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Abstract: The paper proposes an analytical study regarding airborne radar imaging performances
and accounts for a down-looking radar system moving along parallel lines far, in terms of probing
wavelength, from the investigated domain and collecting multi-frequency and multi-monostatic data.
The imaging problem is formulated in a constant depth plane by exploiting the Born approximation.
Hence, a linear inverse scattering problem is faced by considering both the Adjoint and the Truncated
Singular Value Decomposition reconstruction schemes. Analytical and simulated results are provided
to state how the achievable performances depend on the measurement configuration. These results
are of practical usefulness because, in operative conditions, it is unfeasible to plan a flight grid
made up by a high number of closely (in terms of probing wavelength) spaced lines. Hence, the
understanding of how the availability of under-sampled data affects the radar imaging allows for a
trade-off between operative data collection constrains and reliable reconstructions of the scenario
under test.

Keywords: radar imaging; unmanned aerial vehicle; airborne; inverse scattering; linear scattering
models; radar signal processing

1. Introduction

Radar systems mounted on airborne platforms like small unmanned aerial vehicles
(UAVs) are worth being considered because UAV allows for a not trivial simplification
of the measurement logistic phase. UAV makes, indeed, possible an easy access to areas,
which are hard to be reached by human operators or dangerous for them, and it permits
the survey of wide areas without efforts. Accordingly, different kind of UAV-based down-
looking radar systems have been recently proposed [1–8], someone of them working at
high frequency and applied for landmine detection [2–5,7] and cultural heritage [8].

Whatever is the considered radar system and the application of interest, a common
issue is the design of the measurement configuration as a function of the flight parameters,
i.e., flight altitude, number of measurement lines, and number of measurement points
along each line. The radar imaging result depends, indeed, on the amount and quality
of data as well as on the adopted data processing strategy [9,10]. Moreover, when a UAV
radar system is employed, one must account for that, in practice, it is unfeasible to plan a
flight grid with a high number of lines spaced by a small, in terms of probing wavelength,
spatial offset. Therefore, it is clear that an open practical issue is to understand how the
imaging capabilities depend on the measurement setup.

A contribution to this topic has been given in [11], where analytical and numerical
results have been presented for the case of single frequency, multi-lines, multi-monostatic
data. Specifically, in [11] a radar moving along parallel lines at a certain altitude and
collecting single frequency data at nadir has been considered. In addition, the imaging
has been formulated in the 2D (x-y) plane under the Born approximation [12], and the
Truncated Singular Values Decomposition (TSVD) approach [13] has been adopted as
inversion procedure.
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In this paper, the same measurement configuration and assumptions of [11] are made
but, differently from [11], multi-frequency data are exploited. Moreover, the imaging
capabilities of the Adjoint and the TSVD reconstruction approaches [13] are investigated.
The analysis is performed by accounting for the Point Spread Function (PSF) as a tool to
foresee the effect of the measurement configuration on the achievable spatial resolution
along x and y directions. Analytical results are firstly derived. After, numerical results,
referred to a wide-band high frequency radar system, are presented to show the benefits
introduced by the availability of multi-frequency data and to compare the performance of
the two considered inversion approaches.

The paper is organized as follows. Section 2 deals with the formulation of the imaging
problem and recalls the inversion procedures. Section 3 provides analytical results stating
how multi-frequency multi-monostatic well and under-sampled data affect the imaging
capabilities in terms of spatial resolution and occurrence of grating lobes. Numerical results
concerned with a point-like target are presented in Section 4, while the case of an extended
target is tackled in Section 5. Conclusions are given in Section 6.

2. Imaging Problem

Let us consider the imaging scenario depicted in Figure 1. A radar system, mounted
on a UAV platform, collects data over the planar surface M = (−a, a) × (−b, b) by traveling
along n parallel measurement lines, with n = 1, . . . , Nny. The measurement lines are
parallel to the x-axis, evenly spaced along the y-axis and at a constant altitude h above the
imaging surface. This latter is the spatial domain D = (−a’, a’) × (−b’, b’) located at z = 0.
The radar operates in monostatic mode and illuminates the scene at nadir (i.e., along z-axis)
at each measurement point r = xx̂ + yŷ + hẑ. The transmitting and receiving antennas are
modeled as wide-band linear dipoles, oriented along the y-axis and operating at a central
frequency belonging to the C-band. The targets are located into the imaging domain D.

