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Abstract: Highland barley is the unique germplasm resource and dominant crop in Tibet with
low-level precipitation and a severe shortage of available water resources. Understanding the charac-
teristics and dynamics of evapotranspiration (ET) components (vegetation transpiration (Ec), soil
evaporation (Es), and canopy interception evaporation (Ei)) of highland barley can help better op-
timize water management practices. The seasonal and interannual variations in ET components
of highland barley were investigated using the PML-V2 ET product during 2001–2020. The results
suggested that Es was the most important ET component and accounted for 77% of total ET for
highland barley in Tibet. ET components varied obviously over the altitude, Es, and Es/ET ratio; a
decreasing trend was observed with the increase in altitude from 3500 m to 3800 m and then this
changed to an increasing trend until reaching the altitude of 4100 m, while Ec, Ei, and their ratios
presented an opposite changing pattern to that of Es. Seasonal variation in daily ET components
of highland barley displayed a parabolic pattern, peaked in August, while the temporal distribu-
tions differed considerably among different ET component ratios. The seasonal variations in ET
components were correlated significantly with air temperature, relative humidity, and precipitation,
while ET components ratios were more influenced by the environment, irrigation practice, and
management rather than meteorological variables. Es and its ratio in highland barley decreased
significantly during 2001–2020, while the Ec/ET ratio generally showed an opposite trend to the
Es/ET ratio, and Ei and its ratio presented an insignificantly decreasing trend. The interannual
variations in ET components were not correlated significantly with meteorological variables, while Ei
was more influenced by meteorological variables, especially the precipitation characteristics.

Keywords: evapotranspiration components; temporal variation; meteorological variables; PML V2

1. Introduction

Terrestrial evapotranspiration (ET), comprising the transpiration from vegetation (Ec),
the evaporation from soil (Es), and the evaporation of the intercepted precipitation by
vegetation canopy (Ei) [1], is a critical process of water and carbon cycle, as well as the
most important component of energy balance for soil–plant–atmosphere continuum [2].
ET and its components play key roles in linking ecosystem functioning, climate feedbacks,
and water resources [3]. Crop water consumption by ET is a critical parameter for water
and energy exchanges in the agriculture continuum [4]. Understanding the dynamic and
characteristics of crop ET components is of great significance in the estimation of water
requirements for agricultural irrigation [5], evaluation of water use efficiency [6], and
development of optimal irrigation schedule [7].
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Several techniques have been developed to measure ET components of crops. Many
previous studies used the micro lysimeter and sap flow, respectively, to measure the Es
and Ec of crops such as wheat [4], maize [8,9], and tomato [10], the results suggested that
sap flow was a useful tool to measure Ec of crops at an instantaneous interval [8]. As far
as short-stalk, closed-system planting crops such as wheat and rice were concerned, Ei
was often measured with classic water wiping method [4], while it was usually calculated
using the water balance method for maize, in which throughfall was collected with rainfall
collectors, and stemflow was collected with collars attached around the maize stems, and
then stemflow in collars was drained to collectors using a slot with a transfer hose [9].
Ma and Song [2] explored the isotope tracing technique coupled with the water balance
method for partitioning ET of winter wheat under different irrigation and fertilization
treatments during growing seasons. Some studies used the weighing lysimeter and eddy
covariance system to measure the total ET, which was later partitioned into ET components
using the energy balance method [10–12]. Zhou et al. [13] proposed a simple and practical
method to estimate Es and Ec of crops; this method combined with an eddy covariance
system was later used by Wang et al. [14] to separate Es and Ec of maize cropland in a dry,
semihumid climate regime.

