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Abstract: Flood disasters have a huge effect on human life, the economy, and the ecosystem. Quickly
extracting the spatial extent of flooding is necessary for disaster analysis and rescue planning. Thus,
extensive studies have utilized optical or radar data for the extraction of water distribution and
monitoring of flood events. As the quality of detected flood inundation coverage by optical images is
degraded by cloud cover, the current data products derived from optical sensors cannot meet the
needs of rapid flood-range monitoring. The presented study proposes an adaptive thresholding
method for extracting water coverage (AT-EWC) regarding rapid flooding from Sentinel-1 synthetic
aperture radar (SAR) data with the assistance of prior information from Landsat data. Our method
follows three major steps. First, applying the dynamic surface water extent (DSWE) algorithm to
Landsat data acquired from the year 2000 to 2016, the distribution probability of water and non-
water is calculated through the Google Earth Engine platform. Then, current water coverage is
extracted from Sentinel-1 data. Specifically, the persistent water and non-water datasets are used to
automatically determine the type of image histogram. Finally, the inundated areas are calculated by
combining the persistent water and non-water datasets and the current water coverage as derived
from the above two steps. This approach is fast and fully automated for flood detection. In the
classification results from the WeiFang and Ji’An sites, the overall classification accuracy of water
and land detection reached 95–97%. Our approach is fully automatic. In particular, the proposed
algorithm outperforms the traditional method over small water bodies (inland watersheds with few
lakes) and makes up for the low temporal resolution of existing water products.

Keywords: flood disasters; Sentinel-1; SAR; thresholding; water probability

1. Introduction

Flood disasters are high-frequency events with a wide influence, causing serious
impacts on ecological environments, human societies, and economies. Accurately and
quickly evaluating the location, scope, and intensity of flood disasters is necessary for
disaster analysis and rescue planning [1]. Disaster assessment is based on the inundation
range of the flood disaster. As an advanced and widely used technology, remote sensing
is eminently suitable for assessing flood coverage [2]. In remote-sensing images, floods
are characterized by clear boundaries. Therefore, many recent studies have extracted
flooded coverage from satellite data [3,4]. Satellite-based remote sensing has become an
important part of earth observation. Besides providing high spatial, spectral and temporal
resolution, it has been developed on multiple platforms and sensors [5]. Among these
developments, multispectral, thermal and radar data are the main supports for flood
coverage extraction [6,7]. Multispectral and thermal data, such as those drawn from
Landsat and MODIS, are widely used and have resulted in a variety of products [8,9]. For
example, Landsat data were used to generate an analysis read dataset (ARD) using the
dynamic surface water extent (DSWE) algorithm, developed by the United States Geological
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Survey (USGS), for the US and its territories [10], global surface water (GSW) [11], and the
global 3-s/1-s water body map (G3WBM/G1WBM) [12].

Synthetic aperture radar (SAR), which is less susceptible to cloud interference than
optical data, is promising as a means of monitoring the temporal and spatial changes in
flood extent [13]. Three major development stages were enabled by using SAR data for flood
monitoring. In the early era of flood analysis, coarse-resolution single-polarized SAR data
were used to extract texture features and water-area backscatter for flood detection [14,15].
Using SIR-C and 100-m resolution JERS-1 L-band data, Hess et al. achieved a 62% user
accuracy for flood detection in the Amazon River at low water levels and 86% at high water
levels [16]. Henry et al. [17] analyzed one multi-polarized ASAR data set, highlighting
the greater capability of the Envisat ASAR instrument for flood mapping, particularly
the benefits of combining similarity and cross-polarization for rapid mapping in crises.
Recently, multi-temporal SAR data, with less than 10 m spatial resolution, provided the
ability to monitor the flood event within hours of a disaster. Martinis et al. developed a
real-time automatic flood detection tool using segmented histogram thresholding for high-
resolution TerraSAR-X SAR data (3 m) [18]. Mason et al. also focused on high-resolution
TerraSAR-X data and proposed a semi-automatic algorithm for flood detection in urban
areas [19,20]. Tanguy et al. tested and evaluated two case studies of the 2011 Richelieu
River flood using the t-resolution data (3 m) [21]. Pulvirenti et al. analyzed the flood
situation after the 2011 tsunami that hit Japan, using COSMO-SkyMed data [22]. Multiple
authors proposed methods for flood extraction using Sentinel-1 SAR data. Twele et al.
presented an automated Sentinel-1-based processing chain designed for flood detection
and monitoring in near-real-time (NRT) [23]. Indeed, super-high-resolution sensors, such
as ICEYE, could collect worldwide daily SAR data at 0.25 m spatial resolution for ice
management use [24]. However, to date, the ICEYE data has not been freely available.

