and consists of DOMs generated from aerial images of Germany.
The ground sample distance (GSD) is 0.05 m. The DOMs contain four spectral bands of
infrared (IR), red (R), green (G), and blue (B). The corresponding pixel-wise labels contains
six categories: impervious surfaces, building, low vegetation, tree, car, and background.
The Potsdam dataset contains 38 image tiles, which are divided into training set (18 tiles
with ID 2_10, 2_11, 3_10, 3_11, 4_10, 4_11, 5_10, 5_11, 6_7, 6_8, 6_9, 6_10, 6_11, 7_7, 7_8,
7_9, 7_10, and 7_11), validation (val) set (six tiles with ID 2_12, 3_12, 4_12, 5_12, 6_12, and
7_12) and test set (14 tiles with ID 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 4_15, 5_13, 5_14, 5_15,
6_13, 6_14, 6_15, and 7_13). Image series, example image, ground truth label of ID 2_10,
and dataset legend are shown from Figure 11a,d.

The Evlab dataset consists of 45 DOMs acquired from WorldView-2, GeoEye, Quick-
Bird, GF-2, and aircrafts. The average size of each DOM is 4500× 4500 pixels, and the
GSD ranges from 0.1 m to 1 m. Pixel-wise labels contain ten categories: farmland, field,
forestland, grassland, building, road, structure, artificial dump, bareland, and water. We
randomly divide 45 image tiles into training set (28 tiles with ID 1, 4, 7, 10, 11, 12, 13, 14, 15,
16, 19, 21, 22, 23, 26, 29, 31, 32, 33, 35, 36, 37, 38, 40, 42, 43, 44, and 45), validation set (nine
tiles with ID 2, 5, 8, 17, 20, 24, 27, 30, and 39) and test set (eight tiles with ID 3, 6, 9, 18, 25,
28, 34, and 41). Example image, ground truth label of ID 10, and dataset legend are shown
from Figure 11e–g.

The third dataset is our constructed Songxi dataset, which has been introduced in
Section 4.1. Besides, the labels share the same categories as the Evlab dataset. In all, we
summarize the information of each experiment dataset in Table 2.

Table 2. General information of experiment dataset.

Dataset Source GSD Spectral
Band Category Number of Image and Division

(Train, Val and Test)

Potsdam Aerial 0.05 m IRRGB 6 38 (18, 6, 14)
Evlab Satellite & Aerial 0.1–1 m RGB 10 45 (28, 9, 8)
Songxi Satellite & Aerial 0.5 m RGB 10 26 (12, 5, 9)
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(a) (b) (c)

(d)

(e) (f)

(g)

Figure 11. Example image, corresponding label and legend of two public datasets, the ISPRS
Potsdam dataset and Evlab dataset. (a) the Potsdam dataset; (b) one image in Potsdam dataset;
(c) corresponding ground truth; (d) legend of Potsdam dataset; (e) one image in Evlab dataset;
(f) corresponding ground truth; (g) legend of Evlab dataset

5.2. Model Implementation

All FCN models in our experiments are trained using the back-propagation algorithm,
and the minibatch size is 2. Adam is adopted as the weight-updating optimization algo-
rithm [59]. The learning rate is set to 0.01, and the weight decay rate of L2-loss is set to
0.0005. In the Potsdam dataset, the model input size is 512× 512× 4, and the number of
predicted categories is 6. In Evlab and Songxi dataset, the model input size is 512× 512× 3,
and the number of predicted categories is 10. Moreover, each FCN model is trained for
60 epochs in the Potsdam dataset, 50 epochs in the Evlab dataset, and 40 epochs in the
Songxi dataset.

Pixel overall accuracy (OA), kappa coefficient (K, Kappa) [60], and mean intersection
over union (mIoU) are adopted as accuracy assessment metrics. We calculate the accuracy
metrics in the pixel prediction results represented by one pixel value, rather than in
the prediction result represented by three pixel values adopted in ISPRS 2D semantic
segmentation contest [33]. The loss function utilized in the training process is a combination
of the categorical cross-entropy function and the Lovasz–Softmax function [61] to optimize
the OA and mIoU metrics at the same time. During the training and validation process,
the trained models of each epoch will be validated on the validation set. The validation
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loss (val_loss) of each epoch will be recorded, and the checkpoint that reaches the lowest
val_loss will be used to evaluate the final accuracy on the test set.