Figure 1. Imaging Scenario.

Under the above assumptions and considering the Born Approximation, the scattering
phenomenon is described in the frequency domain by the following linear integral equation:

ES(r, ω) = ŷ · k2
0

x

D

G
=

f s(r, r′, ω
)
·E f s

i
(
r, r′, ω

)
χ
(
r′
)
dr′ (1)

In Equation (1), ES(r, ω) denotes the collected component of the backscattered field at
the measurement point r and at the angular frequency ω; k0 = ω

√
µ0ε0 is the free-space

propagation constant (µ0 and ε0 being the free-space magnetic permeability and dielectric
permittivity, respectively). Moreover, χ(r′) = εt(r′)

ε0
− 1 is the unknown contrast function,

εt(r′) being the dielectric permittivity function at the generic point r′ = x′ x̂ + y′ŷ in D;
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G
=

f s(r, r′, ω) is the dyadic Green function in free space; while E f s
i (r, r′, ω) is the incident

filed, whose expression is:

E f s
i
(
r, r′, ω

)
= −j k0Z0 I0lG

=

f s(r, r′, ω
)
· ŷ (2)

where I0l is the transmitting dipole current moment and Z0 is the free-space impedance.
The start and stop approximation is assumed, i.e., the radar is considered motionless

(at a fixed measurement point r) in the time interval between the transmission of the probing
signal, i.e., the incident field, and the reception of the corresponding backscattered field.

Let the radar operate in far-field [12], by substituting Equation (2) in Equation (1)
and exploiting the far field expression of the Greens function, the scattering equation is
rewritten as:

ES(r, ω) = C
x

D

1
R2 e−j2k0Rχ

(
r′
)
dr′ = Lχ (3)

where the dependency on ŷ has been omitted. C = −j k3
0Z0 I0l, R =

√
(x− x′)2 + (y− y′)2 + h2,

and L : L2(D)→ L2(M×Ω) is the linear scattering operator mapping the unknown
space into data space, where L2 denotes the space of the square integrable functions and
Ω = [ωmin, ωmax] is the radar frequency band, ωmin and ωmax being the minimum and
maximum angular frequencies, respectively.

To face the imaging problem as defined by Equation (3), two reconstruction strategies
are considered: the Adjoint procedure [13] and the Truncated Singular Value Decomposition
(TSVD) inversion scheme [13]. These approaches allow for a closed form expression of the
contrast function given in terms of the SVD of the discretized version of the operator L.
Specifically, after discretization, the imaging is faced as the solution of the matrix inverse
problem:

ES = Lχ (4)

where ES is the N-dimensional data vector, χ is the Q-dimensional unknown vector, Q
being the number of points in D, and L is the N × Q-dimensional matrix obtained by
discretizing the integral operator L. Let {un, σn, vn} be the singular system of the matrix L,
we have [13]:

Lvn = σnun and L+un = σnvn (5)

where L+ denotes the adjoint matrix, {σn} are the singular values in decreasing order,
while {vn} and {un} define the orthonormal basis of the object space and the data space,
respectively.

By exploiting the SVD representation of L, the estimated contrast function is ex-
pressed as:

χ̂adj(r) = L+Es =
N

∑
n=1

σn〈ES, un〉vn (6)

according to the Adjoint procedure, and as

χ̂TSVD(r) =
T

∑
n=1

1
σn
〈Es, un〉vn (7)

according to the TSVD approach. In Equations (6) and (7), 〈·, ·〉 is the scalar product; the
parameter N in Equation (6) is the amount of collected data, while the parameter T in
Equation (7) is the regularization threshold [13]. The modulus of the contrast function as
defined by Equation (6) or Equation (7) is the tomographic image of the scenario under test.