Flood coverage extraction from radar data has gradually increased over the years, and
various extraction methods have become available [25,26]. On the one hand, thresholding is
one of the most widely used approaches to delineating water extent because of its effective-
ness and efficiency [27]. In digital image processing, thresholding is the simplest method of
segmenting images. Currently, the most commonly used segmenting images methods in-
clude superpixel segmentation methods [28,29], watershed segmentation methods [30,31],
and level set segmentation methods [32,33]. The classic threshold methods used in flood
coverage extraction from radar data include the Otsu method (maximizing inter-class vari-
ance) [6], the entropy threshold method [34,35], and the bimodal histogram method [36].
Many scholars have conducted research based on threshold methods. Sekertekin et al. in-
vestigated the performance of fifteen automatic thresholding methods and summarized the
advantages and disadvantages of each method and the scope of application [37]. Wang et al.
presented a water-body detection framework with an automatic threshold determination
procedure [38]. Liang et al. proposed a local thresholding method for water delineation [39].
However, the method required a long time for processing complex images [40]. Moreover,
accurate thresholds are difficult to determine because test areas are widely variable. The
accuracy of the threshold method depends on the size of the water area in the image. If the
grayscale histogram is unimodal, the threshold is difficult to detect [41]. On the other hand,
machine learning methods have achieved accurate extraction results and improved han-
dling of the influence of noise [42]. Shahabi et al. proposed a new flood mapping technique
based on bagging as a meta-classifier and K-nearest neighbor (KNN), using Sentinel-1 for
flood mapping [43]. Lv et al. combined the gray-level co-occurrence matrix (GLCM) and
the support vector machine (SVM) to extract the target area of the water and, based on the
gray information and the spatial distribution information of the pixels, calculated GLCM
texture features in four spatial directions [44]. However, the parameters greatly affect
the classification results, so much calculation and debugging are required. The training
dataset is difficult to obtain, and the classifier training is time-consuming [45,46]. Random
forests (RF) is a supervised machine learning algorithm that has recently started to gain
prominence in water resources applications. Tyralis et al. reviewed RF applications in
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water resources, highlighting the potential of the original algorithm and its variants, and
assessed the degree of RF exploitation in a diverse range of applications [47]. Considering
the advantages and disadvantages of the two mainstream methods, the current research
automates the threshold selection and improves the accuracy and speed of extraction. For
the benefit of retrieval, our investigation of method comparison is concisely summarized
in Table 1.

Table 1. Summary of water bodies extraction method from radar data.

Method Category Pros and Cons Example

Image
Thresholding

Otsu Binarization an exhaustive algorithm for searching the global optimal
threshold; easy to be severely corrupted by noise [6,27,48,49]

Entropy Threshold features are easy to select and replace; a large amount of
computation [34,35,40,50]

Bimodal Histogram effectiveness and efficiency; strict requirements are necessary for
the shape of the histogram; low applicability [50–52]

Machine
Learning

Support Vector Machine
(SVM)

achieves accurate extraction results and improves the influence of
noise; the parameters greatly affect the classification results [44,45,53]

K-Nearest Neighbor
(KNN)

decrease the overfitting and variance problems in the training
dataset; a large amount of calculation and debugging is required [43,54]

Random Forest (RF)
the most accurate method for the classification of water bodies at
present; a training dataset is difficult to obtain, and the classifier

training is relatively time-consuming
[45,47,55–57]

The contributions of this work are summarized as follows.

1. A fully automated thresholding method was developed for extracting flood ranges
with higher temporal resolution. Existing global water monitoring products are
mostly generated by optical remote sensors. There are also annual composite data
because of the influence of cloud cover. The inundation area during the flood period
can be ascertained by our method, which makes up for the lack of temporal resolution
of optical products.

2. The proposed method is tested over reservoir and watershed study sites in China.
The area of water and non-water can be extracted quickly and accurately with our
fully automated approach. The classification results of the two types of sites also
show that our method is better than existing thresholding methods (e.g., Otsu [6]).

This paper is organized into six sections. Section 2 introduces the study area and
data used in the paper. Section 3 describes the main process of the proposed approach
in detail. Experimental results at two sites are presented in Section 4, demonstrating the
feasibility and superiority of the proposed approach. Section 5 discusses the advantages
and limitations of the method and the future development. Section 6 draws a conclusion
regarding our work.