All experiments are conducted on a supercomputing system with Intel(R) Xeon(R)
E5-2640 v4, 128 GB RAM and NVIDIA Tesla V100 (16,384 MB memory). We implement our
framework based on TensorFlow 2.3.

In our SDFCNv2 framework, we adopt the following augmentation methods during
training process:

• Random rotation by 0◦, 90◦, 180◦or 270◦;
• Random vertically and horizontally flipping;
• Random offset (Maximum offset range is consistent with the model input patch size.);
• Selective gamma-transform-based augmentation methods, including GGT, SIGT and

SSSGT.

In model prediction (testing or inference) process, following strategies are selectively
and experimentally adopted:

• Overlap fusion strategy with majority voting.
• Mask-weighted voting decision fusion.
• Rotation by four kinds of degrees (0◦, 90◦, 180◦or 270◦).

5.3. Experiments on Model Structures and Different Feature Recalibration Modules

In this section, we first implemented the experiments of four classic FCN models,
including FCN-8s, PSPNet, Deeplab v3+, and HRNet V2, as well as our previously proposed
SDFCNv1, to evaluate the performance of our SDFCNv2 model. In addition, we have
equipped the SDFCNv2 model with different feature recalibration modules in our HBC
block (see Figure 4a), including the SE module [53], the scSE module [54], and the designed
SCFSE module. The experimental results on the three datasets are listed in Table 3.

Table 3. Performances of different models and SE modules on three experiment datasets.

Model
Potsdam Dataset EvLab Dataset Songxi Dataset

OA K mIoU OA K mIoU OA K mIoU

FCN-8s 0.7444 0.7021 0.5586 0.4730 0.4313 0.2067 0.8567 0.7215 0.3456
PSPNet 0.8059 0.7687 0.6364 0.4956 0.4647 0.2559 0.8602 0.7307 0.3833
Deeplab V3+ 0.7436 0.6989 0.5263 0.5492 0.5085 0.2733 0.7708 0.5758 0.2042
HRNet V2 0.8380 0.8029 0.6584 0.5288 0.4831 0.2453 0.8584 0.7208 0.3448
SDFCN V1 0.8006 0.7615 0.6081 0.5083 0.4641 0.2448 0.8627 0.7280 0.3440

SDFCNv2 0.8473 0.8140 0.6741 0.5773 0.5380 0.2963 0.8461 0.6955 0.3458
SDFCNv2+SE 0.8419 0.8077 0.6744 0.5631 0.5301 0.3017 0.8657 0.7340 0.3708
SDFCNv2+scSE 0.8262 0.7920 0.6685 0.4883 0.4532 0.2496 0.8697 0.7471 0.3621
SDFCNv2+SCFSE 0.8503 0.8177 0.6782 0.5945 0.5539 0.3208 0.8762 0.7562 0.3980

We first compare SDFCNv2 without feature recalibration modules with SDFCNv1 to
evaluate the performance improvement that our proposed HBC block can bring. From the
results listed in Table 3, we found that the OA, Kappa, and mIoU values can be significantly
increased by 4.67%, 5.25%, and 6.6% in the Potsdam dataset and by 6.9%, 7.39%, and 5.15%
in the Evlab dataset, while the OA and Kappa values decrease by 1.66% and 3.25% and the
mIoU value is only 0.18% higher in the Songxi dataset. Note that the number of parameters
of SDFCNv2 is less than half of that of SDFCNv1. In addition, we normalize and visualize
the gradients of the input feature map of Softmax layer in back propagation corresponding
to the center point of the input image to analyze the receptive fields of SDFCNv1 and
SDFCNv2. Figure 12 shows the receptive fields at the center of 512× 512 input image. It
can be seen that the receptive field of the SDFCNv2 model is significantly larger than that
of the SDFCNv1, covering the entire input image, which helps the model capture semantic
information and improve segmentation accuracy.