3. Imaging Performance Analysis

This Section aims at providing analytical results relating the imaging capabilities to
the measurement configuration. These results are propaedeutic to the outcomes of the



Remote Sens. 2021, 13, 4897 4 of 17

numerical analysis presented in the following sections. In detail, with respect to the imaging
scenario sketched in Figure 1, this Section discusses about the amount of independent data,
i.e., the minimum number of samples required to represent the backscattered field properly,
as well as the achievable spatial resolution limits and the occurrence of grating lobes.

The analysis deals with the far field condition and, as previously done in [11] for the
single frequency case, it starts with the assumption that both the frequency range Ω and
the measurement domain M are sampled continuously. Thereafter, it takes into account
that a dense sampling is reasonable for Ω and the along-track direction, i.e., the x-axis
for the scenario at hand (see Figure 1), whereas it is practically unfeasible for the across
direction, i.e., the y-axis. The sampling measurement step along y-axis, indeed, must be
compliant with the positioning accuracy reachable by the on-board Global Navigation Units
(GNUs), which control the UAV flight trajectory. Consequently, a coarse measurement step
is expected along the y-axis. The discrete sampling case is distinguished by considering:
(i) data sampled in agreement with the Nyquist criterion (i.e., well sampled data) and (ii)
under sampled data.

3.1. Continuous Sampling

Based on the far field condition, we assume k0h � 1, h � |x− x′| and h � |y− y′|.
In this case, by applying the paraxial approximation [14] the distance term R appearing in
the exponential term of Equation (3) is expressed as:

R ≈ h +
(x− x′)2

2h
+

(y− y′)2

2h
(8)

and Equation (3) is rewritten as:

ES(r, ω) =
Ce−j2k0h

h2

x

D

e−jk0
(x−x′)2

h e−jk0
(y−y′)2

h χ
(

x′, y′
)
dx′dy′ (9)

The kernel of the integral in Equation (9) is separable and we can tackle the dependence
on the spatial variables independently. Let us start by considering the variable x′ and the
equation:

ES(x, ω) =
Ce−j2k0h

h2

∫ a′

−a′
e−jk0

(x−x′)2
h χ

(
x′
)
dx′ (10)

Let be A = Ce−j2k0h

h2 , ẼS(x, ω) =
ES(x,ω)

A ej k0x2

h and χ̃(x′) = χ(x′)e−j k0x′2
h , Equation (10)

is rewritten as:

ẼS(x, ω) =
∫ a′

−a′
ejk′x x′ χ̃

(
x′
)
dx′ (11)

where k′x = 2k0
x
h . Equation (11) is the Fourier Transform (FT) of the contrast function χ̃,

which has the spatial limited support [−a′, a′].
According to the Nyquist criterion, the sampling step of the FT of a spatial limited

function in [−a′, a′] is ∆ = π
a′ [13]. On the other hand, it is easy to verify that in the multi-

monostatic and multi-frequency case herein at hand, the variable k′x takes values into the
range

[
− 4πa

λminh , 4πa
λminh

]
, where λmin is the minimum wavelength. Hence, it follows that the

number of samples required to represent ẼS(x, ω) is given by [15,16]:

NDF1D
x =

8πa
λminh

∗ 1
∆

=
8aa′

λminh
(12)

By repeating the same reasoning for the spatial variable y’, the minimum number of
samples to represent ẼS(y, ω) is:

NDF1D
y =

8bb′

λminh
(13)
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Therefore, the total number of multi-monostatic and multi-frequency data required to
represent the scattered field, while assuring no loss of information, is:

NDF2D = NDF1D
x ×NDF1D

y =
64aa′bb′

(λminh)2 (14)

It is worth pointing out that the Nyquist sample number, as given by Equation (14),
defines the amount of not redundant samples necessary to represent the backscattered field.
However, it does not provide a practical rule to properly set the number of measurement
points on M, i.e., along x and y axes, as well as the number of frequencies in Ω. Indeed,
although x, y andω are independent variables, there is an infinite number of their combi-
nations which satisfies the Nyquist criterion for sampling k′x and k′y. On the other hand, an
evenly sampling of the measurement domain M, along x and y, as well as of the frequency
range Ω, can provide an insufficient amount of independent samples of the backscattered
field even if the gathered number of data is equal or higher than the Nyquist number.