2. Study Area and Data
2.1. Study Area

As experimental sites representative of inland and coastal waters in China, WeiFang
City in Shandong Province and Ji’An City in Jiangxi Province were selected, respectively
(Figure 1). WeiFang is in the north-central part of Shandong Province and has a continental
climate, being in a warm temperate monsoon zone. Floods are common from June to
August, and many reservoirs and small lakes exist in the area. Ji’An is in the middle of
Jiangxi Province and has a humid subtropical monsoon climate. This site is to be found in
the Ganjiang River Basin and is shown as a linear river on images.
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Figure 1. Map of the study sites: locations of (a) the two provinces in China, (b) WeiFang in Shandong
Province, (c) Jiangxi Province, and (d) Ji’An City.
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2.2. Remote-Sensing Datasets
2.2.1. Sentinel-1 Data

Since 2014, the European Space Agency (ESA) has freely provided its Sentinel-1 C-band
SAR satellite data to the world. Sentinel satellites are the first projects for environmental
monitoring and safety monitoring that are sponsored by ESA, and Sentinel-1 is one of
six satellites now in service. The Sentinel-1 satellite is equipped with a C-band radar
imaging system. A single satellite can map the whole world once every 12 days. In dual
operation, satellites Sentinel-1A and -1B shorten the revisit period to six days (three days
in the equatorial region) [58], realizing continuous monitoring of the surface water range.
Sentinel-1 operates in three land modes with different observation strategies, strip widths,
and spatial resolutions: IW mode (width 250 km, resolution 5 m × 20 m), wave mode
(WM) (width 20 km × 20 km, resolution 5 m × 5 m), and strip mode (SM) (width 80 km,
resolution 5 m × 5 m) [59].

For this study, a total of 42 images of Sentinel-1 interference wide (IW) mode ground-
range detected data (GRD) (29 scans of the WeiFang site and 13 scans of the Ji’An site) were
downloaded from the Alaska Satellite Facility (ASF) website. In addition, Sentinel-2 data
in the same period were collected for visual comparison.

2.2.2. Landsat Dataset on GEE

Landsat, a joint program of the USGS and NASA, has been observing the Earth
continuously, from 1972 through to the present day [60]. Today, the Landsat satellites
image the entire Earth’s surface at a 30-m resolution about once every two weeks, including
multispectral and thermal data. The Google Earth Engine (GEE) is a cloud computing
platform designed by Google Inc., Mountain View, CA, USA [61]. It has been used in
global Earth observations and regional-scale surveys, including vegetation mapping and
monitoring [56,57,62–64], land-cover mapping [55,65], and agricultural applications [53,66].
Two Landsat collections are available on GEE. Landsat Collection 1 consists of level-
1 data products generated from the Landsat 8 operational land imager (OLI)/thermal
infrared sensor (TIRS), Landsat 7 enhanced thematic mapper plus (ETM+), Landsat 4–5
thematic mapper (TM), and Landsat 1–5 multispectral scanner (MSS) instruments. Landsat
Collection 2 is an improved version made by the USGS. It includes Landsat level-1 data
since 1972, as well as level-2 surface reflectance (T1_SR) and surface temperature products
from 1982 to the present.

The Landsat Collection 2 data (T1_SR) were used to derive persistent water and non-
water distributions over study sites. A total of 1777 scans (965 scans from the WeiFang site
and 812 scans from the Ji’An site) were used for calculating historic water probabilities.

2.2.3. GF-3 Data

The GF-3 satellite is the first C-band multi-polarization SAR imaging satellite in China,
with a resolution of 1 m and 12 imaging modes [67]. The spatial resolution of GF-3 ranges
from 1 to 500 m, and the width ranges from 10 to 650 km, suitable for distinguishing and
identifying objects on the ground and at sea.

As an independent test of the model’s accuracy, the scene covered by the Gaofen-3
satellite (L2A level, 5 m resolution, HH and HV polarization) in the Ji’An site was selected.

3. Methodology

Our adaptive thresholding method for extracting water coverage (AT-EWC) in flood
monitoring was developed, consisting of four steps: the derivation of persistent open-water
extent, the pre-processing of SAR data, the extraction of flood coverage, and an accuracy
assessment (Figure 2).
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3.1. Derivation of Persistent Open-Water Extent from cDSWE

The DSWE algorithm was used for the derivation of persistent open-water extent.
It included five basic decision rules on a series of relatively simple and efficient water
detection tests and output the result of each test (one if the condition was satisfied; zero
if the condition was not satisfied). The five conditions were combined into a 5-bit output
value, ranging from 00000 to 11111, where each number was the result of a specific test (see
Appendix A for details). The most recently updated DSWE thresholds were applied [10,25].
In comparative experiments of the two study areas, the updated threshold greatly improved
the extraction accuracies of hill shade, land, and urban areas (Figure A1).

In this study, the updated DSWE algorithm was used to calculate Landsat 5 and
Landsat 7 data from 2000 to 2016 for both sites to form composited dynamic surface water
extent (cDSWE) products. The class probabilities derived from cDSWE products were
used to build prior masks. The data processing was completed using GEE, and data were
exported in 1◦ × 1◦ tiles for each site. The probability of each class was calculated as:

Pclass = 100 × Noccu/Nclear−sky (1)

Noccu is the number of occurrences of the land, open water, and partial water DSWE
classes, and Nclear−sky is the number of clear-sky acquisitions from Landsat data.