We further analyze the results of SDFCNv2 model equipped with different feature
recalibration modules. It can be seen that SDFCNv2 model with SE modules brings 0.03%,



Remote Sens. 2021, 13, 4902 16 of 26

0.54% and 2.5% improvements of mIoU in Potsdam, Evlab and Songxi datasets. The
performances of the model with scSE modules suffer an obvious decrease of 0.56% and
4.67% in mIoU for Potsdam and Evlab datasets, but improve 1.63% in mIoU for Songxi
dataset. In contrast, the proposed SCFSE module can bring remarkable improvement in
SDFCNv2 model compared to SE and scSE modules. It can be observed the model with
SCFSE modules brings 0.41%, 2.45% and 5.22% improvement in mIoU for three datasets,
which indicates our SCFSE module can further improve the representation capability of
the network.

(a) (b)

(c) (d)

Figure 12. Receptive fields of the center pixel in SDFCNv1 and SDFCNv2 models. The black
rectangular frames denote the theoretical regions of receptive fields. (a) RF of SDFCNv1; (b) RF of
SDFCNv1 with image; (c) RF of SDFCNv2; (d) RF of SDFCNv2 with image.

To prove the effectiveness of our SCFCNv2 model, we compare our method with
four commonly-used methods, as listed in Table 3. It can be seen that the performances of
SDFCNv2 without feature recalibration modules are slightly superior to other models in
the Potsdam and Evlab datasets, but it is not as good as the PSPNet model in the Songxi
dataset. Considering the size of SDFCNv2 model is less than half of the PSPNet (as shown
in Table 1), the SDFCNv2 model still has a competitive lead. After applying the SCFSE
module, SDFCNv2 model outperforms other models by a large margin in all three datasets.
Specifically, the mIoU values of SDFCNv2 model with SCFSE modules are 1.98%, 4.75%,
and 1.47% higher than the best model among the four commonly used models in Potsdam,
Evlab, and Songxi datasets, respectively. Besides, we visualize the normalized confusion
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matrix results of SDFCNv2, SDFCNv1, and two better-performing common models (i.e., the
PSPNet and HRNetV2 models of the Potsdam dataset, the PSPNet and Deeplab v3+ models
of the Evlab dataset, and FCN-8s and PSPNet models of the Songxi dataset). Figure 13
shows that the SDFCNv2 model is superior to other models in the classification of buildings,
low vegetation, and trees on the Potsdam dataset. Figure 14 shows that the SDFCNv2
model is superior to other models in the classification of woodlands and roads on the
Evlab dataset. Figure 15 shows that the SDFCNv2 model is better than other models in the
classification of farmlands, gardens, buildings, and roads. The visual results of cropped
images randomly selected from the three datasets are shown in Figures 16–18, respectively.
It can been seen that our SDFCNv2 models produces visually better segmentation maps
than other commonly-used models.
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Figure 13. Confusion matrices on the Potsdam dataset. (a) PSPNet; (b) HRNet V2; (c) SDFCN V1;
(d) SDFCNv2+SCFSE.
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Figure 14. Confusion matrices on the Evlab dataset. (a) PSPNet; (b) DeepLab V3+; (c) SDFCN V1;
(d) SDFCNv2+SCFSE.
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Figure 15. Confusion matrices on the Songxi dataset. (a) FCN-8s; (b) PSPNet; (c) SDFCN V1;
(d) SDFCNv2+SCFSE.
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Figure 16. Segmentation results on the Potsdam dataset with different models. (a) Image; (b)
Ground Truth; (c) FCN-8s; (d) PSPNet; (e) Deeplab V3+; (f) HRNet V2; (g) SDFCN V1; (h) SDFCNv2;
(i) SDFCNv2+SE; (j) SDFCNv2+scSE; (k) SDFCNv2+SCFSE; (l) Legend.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 17. Segmentation results on the Evlab dataset with different models. (a) Image; (b) Ground
Truth; (c) FCN-8s; (d) PSPNet; (e) Deeplab V3+; (f) HRNet V2; (g) SDFCN V1; (h) SDFCNv2;
(i) SDFCNv2+SE; (j) SDFCNv2+scSE; (k) SDFCNv2+SCFSE; (l) Legend.