3.2. Discrete Sampling: Resolution Limits and Grating Lobes

Let us assume that the backscattered field is measured at a finite number of angular
frequencies ωi with i = 1, . . . , N f in the range Ω and at a finite number of evenly spaced
points (xm, yn) on M with m = 1, . . . , Nmx and n = 1, . . . , Nny. Moreover, Mx and My
denote the amount of multi-monostatic and multi-frequency data collected along the x-axis
and the y-axis, respectively. As in the previous Section, we consider the dependence on the
two spatial variables independently and start by considering the x′ variable. Hence, let
k′x,p = p ∆kx, p = 0, . . . , Mx − 1, and ∆kx = 8πa

Mxλminh we have:

ẼS,p = ẼS(xm, ωi) =
∫ a′

−a′
e

jp 8πa
Mxλminh x′

χ̃
(
x′
)
dx′ with p = 0, . . . , Mx − 1 (15)

3.2.1. Nyquist Sampling Configuration

Let us consider Mx = NDF1D
x defined in Equation (12). In this case, the samples Ẽs,p

are the Fourier harmonics of χ̃(x′) and the solution of the inverse problem in Equation (15)
has the following expression:

χ̃
(
x′
)
=

Mx−1

∑
p=0

ẼS,pe
−jp 8πa

Mxλminh x′
=

Mx−1

∑
p=0

ẼS,pejpBx (16)

being Bx = − 8πa
Mxλminh x′ = −π

a′ x
′. In order to appreciate the spatial resolution, we use

Equation (16) to calculate the Point Spread Function (PSF) referred to a point like target
located a x′ = 0. By means of some matematical passages, which are not reported for sake
of brevity, it is obtained the following expression [11]:

PSF
(
x′
)
= 2a′ej(Mx−1) Bx

2
sin
(

Mx
Bx
2

)
sin
(

Bx
2

) (17)

The PSF in Equation (17) depends on x′ by means of the quantity Bx, it is maximum at
x′ = 0 and it has its first null is at:

Mx
Bx

2
= ±π, i.e., at x′ = ±λminh

4a
(18)

This means that the spatial resolution limit along the x-axis is dictated by the maximum
frequency of the considered range and depends on the flight altitude h.

Note that the modulus of the PSF in Equation (17) has period π with respect to the
variable Bx

2 . Hence, grating lobes occurr at Bx
2 = ±qπ with q ∈ N− {0}.
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All the above considerations are valid also for y′, provided that Mx is replaced by My,
∆kx by ∆ky = 8πb

Myλminh and Bx by By = − 8πb
Myλminh y′. Hence, with respect to y′, the PSF is

given by

PSF
(
y′
)
= 2b′ej(My−1)

By
2

sin
(

My
By
2

)
sin
(

By
2

) (19)

while the 2D PSF is expressed as:

PSF
(

x′, y′
)
= 4a′b′ej(Mx−1) Bx

2
sin
(

Mx
Bx
2

)
sin
(

Bx
2

) ej(My−1)
By
2

sin
(

My
By
2

)
sin
(

By
2

) (20)

It is worth pointing out that, while the spatial resolution limits along x and y do not
depend on Mx and My, these latter affect the imaging capabilities due to the possible
occurrence of grating lobes. In the case at hand, Mx and My are given by Equations (12)
and (13), respectively, hence ∆kx,opt =

π
a′ and ∆ky,opt =

π
b′ while the parameters Bx and By

get the values:

Bx = −π

a′
x′ and By = −π

b′
y′ (21)

Consequently, since grating lobes occurr when Bx
2 = ±qπ and By

2 = ±qπ with
q ∈ N − {0}, they are at x′ = ±2qa′ and y′ = ±2qb′, which are points outside the
investigated domain. In other words, as it is obvious, the Nyquist sample number assures
that no aliasing effects occurr.