A link was provided, by which the user can access the GEE script that is used to gener-
ate the updated version of the cDSWE dataset (Accessed 1 November 2021) (https://code.
earthengine.google.com/5dbba645741ce7d339b978592514d26c?accept_repo=users%2Fbdv%
2Fs1flood).

3.2. Pre-Processing of Sentinel-1 SAR Data

The Sentinel-1 ground range-detected (GRD) data acquired in IW modes, with VV
and VH backscatter intensity, were divided into 0.5◦ × 0.5◦ tiles. This grid system was ref-
erenced in the SRTM 1◦ × 1◦ data organization system. First, each 1◦ grid was subdivided
into four 0.5◦ grids to improve the efficiency of pre-processing and post-analysis. Then,
on each 0.5◦ grid, the Sentinel application platform (SNAP) software provided by ESA
was used for border noise removal, thermal noise removal, and radiometric calibration.
Then, the image pixels were multi-looked to 30 m square and resampled with a bilinear
approach to match the Landsat Universal Transverse Mercator (UTM) coordinate system.
The recently released STRM 1 arc-second (~30 m) digital elevation model (DEM) for terrain
correction was used. The step of “terrain flattening” was omitted because the study area

https://code.earthengine.google.com/5dbba645741ce7d339b978592514d26c?accept_repo=users%2Fbdv%2Fs1flood
https://code.earthengine.google.com/5dbba645741ce7d339b978592514d26c?accept_repo=users%2Fbdv%2Fs1flood
https://code.earthengine.google.com/5dbba645741ce7d339b978592514d26c?accept_repo=users%2Fbdv%2Fs1flood
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was in a plains area and the terrain was flat; therefore, it did not affect the results of water
extraction. On the other hand, adding this step would slow down the overall preprocessing
process. This was in contradiction to the efficiency that we sought for the proposed method.
The pre-processed images are shown in Figure 3.
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3.3. Extraction of Flood Coverage

After the pre-processing was completed, water was extracted using our proposed
automatic thresholding method. It consists of the following four main steps. First, the 30 m
cDSWE was aggregated to 20 km grids. Particularly, the proportion of water area within
each 20 km grid was calculated using the cDSWE with 30 m-resolution. Then, stratified
sampling was used to randomly select three grids in three classifications (high > 66%;
medium, 33–66%; low, 0–33%, respectively). A total of nine grids for the three classes were
chosen for calculating the thresholds (Figure A2).

Second, the cDSWE was used to determine the histogram type and the threshold value.
According to the probability of water area calculated by cDSWE, water was classified into
three classes—persistent water, persistent land, and partial (water: 45–100%; land: 1–20%;
partial: 21–44%)—and the percentage of each class (NW , NL, NP) was calculated at the same
time. In an image with some small water bodies (inland watersheds with few lakes) or
little land coverage, the histogram showed unimodally (NP ≤ αNW + βNL); when the
proportion of land to water was close, the histogram showed bimodally (NP > αNW + βNL)
(Figure 4). The relationship between the water body probability and the histogram type
was obtained by determining the value of α, β. The histogram was unimodal because of the
large difference between the area of the water body and the land in the image, so we further
classified the unimodal histogram into two situations (NW > NL and NW < NL). Thus,
the threshold value was automatically calculated; the specific formula of the threshold for
each 20 km grid (T) was as follows:

T =


Hvalley, NP > αNW + βNL

µ+ 3σ, NP ≤ αNW + βNL , NW > NL
µ− 3σ, NP ≤ αNW + βNL , NW < NL

(2)

NW , NL, NP are the proportion of water, land, and partial, respectively; Hvalley is the val-
ley of the histogram; α, β are adjustable factors; and µ, σ are the mean and variance,
respectively.

Next, the thresholds in three bands (TVV , TVH , TVVrVH) were determined using the
threshold calculated with Formula (2) using each selected grid (TVVi, TVHi, TVVrVHi), with
the following equation:
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
TVV > mean(TVVi)
TVH > mean(TVHi)
TVVrVH > max(TVVrVHi)

(3)

TVV , TVH , TVVrVH denote the threshold values of the VV, VH, and VVrVH bands, respec-
tively, while TVVi, TVHi, TVVrVHi are the thresholds of the selected nine grids.

The morphological opening using a 3 × 3 square structuring element was used to
eliminate noise and fragmented water, and then spliced into 1◦ × 1◦ tiles according to
the selected date. The output product was in the form of a GeoTIFF without geographic
projection, and the resolution was approximately 25 m in the mid-latitude area.