(a)Image (b)Ground Truth (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 18. Segmentation results on Songxi dataset with different models. (a) Image; (b) Ground
Truth; (c) FCN-8s; (d) PSPNet; (e) Deeplab V3+; (f) HRNet V2; (g) SDFCN V1; (h) SDFCNv2;
(i) SDFCNv2+SE; (j) SDFCNv2+scSE; (k) SDFCNv2+SCFSE; (l) Legend.
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5.4. Experiments on Data Augmentation

Based on the constructed SDFCNv2 model equipped with the SCFSE module, we
further tested the effectiveness of different gamma-transform-based data augmentation
methods on different datasets. Combining with spatial-transform-based data augmentation,
we trained the SDFCNv2 models with GGT augmentation, SIGT augmentation, SSSGT
augmentation and without gamma-transform-based augmentation. The experimental
results are shown in Table 4.

Table 4. Performances of different gamma-transform-based data augmentation applied on SDFCNv2 model equipped with
SCFSE module in three datasets.

Gamma Augmentation
Potsdam Dataset EvLab Dataset Songxi Dataset

OA K mIoU OA K mIoU OA K mIoU

No 0.8306 0.7952 0.6531 0.5398 0.4963 0.2623 0.8501 0.7073 0.3153
GGT 0.8287 0.7927 0.6508 0.4572 0.4263 0.2204 0.8336 0.6714 0.3160
SIGT 0.8261 0.7897 0.6574 0.5181 0.4769 0.2310 0.8718 0.7483 0.3895

SSSGT (ours) 0.8503 0.8177 0.6782 0.5945 0.5539 0.3208 0.8762 0.7562 0.3980

Results indicate that, compared with no-gamma-transform-based augmentation, the
additional utility of GGT method yet reduces the performance of the model in the Potsdam
and Evlab datasets, and the performance in the Songxi dataset is hardly improved. The use
of SIGT method slightly increased the mIoU value on the Potsdam dataset, deteriorated
the performance on the Evlab dataset, and realized improvement on the Songxi dataset.
By contrast, our proposed SSSGT method achieves optimal results among all methods.
Specifically, using our SSSGT method brings robust improvements on the Potsdam, Evlab,
and Songxi datasets, that is, compared with the no-gamma-transform-based augmen-
tation method, the mIoU values are increased by 2.51%, 5.85%, and 8.27%. Compared
with the Potsdam dataset, the Evlab and Songxi datasets consist of images from more
diverse sources, which bring more difficulties to model training. Nevertheless, our SSSGT
augmentation method can bring obvious improvement especially on these two datasets,
which indicates the SSSGT method is able to reasonably simulate the distribution of real
image data. Our proposed SSSGT method optimizes the training strategy and successfully
improves the generalizability and performance of the model.

Moreover, we plot the training and validation loss curves using different gamma-
transform-based augmentation methods on the three datasets in Figure 19. As shown in the
plotted loss curves, we can observe that the validation loss curves of the proposed SSSGT
are clearly lower than other augmentation methods during training process. Effective
accuracy metrics of SSSGT listed in Table 4 verify that SSSGT augmentation method helps
prevent overfitting phenomenon and improve model performance.
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Figure 19. Training and validation loss curves of SDFCNv2 model using different gamma-transform-
based data augmentation methods on different datasets. (a) Training loss curves on Potsdam dataset;
(b) Training loss curves on Evlab dataset; (c) Training loss curves on Songxi dataset; (d) Validation
loss curves on Potsdam dataset; (e) Validation loss curves on EvLab dataset; (f) Validation loss curves
on Songxi dataset.

5.5. Experiments on Decision Fusion via Mask-Weighted Voting

In this section, we explore the effects of different postprocessing fusion methods. We
first trained the SDFCNv2 models without using any postprocessing method as the baseline
in the three datasets. Then, we evaluate the performance of models that use majority voting
or mask-weighted voting for postprocessing, respectively. Besides, we utilize 0◦, 90◦, 180◦,
and 270◦of rotation (four-direction rotations, denoted as rot90◦×4 in Table 5) during the
model prediction. Under the circumstance of rotation-based prediction, we further evaluate
the effect of the proposed mask-weighted voting postprocessing method. All SDFCNv2
models in this section are trained using spatial-transform-based data augmentation and
SSSGT data augmentation methods.