3.2.2. Undersampling Configuration

Let us consider that the data are collected according to the Nyquist criterion along the
UAV travelling direction, i.e., the x-axis, while under-sampled data are collected along the
across direction, i.e., the y-axis. As said at the beginning of this Section, this is compliant
with the fact that a large amount of measurement points is feasible along the x-axis, while
practical flight constrains make unfeasible to consider a large number of dansly spaced
measurement lines. Hence, in practice, an often encountered condition is the availabilty of
an amount of data such that My < NDF1D

y .
Let us express the sampling step as ∆ky = π

b′′ , b′′ being an auxiliary spatial parameter
such that ∆ky = π

b′′ > ∆ky,opt =
π
b′ The amount of backscattered field samples is given by

My = 8bb′′
λminh . In this case, the resolution limits do not change because they do not depend

on My; conversely, grating lobes occur at:

y′ = ±2qb′′ = ±2q
My

NDF1D
y

b′ (22)

and alsiaing issues arise.

4. Performance Analysis

This Section investigates how the imaging capabilities of the Adjoint procedure and
the TSVD regularization scheme (see Section II) depend on the adopted measurement
configuration. The analysis deals with spatial resolution limits and occurrence of grating
lobes. In particular, a point-like target centered in (xt = 0, yt = 0), i.e., at the origin of
the reference system given in Figure 1, is considered. The imaging domain, D, is a square
located at z = 0 m whose side is 3 m long, i.e., a′ = b′ = 1.5 m. The data are gathered in
the frequency range Ω = (3.5, 4.5) GHz by a UAV mounted radar. The latter covers a
measurement domain M, which is a square with sides 3 m long, and it travels at height h
along multiple measurement lines Nny parallel to the x-axis. Three examples are considered
and are referred to as Example A, B and C.
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4.1. Example A (Height of the Platform Equal to 15 m)

Let us assume that the flight altitude is h = 15 m. According to the above definition of
D, M and Ω and the analytical results given in Section 3, we have NDF1D

x = NDF1D
y =18,

the spatial resolution is expected to be 0.17 m along x and y, while grating lobes occur
when an amount of not redundant data lower than NDF2D = 18× 18 = 324 is gathered.

However, the problem arises about the effective location of the measurement points
on M and the number of frequencies in Ω. Under the assumption that the measurement
domain M and the frequency range Ω are evenly sampled, we consider the five cases
summarized in Table 1, which also provides the total amount of collected data, N, and the
value of TSVD threshold, T. This latter is set in correspondence of the beginning of the
fast decay of the singular values. For the considered cases, this means to filter out all the
singular values whose normalized amplitude is lower than −10 dB, see Figure 2.

Table 1. Parameters for Example A.

Case Nmx Nny Nf N T

Case 1 11 11 5 605 244
Case 2 9 9 5 405 201
Case 3 11 11 3 363 241
Case 4 11 5 3 165 141
Case 5 11 3 3 99 88

Figure 2. Normalized singular values in dB scale (h = 15 m), Case 1—solid line; Case 2—dashed line;
Case 3—dashed-dot line; Case 4—circle-solid line; Case 5—circle-dashed line.

Figures 3a–c and 4a–c show the normalized modulus of the PSF obtained by us-
ing Equation (6) (Adjoint PSF) and Equation (7) (TSVD PSF), respectively. In addition,
Figure 5a,b compares the PSF cuts along y directions. These figures corroborate that both
the reconstruction approaches allow for comparable performance in Case 1 and Case 3,
while grating lobes occur at the sides of the investigated domain in Case 2, even if they
have negligible amplitude for the TSVD approach. Moreover, both the approaches reach
a spatial resolution well approximating the expected one. In both the spatial directions,
indeed, the spatial resolution achievable by Adjoint and TSVD are 0.18 m and 0.16 m,
respectively.