Finally, the persistent open-water extent obtained in Section 3.1, and the results
obtained in the above steps, were superimposed to calculate the inundation area:

RI = RW − RP (4)

RW is the water extracted from images and RP is the range of the persistent open-water
extent.
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3.4. Accuracy Assessment

Based on the available validation dataset at the sites, the accuracy of the results was
evaluated. For a quantitative evaluation, four indicators were selected: overall accuracy,
kappa coefficient, and the commission and omission of errors.

For the Ji’An site, a stratified inspection was more appropriate but it did not meet the
requirements because of the small range of 21–84% probability, so it was not suitable for
the stratified sampling test. In addition, it was established that there is a GF-3 image in
the Ji’An site from nearly the time of the flood occurrences (access date 10 June 2019, three
days apart from the Sentinel-1 data). Thus, 200 points (24 points of water and 176 points of
land) in the common area of the two images for the test were randomly selected (Figure 5a).
GF-3 images were also used for visual inspection.

For the WeiFang site, 200 points were randomly selected for evaluation, enabling strat-
ified inspections in areas from Landsat-derived cDSWE class probabilities (21–84%). Unlike
the Ji’An site, there were no eligible high-resolution images. Thus, a visual inspection of
the pseudo-color composite image of Sentinel-1 was performed (Figure 5b).
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Figure 5. Locations of 200 random points sampled at each of the two sites for visual inspection of the extraction results of
the AT-EWC method (Ji’An (a) and WeiFang (b)).

4. Results
4.1. Time-Series Classification of Water and Non-Water

To determine a universal adaptability threshold, nine grids for the three classifications
(high > 66%, medium 33–66%, low 0–33%) of the WeiFang site (15 June 2018) were used
to calculate thresholds, using the method explained in Section 3.3. They were calculated
according to Formulae (2) and (3). In this experiment, the 20 km grids of the WeiFang site
were analyzed. This shows that the type of the histogram can be accurately judged when
the value of coefficients α, β are set to 3. Finally, the three thresholds were determined as
follows:

— First, if σ0
VV > −16 dB, mark as water.

— Second, if σ0
VH > −22 dB, mark as water.

— Third, if σ0
VVrVH < 15 dB, mark as water.

To validate the universality of the threshold, water areas were extracted during the
flood period at two sites. The overall results are shown in Figure 6. The detailed results
during the flood at both sites were assessed via a time-series analysis. To simulate the water
level changes at the WeiFang site, the six images during the flood events of the Fushan
Reservoir were separately analyzed (21 July–1 September 2018) (Figure 7a). According to
relevant reports, the Fushan Reservoir did not discharge floodwaters downstream during
this period, and its area was significantly changed after the flood. At the Ji’An site, three
images from 1 June 2019 were analyzed (Figure 7b). The image that was taken on 13 June
2019 revealed a widened river surface with some submerged areas. The three sub-panels
reflected the situation before, during, and after the flood, respectively. Comparing the
images of the two sites, the flooding lasted longer at the WeiFang site than at the Ji’An site,
and the data downloaded from the former failed to monitor its recovery. At the Ji’An site,
the incident was monitored from onset to recovery.
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river during the entire flood event at the Ji’An site (b). At each date, the left image is the false-color composite image from
Sentinel-1 data, and the right image shows the extracted water bodies.

4.2. Inundation Range over Flood Event

To assess the impact of a flood event, the inundation range with time-series imagery
during the flood event was calculated. Based on the three water body classifications
proposed in Section 3.3 (water: 45–100%, land: 1–20%, partial: 21–44%), water bodies
with grayscale codes above 45% were selected as the persistent waters. The result was
superimposed with the water surface during the flood period assessed in Section 4.1 and the
disaster range of the flood event was then estimated (Figure 8). To simulate the inundation
range at the WeiFang site, the six images taken during the flood events of the BaiLangHei
Reservoirs were separately analyzed (21 July–1 September 2018). Figure 8 shows that the
flooding started on 2 August and then gradually expanded until it reached its peak on
20 August. In the two subsequent monitoring images, the inundation extent of the flood
decreased. By 1 September, the cessation of flooding could not be detected, which may
have been caused by the breach of the more severely affected reservoir. This could simulate
the damage to a certain extent.



Remote Sens. 2021, 13, 4899 11 of 19

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 19 
 

 

which may have been caused by the breach of the more severely affected reservoir. This 
could simulate the damage to a certain extent. 

 
Figure 8. Inundation range at the WeiFang site during the flood period. The blue portion represents 
the persistent open water. The green portion indicates the inundation range. The image on the right 
is a Sentinel-1 image from 21 July 2018. 