Table 5. Performances of different post-processing on SDFCNv2 in three experiment datasets. An overlap rate of 0% means
there is no post-prediction.

Overlap
Rate

rot90◦

×4
Weigthed-Mask

(Ours)

Potsdam Dataset EvLab Dataset Songxi Dataset

OA K mIoU OA K mIoU OA K mIoU

0% × × 0.8503 0.8177 0.6782 0.5945 0.5539 0.3208 0.8762 0.7562 0.3980

25%

× × 0.8573 0.8256 0.6867 0.6016 0.5611 0.3277 0.8784 0.7602 0.4032
× X 0.8576 0.8259 0.6871 0.6025 0.5619 0.3287 0.8787 0.7608 0.4040
X × 0.8639 0.8331 0.6973 0.6137 0.5730 0.3380 0.8815 0.7659 0.4096
X X 0.8642 0.8334 0.6978 0.6145 0.5738 0.3392 0.8818 0.7665 0.4102

The experimental results of the postprocessing methods in the three datasets are listed
in Table 5. Generally, all postprocessing methods (i.e., 25% overlap rate in Table 5) perform
better than the baseline (i.e., the 0% overlap rate). Without rotation-based prediction,
for the Potsdam, Evlab, and Songxi datasets, the majority voting overlay fusion method
outperforms the baseline by 0.85%, 0.69%, and 0.52% in terms of mIoU. Combined with
our mask-weighted method, the mIoU values in the three datasets can be further improved
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by 0.04%, 0.1%, and 0.08%, respectively. After using the rotation-based prediction, it can be
seen that the majority voting method can increase the mIoU value by 1.06%, 1.03%, and
0.64%. The performance of the model can be further improved by our mask-weighted
method, namely by 0.05%, 0.12%, and 0.06% in the three datasets. In short, whether or
not rotation prediction is used, metrics of predicted results utilizing the proposed mask-
weighted voting method are slightly superior than not using it. Besides, the prediction
with four-direction rotations is an effective way to improve the prediction result. However,
it prediction time is four times longer than the prediction without rotations.

5.6. Discussion

By conducting experiments on two public datasets and a real surveying and mapping
dataset with different experimental settings, we evaluated the effectiveness of the proposed
model structures, gamma-transform-based data augmentation method, and mask-weighted
voting postprocessing method, and found that they end up with different progressive
results on different datasets. Moreover, the number of parameters in our SDFCNv2 model
is much less than the three commonly used models except HRNetV2, as listed in Table 1.
With the increasing demand for model efficiency, it becomes very important to develop
efficient and effective models with computation-limited resources. Besides, our SDFCNv2
model outperforms other methods under the supervision of a large number of label data.
The mIoU value of in the real dataset is lower than 0.45, which is still difficult to be directly
used in practical applications.

6. Conclusions

In this work, we introduce an improved semantic segmentation framework called
SDFCNv2, including improved model structures, a gamma transform-based data augmen-
tation method, and a mask-weighted voting postprocessing method. In order to evaluate
the proposed framework, we conducted several experiments on two public datasets and a
real surveying and mapping dataset, namely the Potsdam dataset, the Evlab dataset and the
Songxi dataset. Experimental results show that the proposed HBC block and SCFSE module
can help to redistribute attention on excavating deep generalized features of the input data.
Compared with the previously proposed SDFCNv1 framework, the HBC block can increase
the mIoU metric by up to 6.6%, and the SCFSE module can improve the mIoU metric by
up to 5.22%. In the second part of the experimental results, we verify that the proposed
SSSGT enhancement method helps to generate more diversified distribution of augmented
data, prevent overfitting of the model, improve the generalizability of the model, and can
further increase the mIoU metric by up to 8.27%. In addition, the improved postprocessing
method based on mask-weighted voting decision fusion intentionally avoids low-accuracy
prediction in marging region and maintains similar prediction calculation cost, and can
further increase the mIoU metric by up to 0.12%.

In the future, we will further reduce model parameters and improve the prediction
ability. Moreover, we will also explore transfer learning methods to solve the problem of
semantic segmentation when the label samples are insufficient in target domains.
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