Based on the provided results, we consider Case 3 as the best trade-off in terms of
imaging performance and amount of data to be processed. In this case, indeed, both the
approaches provide images not affected by grating lobes. Accordingly, it is reasonable
of assuming that the measurement parameters of Case 3 allows us to collect the required



Remote Sens. 2021, 13, 4897 8 of 17

amount of not redundant data. The other outcome of the present analysis is that, for the
example at hand, the number of spatial measurement has a larger effect on the grating
lobes issue.

In Case 4 and Case 5, the number of measurement points along x and of frequencies
are fixed as in Case 3, while the number of measurement lines along y is progressively
decreased in order to investigate how the undersampling expected in this direction affects
the imaging results.

Figure 6a–c is referred to Case 4 while Figure 7a–c accounts for Case 5. As expected,
the spatial resolution does not change in both the spatial directions and grating lobes
appearing along y. Moreover, whatever the inversion procedure, their number increases as
the measurement lines decrease, and their location is well approximated by Equation (22)
with My = Nvs

NDF1D
x

, Nvs being the number of about constant singular values, i.e., the singular
values whose normalized amplitude is not less than −6 dB.
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Figure 4. Normalized modulus of the TSVD PSF: (a) Case 1—Nmx = Nny = 11 and N f = 5; (b) Case 2—Nmx = Nny = 9 and
N f = 5; (c) Case 3—Nmx = Nny =11 and N f = 3; (d) color bar.

Figure 5. Comparison of Adjoint and TSVD PSF along y: (a) Case 1—Nmx = Nny = 11 and N f = 5; (b) Case 2—Nmx = Nny =
9 and N f = 5; (c) Case 3—Nmx = Nny = 11 and N f = 3.
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Figure 6. Normalized modulus of the PSF for Nmx = 11, Nny = 5 and N f = 3: (a) Adjoint PSF (b) TSVD PSF; (c) Comparison
of the PSF cuts along y; (d) colorbar.
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Figures 6 and 7 show also that the TSVD inversion allows for improved reconstruction
capabilities since the grating lobes have lower amplitude than in the Adjoint reconstruction.
This result is compliant with those given in [16,17] and it is due to the not step-like
decreasing behaviour of the singular values. It is also worth pointing out that the loss
of data, due to reduced number of measurement lines, cannot be compensated for by
increasing the number of frequencies. In particular, by setting N f = 5, the imaging results
are similar to those given in Figures 6 and 7 and are not shown for the sake of brevity.

4.2. Example B (Height of the Platform Equal to 2.5 m)

Let us investigate what happens if the assumptions h � |x− x′| and h � |y− y′|
are removed and assume the flight altitude h = 2.5 m. In this case, the PSF analytical
expression given in Equation (20) is not valid in principle but, in practice, can be still
considered to have indication about the expected performance and to have hints about
the design of the measurement configuration. Specifically, in the case at hand, the spatial
resolution expected on the basis of the analysis reported in Section 3 is 0.03 m along x
and y, while grating lobes are foreseable when an amount of independent data lower than
NDF2D = 108× 108 = 11664 are gathered.

Based on the previous results, we have considered the cases summarized in Table 2.

Table 2. Parameters for Example B.

Case Nmx Nny Nf N T

Case 1 63 63 3 11,907 6549
Case 2 63 5 3 945 945
Case 3 63 3 3 567 567
Case 4 63 3 5 945 945

Figures 8–10 show the 2D PSF reconstructed by means the Adjoint and the TSVD
procedures and their cuts along y for Nmx = 63, N f = 3 and Nny = {63, 5, 3}. As for
the Example A and the following ones, the TVSD threshold has been set in such a way to
consider all the singular values before the fast decay. This implies that the threshold T is
equal to the amount of available data N, when few measurement lines are accounted for.
Figures 8–10 corroborate that, as discussed in Section 3, the spatial resolution improves by
decreasing the flight altitude; it does not change when the amount of data decreases, and
its value is well estimated by Equation (18). In fact, the spatial resolution is about 0.03 m
in both the directions and for both the considered reconstruction approaches. Moreover,
as for the flight altitude h = 15 m, when few measurement lines are considered the TSVD
allows for a better reconstruction, in terms of amplitude of grating lobes, compared to the
Adjoint procedure, even if the reconstruction provided by both the approaches are affected
by artefacts occurring along y.
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Figure 8. Normalized modulus of the Adjoint PSF: (a) Case 1—Nmx = Nny = 63 and N f = 3; (b) Case 2—Nmx = 63 Nny = 5
and N f = 3; (c) Case 3—Nmx = 63 Nny = 3 and N f = 3; (d) color bar.
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Figure 10. Comparison of Adjoint and TSVD PSF along y: (a) Case 1—Nmx = Nmy = 63 and N f = 3; (b) Case 2—Nmx = 63
Nmy = 5 and N f = 3; (c) Case 3—Nmx = 63 Nmy = 3 and N f = 3; (d) color bar.