4.3. Accuracy Assessment at Two Sites 
4.3.1. Adaptation of the Proposed Thresholds at the Ji’An Site 

To quantitatively measure the suitability of the proposed template at the Ji’An site, a 
visual inspection was conducted at the site using the GF-3 images from June 10. The 
results show that the metrics obtained using our proposed thresholds for the Ji’An site 
also perform well (Table 2). The overall accuracies of our algorithm (94.5–96%) were 
similar in the three periods. The kappa coefficient ranged from 0.74 to 0.81, and the 
commission and omission errors of the water ranged from 16% to 26%, while those of the 
land ranged from 1% to 3%. Moreover, the six indicators for 13 June are better than for the 
other two dates. This may be due to our selection of high-resolution images closest to that 
date. 

Therefore, pseudo-color composite images of Sentinel-1 were used (Table 2). The 
overall accuracies were above 95.0%. The kappa coefficient ranged from 0.77 to 0.84; the 
commission and omission errors of the water ranged from 12% to 19%, while those of the 
land ranged from 1% to 2%. This indicates that our classification accuracy for land is 
higher than that for water bodies. The data for 13 June continues to yield the best results. 

Table 2. Accuracy estimate of the Ji’An site using GF-3. 

Data Overall Accu-
racy 

Kappa Co-
efficient 

Commission Error Omission Error 
Land Water Land Water 

1 June 2019 95.00% 0.7715  3.41% 16.67% 2.30% 23.08% 
13 June 2019 96.00% 0.8172  2.84% 12.50% 1.72% 19.23% 
25 June 2019 94.50% 0.7443  3.95% 17.39% 2.30% 26.92% 

4.3.2. Comparison with the Otsu Method at the WeiFang Site 
To further test our proposed threshold, the results of images from the WeiFang site 

on 26 August 2018 were compared using the Otsu method. Table 3 showed that the 
difference between our proposed method regarding the global image and the high group 
in terms of overall accuracy was 0.01. The differences in the other three evaluation metrics 
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4.3. Accuracy Assessment at Two Sites
4.3.1. Adaptation of the Proposed Thresholds at the Ji’An Site

To quantitatively measure the suitability of the proposed template at the Ji’An site,
a visual inspection was conducted at the site using the GF-3 images from June 10. The
results show that the metrics obtained using our proposed thresholds for the Ji’An site also
perform well (Table 2). The overall accuracies of our algorithm (94.5–96%) were similar in
the three periods. The kappa coefficient ranged from 0.74 to 0.81, and the commission and
omission errors of the water ranged from 16% to 26%, while those of the land ranged from
1% to 3%. Moreover, the six indicators for 13 June are better than for the other two dates.
This may be due to our selection of high-resolution images closest to that date.

Therefore, pseudo-color composite images of Sentinel-1 were used (Table 2). The
overall accuracies were above 95.0%. The kappa coefficient ranged from 0.77 to 0.84; the
commission and omission errors of the water ranged from 12% to 19%, while those of the
land ranged from 1% to 2%. This indicates that our classification accuracy for land is higher
than that for water bodies. The data for 13 June continues to yield the best results.

Table 2. Accuracy estimate of the Ji’An site using GF-3.

Data
Overall

Accuracy
Kappa

Coefficient
Commission Error Omission Error

Land Water Land Water

1 June 2019 95.00% 0.7715 3.41% 16.67% 2.30% 23.08%
13 June 2019 96.00% 0.8172 2.84% 12.50% 1.72% 19.23%
25 June 2019 94.50% 0.7443 3.95% 17.39% 2.30% 26.92%

4.3.2. Comparison with the Otsu Method at the WeiFang Site

To further test our proposed threshold, the results of images from the WeiFang site on
26 August 2018 were compared using the Otsu method. Table 3 showed that the difference
between our proposed method regarding the global image and the high group in terms
of overall accuracy was 0.01. The differences in the other three evaluation metrics were
also small and were controlled within 0.05. However, in the low group and medium group
images of a 20 km × 20 km block, the classification results of our method were significantly
better than those using the Otsu method, especially in the two sets of comparison results for
medium and low groups. In the experiments of the medium group, the overall accuracies
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were 96% and 84%, respectively, with a difference of 0.12, and the kappa coefficients were
about 0.2. However, it was found that the land commission error and water omission error
of the two methods were similar, except that the land commission error and water omission
error differed significantly, with the difference of −0.29 (9.63% vs. 38.16%) and −0.16
(3.33% vs. 19.33%), respectively. In the low group, the difference between the two methods
was more obvious. The difference in overall accuracy was 0.17. The other five metrics
also showed the same pattern as the medium group. This indicated that our method had
better accuracy on small blocks. Moreover, the values of the four experimental groups
were increasing as the area of water decreased, which indicated that the smaller the area
of water in the image to be classified, the more obvious the something of our proposed
method. It further illustrated the superiority of our method in areas with smaller bodies of
water. Specifically, the two methods had a similar classification accuracy for water bodies,
but the Otsu method for land showed less sensitivity.

Table 3. Accuracy estimate of Ji’An site using Sentinel-1.

Data
Overall

Accuracy
Kappa

Coefficient
Commission Error Omission Error

Land Water Land Water

1 June 2019 95.00% 0.7790 2.87% 19.23% 2.87% 19.23%
13 June 2019 96.50% 0.8427 2.29% 12.00% 1.72% 15.38%
25 June 2019 95.50% 0.7978 2.86% 16.00% 2.30% 19.23%

Figure 9 showed the classification images of the two methods. In addition, in terms of
efficiency, the computation time of both methods showed that the proposed method was
more efficient (Table 4). The average computation time of our method was 0.1 s, while the
comparison of the Otsu method was 0.25 s (Table 5). In all nine sets of test experiments, the
AT-EWC method outperformed the Otsu method in terms of speed.

Table 4. Comparison with Otsu method for the WeiFang site.

Type Threshold
Overall

Accuracy
Kappa

Coefficient
Commission Error Omission Error

Land Water Land Water

Image
AT-EWC 95.50% 0.9080 3.57% 2.65% 3.57% 2.65%

Otsu 94.50% 0.8876 4.39% 6.98% 5.22% 5.88%
(−) (0.01) (0.02) (−0.01) (−0.04) (−0.02) (−0.03)

20 km × 20 km
Block (High)

AT-EWC 96.00% 0.9199 2.91% 5.15% 4.76% 3.16%
Otsu 95.00% 0.8997 4.76% 5.26% 4.76% 5.26%
(−) (0.01) (0.02) (−0.02) (0.00) (0.00) (−0.02)

20 km × 20 km
Block (Middle)

AT-EWC 96.00% 0.8947 2.03% 9.62% 3.33% 6.00%
Otsu 84.00% 0.6364 2.42% 38.16% 19.33% 6.00%
(−) (0.12) (0.26) (0.00) (−0.29) (−0.16) (0.00)

20 km × 20 km
Block (Low)

AT-EWC 97.50% 0.8697 1.12% 13.64% 1.68% 9.52%
Otsu 81.00% 0.4136 0.69% 66.07% 20.56% 5.00%
(−) (0.17) (0.46) (0.00) (−0.52) (−0.19) (0.05)

Table 5. Validation of efficiency between AT-EWC and Otsu.

Time(s) #1 * #2 #3 #4 #5 #6 #7 #8 #9 Average

AT-EWC 0.09 0.09 0.11 0.09 0.09 0.09 0.09 0.09 0.19 0.10
Otsu 0.29 0.26 0.24 0.23 0.23 0.23 0.25 0.29 0.24 0.25

* all sub-image tiles have the same size—4000 by 4000 pixels.
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5. Discussion
5.1. Significance of This Study

An adaptive thresholding method was proposed for extracting water coverage (AT-
EWC) for flood monitoring with the assistance of cDSWE. The probability of persis-
tent water and non-water were first aggregated from cDSWE at a 30-m resolution to
a 20 km × 20 km grid system for stratified sampling. Then, cDSWE was further used to
assist in determining the shape of the image histogram and generating flood products.
Our method responded well to the change of water surface before and after the flood.
Specifically, there are three significant outcomes.

First, a fully-automated thresholding method was developed for extracting flood
ranges with higher temporal resolution. Because Sentinel-1 data has been provided since
2014, few studies have explored large-scale and multi-temporal water monitoring through
optical remote sensing products (e.g., Landsat). Moreover, most of the existing water
monitoring products comprise annual composite data. The inundation area during the
flood time can be established by our method, which makes up for the low temporal
resolution achieved by optical products. Moreover, our method is completely automated,
and there is no human influence on the process.

Second, good adaptability has been shown on two different types of sites. Our
proposed thresholds that were calculated at the WeiFang site were used at the Ji’An site,
where they also demonstrated good adaptability. From our experimental results in Tables 1
and 2, the overall accuracy of the results reached 96.5% and the kappa coefficient remained
at around 0.8. This indicated that our proposed thresholds can be applied to other regions.
From the comparison results of the three sets of experiments, the accuracy of 1 June and 25
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June was relatively lower compared to June 3. This indicates that our proposed thresholds
are not only adaptable to all regions but also have better extraction accuracy during floods.

Third, in terms of accuracy and efficiency, our proposed method demonstrated ex-
cellent performance. In the block with the low and medium probability of water, the
Otsu method showed obvious shortcomings, and the overall accuracy was around 80%,
which is much lower than its classification accuracy on the image. In contrast, our method
performed well in the classification results in the above four types. The Otsu method used
the image histogram for the calculation of maximum interclass variances. This worked
well in the case of bimodal image histograms. However, in the unimodal case, the Otsu
method showed poor performance where there were inland watersheds with few lakes.
Thus, Otsu’s shortcomings in small water bodies were improved by the AT-EWC method.
Table 4 showed that our algorithm outperforms the Otsu method in terms of computation
time. This indicates that our method is more efficient and meets the time-sensitive needs of
flood monitoring well.