It is worth noting that now the artefacts can be reduced by setting N f = 5, as one can
observe by Figure 11a,b, which show the Adjoint PSF and TSVD PSF for the Case 4 in
Table 2, and comparing them with Figures 8c and 9c, respectively.

Figure 11. Normalized modulus of PSF, Case 4: (a) Adjoint procedure, (b) TSVD approach; (c) colorbar.

4.3. Example C

Let us consider the reconstruction of a point-like target when the spacing among the
measurement lines y is fixed and equal to 0.6 m. The target is still located at the center
of the investigated domain, which is the same of the previous examples, while the data
are collected at the flight altitude h = 2.5 m. The measurement points along the x-axis
are Nmx = 63; the measurement lines are Nny = 5 and Nny = 3, the frequencies in Ω are
N f = 5 (see Table 3).

Table 3. Parameters for Example 3.

Case Nmx Nny Nf N T

Case 1 63 5 5 1575 1575
Case 2 63 3 5 945 945

Figure 12a,b show the Adjoint PSF and the TSVD PSF referred to Case 1, while those
referred to Case 2 are given in Figure 13a,b.

It is worth noting that the resolutions along y are different w.r.t. the previous cases,
because the size of the measurement domain along y changes. Indeed, for Case 1 the
parameter b is 1.2 m, while for Case 2 it is b = 0.6 m. The resolution values along y
axis are 0.35 m and 0.7 m for Case 1 and Case 2, respectively; they are compliant with
the analytical values given by Equation (18). Moreover, concerning grating lobes, the
TSVD approach achieves again better performance w.r.t. the Adjoint inversion procedure.
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Indeed, Figures 12 and 13 show that the Adjoint PSFs have grating lobes and artefacts
whose amplitude is larger compared to the TSVD PSFs.

Figure 12. Normalized modulus of PSF, Nmx = 63, Nmy = 5 and N f = 5: (a) Adjoint procedure, (b) TSVD approach;
(c) color bar.

Figure 13. Normalized modulus of PSF, Nmx = 63, Nmy = 3 and N f = 5: (a) Adjoint procedure, (b) TSVD approach;
(c) colorbar.

5. Numerical Example

This section aims at assessing the performances of the two reconstruction approaches
in the case of extended objects. In particular, we consider an extended object located on
a ground having relative permittivity equal to 4. The object is a parallelepiped, having
size 0.50 × 0.50 × 0.05 m3 and relative permittivity equal to 6, and it is located about
at the center of the investigated domain (the simulated scenario is shown in Figure 14).
Specifically, the center of the object is placed at x = −0.10 m, y = 0 m and z = 0.025 m.

Time domain data have been simulated by means of gprMax 3D, which is a FDTD
simulation software commonly used to simulate time-domain GPR data [18]. Five straight
measurement lines are considered along the y-axis. They are 3 m long along the x-axis, 0.6
m spaced from y = −1.2 m to y = 1.2 m, and 2.5 m far from the air-soil interface. A dipole
antenna oriented along the y-axis, whose central frequency is 4 GHz, is taken as primary
source and only the y-component of the backscattered field is collected at Nmx = 75 evenly
spaced measurement points along each line. The simulated data have been transformed
into the frequency domain by setting the useful frequency range equal to (3.5− 4.5) GHz
and considering N f = 5 frequencies evenly spaced of 0.5 GHz.
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Figure 14. Simulated Scenario.