5.2. Limitations and Potential Improvements

The proposed method can automatically extract the extent of water and meet the
accuracy requirements for water extraction. It also gives an excellent performance in small
water bodies. Radar signals over still water are close to zero due to specular reflection.
While the VV backscatter intensities appear corrugated over the windy surface, since the
Ji’An site is an inland basin, there is no ripple on the SAR images. There are also no obvious
waves on the image of the WeiFang site. Therefore, we do not discuss the influence of
windy surfaces in terms of our method, which might prove an issue elsewhere. There are
also improvements in using historical water-body data to determine the type of histogram.
Specifically, the determination of parameters α and β was obtained from our calculations
for the WeiFeng site. Although the adaptation of the proposed thresholds at the Ji’An site
was demonstrated, we have not tested it in other, larger areas. On the other hand, the
cDSWE product itself also shows improvements in accuracy.

In future experiments, we will continue to investigate the relationship between histor-
ical water and image histograms. Specifically, the value of the parameters α and β needs to
be determined by more experiments. Other datasets, such as GSW and G3WBM, will be
analyzed and compared to address the shortcomings of thresholds judged using a single
dataset. Experiments will be conducted from the following three aspects.

First, a longer period of Landsat data will be used to calculate persistent open-water
extent. A total of 16 years of Landsat data were used for the composite cDSWE products
to calculate the area of persistent open-water extent. In the future, we will try to use
longer-term data for experiments to improve the accuracy of our method. Longer-term
data may lead to more suitable coefficients, thus improving the accuracy of the method.

Second, other datasets, such as GSW and G3WBM, will be tested, and it will be
considered whether these datasets can be combined to improve accuracy. Only cDSWE
products were used to calculate the probability of water bodies in our method. However,
a variety of global water datasets are provided to scholars for research. It is possible that
multiple water datasets, when combined, could improve the coefficients and algorithm.

Third, the proposed method (AT-EWC) will be applied to a larger area. In this paper,
the determination of parameters α and β was obtained from our calculations for the
WeiFeng site. Although the adaptation of the proposed thresholds at the Ji’An site was
demonstrated, whether our method still performs well for a larger area needs to be verified.
We will also conduct algorithm tests in other research areas in the future.

6. Conclusions

In this study, an adaptive thresholding method for extracting water coverage (AT-
EWC) in response to rapid flooding was proposed that automatically and quickly derives
a classification map of the water and non-water areas. In addition, the inundation area
was calculated with the assistance of persistent water extent information from cDSWE.
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Particularly, the shapes of the gray histogram were classified using prior water distribution
information from long-term Landsat data. The algorithm implemented a fully automated
process, from water extraction and determination to the output of the results. Moreover,
most of the existing water products use annual composite data. Our method makes up for
the low temporal resolution of optical products. In terms of accuracy and efficiency, the
proposed method achieved better results in some small water bodies (inland watersheds
with few lakes) than the Otsu [6] algorithm. It ameliorated the problem that the Otsu
algorithm does not have high classification accuracy in small areas. Moreover, because the
proposed method improved the threshold determination, it completed calculations faster
than the existing methods and satisfies the needs of rapid flood disaster monitoring.

In future experiments, we will continue to investigate the relationship between histor-
ical water data and image histogram types to improve the AT-EWC method for assessing
rapid flood inundation. We will study possible improvements, from the time period of the
water dataset to the diversity of the dataset, and the area to which the AT-EWC method is
applied.
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Appendix A

The DSWE algorithm was implemented by the following steps:

– First, determine the latitude and longitude of the study area and the time of using the
data; import the used data; set the name of the save folder.

– Second, write a function that calculates the water body index (MNDWI, NDVI, MBSR,
AWESH). The arguments of this function are calculated as follows:

(a) Modified Normalized Difference Wetness Index (MNDWI) = (green −
SWIR1)/(green + SWIR1)

(b) Multi-band Spectral Relationship Visible (MBSRV) = green + red
(c) Multi-band Spectral Relationship Near-Infrared (MBSRN) = NIR + SWIR1
(d) Automated Water Extent Shadow (AWESH) = blue + (2.5 × green) − (1.5 ×

MBSRN) − (0.25 × SWIR2)
(e) Normalized Difference Vegetation Index (NDVI) = (NIR − red)/(NIR + red)

– Third, encode the five basic experimental functions of the DSWE algorithm.
– Forth, in the code, write three classification functions corresponding to Water (Pixel

Value = 1 and 2), Land (Pixel Value = 0) and Potential (Pixel Value = 3).
– Fifth, output the final classification result to Google Drive.
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