Figure 14 shows a sketch of the reference scenario, while Figure 15a,b show Adjoint
and TSVD reconstructions in the plane y = 0 m, where the black dashed contour represents
the true target. As for the examples reported in Section 4, the TSVD threshold is such
to consider the singular values before the fast decay, i.e., T = 1795 (see Figure 15d).
According to the analytical results, the TSVD approach allows for a better spatial resolution
and reconstructs accurately shape and size of the object into the (x− y) plane. On the other
hand, few ghosts appear and are due to the grating lobes occurring for the low number
of measurement lines. In the TSVD approach, the amplitude of the grating lobes is lower
than the amplitude of the object with the exception of those arising on the side of the
investigated domain. Conversely, in the Adjoint-based reconstruction, the grating lobes
have amplitude comparable to the object and this implies that the y-size of the object is
significantly overestimated.

Figure 15. Extended target reconstruction: (a) Adjoint Operator; (b) TSVD (c) colorbar; (d) Normal-
ized singular values. The black dashed contour appearing in Figure 15a,b represents true target at
z = 0.
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6. Discussion and Conclusions

The performance of UAV radar imaging systems depends on multiple system factors,
i.e., radar operative parameters, measurement setup and data processing strategy. The pa-
per has presented an analytical and numerical study aimed at assessing the reconstruction
capabilities of down looking airborne radar systems able to collect multi-frequency data.
The study regards the performance achievable when the imaging is faced under the Born
Approximation, which is the usual assumption for facing a radar imaging problem, f.i. in
applicative framework of Ground Penetrating Radar [9].

The first part of the presented analysis deals with data collected in far-field condition
and satisfying the Nyquist criterion. Under these assumptions, a closed expression of the
Point Spread Function (PSF) has been derived and considered as analytical tool to estimate
the spatial resolution limits and investigate how the imaging capabilities depend on the
amount of available data. It is worth pointing out that the analytical results presented
in Section 3 do not depend on the adopted inversion approach and provide a general
indication about the achievable imaging capabilities.

In addition, a numerical analysis has been provided to account for the reduced amount
of data commonly available, and the far-field condition may not satisfied. The numerical
analysis has been carried out by using two widespread inversion strategies, i.e., the Adjoint
and the TSVD approaches. Moreover, first, it accounts for a single point-like target and,
then, an extended object, whose scattered field has been simulated by using a full-wave
electromagnetic software widely exploited by the GPR community. When the measure-
ment configuration is in agreement with the theoretical hypotheses, the numerical results
corroborate that the imaging results achieved by means of Adjoint and TSVD inversion
approaches exactly match with the resolutions and the grating lobes appearance of the
analytical PSF. Conversely, whereas the resolution limits do not change, the occurrence of
grating lobes depends on the adopted inversion scheme and the presented results state that
the TSVD approach allows for improved results compared to the Adjoint, especially when
the flight altitude decreases. Herein, the Adjoint inversion has been considered because it
is at the basis of the classical imaging methods (see [10]), while the TSVD inversion was
been taken into account due to the fact that the singular values are characterized by a
slow dynamic before the fast exponential decay [13]. Other regularization inverse schemes
might be used especially when the singular values have a smooth decay [13]; this could be
an interesting topic of future work.

As a final remark, we underline that the presented analysis accounts for data collected
in ideal conditions, i.e., does not account for the uncertainties about the actual location
of the measurement points, which is one of the main problems arising when consider
experimental data. Accordingly, the manuscript provides indications about the imaging
capabilities achievable by means of a UAV mounted radar system in the best case. As future
research activity, we are planning to assemble a radar system on-board a UAV platform,
design a measurement campaign in a laboratory-like controlled scenario and exploit the
Carrier-phase differential global positioning system (CDGPS) technique [19] to accurately
estimate the UAV positions during the data acquisition step. The final goal of this future
activity will be the evaluation of the discrepancies between the results achieved by the
theoretical analysis and those achieved by processing real datasets.
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