However, these techniques were not widely applied mainly due to the limitations of
being time consuming, having costly equipment, and being prone to measuring manipula-
tion [10]. Therefore, great efforts have been made for partitioning ET by means of modeling
approaches, with the main focus on the improvements of the surface conductance model
based on the Penman–Monteith (PM) model. Shuttleworth and Wallace [15] modified the
PM model and developed the Shuttleworth–Wallace (SW) model based on the energy bal-
ance theory and the physical process of Es and Ec. Hu et al. [16,17] introduced Ball–Berry
stomatal conductance model to modify the SW model and suggested an improved SW
model. Leuning et al. [18] and Zhang et al. [19] used a surface conductance model to modify
the PM model and proposed the Penman–Monteith–Leuning (PML) model. Introducing a
water carbon coupled canopy conductance model, Gan et al. [20] revised the PML model
and developed the PML-V2 model, which can estimate ET components and gross primary
productivity (GPP) simultaneously. This model was further improved by Zhang et al. [1,21]
by incorporating the vapor pressure deficit constraint to GPP. Rosa et al. [22] considered Es
and Ec as a function of crop coefficient and reference evapotranspiration and presented a
dual crop coefficient model. Gong et al. [10] reported a modified Priestley–Taylor model
considering the effects of leaf senescence and plant temperature constraint on transpiration
to estimate Es and Ec of tomato.

Due to the difference in climate, geomorphology, soil, hydrological regimes, and
agricultural management practices, ET components and the proportion of components
for crop varied greatly from site to site [3]. Generally, the ET, Ec, and the Ec/ET ratio in
hot and humid areas were higher than those in arid and semiarid areas [23]. For example,
ET, Ec and the Ec/ET ratio of wheat in eastern China [2] with humid climate were higher
than those in western China with arid climate [4], and ET, Ec, and Ec/ET ratio of crops
in southern China with hot temperature [24] were higher than those in northern China
with cold temperature [25]. Previous studies revealed that Ec generally accounted for a
large proportion of ET [6,26], while Es became a major component in arid and semiarid
areas [27,28]. Compared with Ec and Es, Ei was not a major component of ET, while it
was an important ET component of the soil–vegetation–atmosphere continuum, regulating
the reallocation of rainfall reaching the canopy [26]. However, this component was often
neglected in many studies on ET partitioning [4,29]. Ei was significantly affected by the
structure of the canopy and by precipitation; the crop with higher leaf area and vegetation
cover generally yielded higher Ei [30].

Featured as a unique germplasm resource and occupying 70% of cropland in Tibet
Autonomous Region, China [31], highland barley plays a critical role in guaranteeing the
livelihood and promoting social stability of herdsmen in Tibet. Tibetan highland barley
has the characteristics of a short-stalk, closed-system planting crop, and it is usually sown
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between March and April. The growth, development, traits, and yield of highland bar-
ley are dramatically affected by hydrological regimes in the Tibetan Plateau. However,
limited rainfall, coupled with higher ET, resulted in a severe shortage of available water
resources [32], which significantly affected the yield of highland barley in this area. There-
fore, it became an important alternative to irrigate highland barley using the available
water resources for maintaining the yield of highland barley [33]. Irrigation management
was based on the available water at the beginning of the growing season, while no detailed
knowledge of water deficit and irrigation demand was taken into account due to the lack
of relevant studies. In fact, water depth and the number of irrigations initially proposed
can be modified according to rainfall. ET is a critical process and the most important com-
ponent of the water cycle in Tibet; therefore, quantifying ET components of highland barley
and understanding their dynamic can help in the better and more efficient management of
the limited water resources and in developing an optimal irrigation schedule. However,
the changes and characteristics of ET components for highland barley are still not clear and
need to be investigated. Therefore, this study was carried out to fill this knowledge gap;
the main objectives of this study were to (1) investigate the characteristics and variations in
ET components and their proportions with regard to highland barley and (2) explore the
meteorological factors affecting the variations in ET components.

2. Materials and Methods
2.1. Study Area

The Tibet Autonomous Region (Figure 1) is located in the southern part of the Qinghai-
Tibet Plateau and stands at the southwestern border of China, to the north of Xinjiang
Uygur Autonomous Region and Qinghai Province, and to the west of Sichuan and Yunnan
Provinces, bordering northern Myanmar, India, Bhutan, and Nepal. It covers an area of
1.22 × 106 km2, occupying about 12.7% area of mainland China. Grassland dominates the
whole region and accounts for approximately up to 67% and 26% area of Tibet and China,
respectively, while cropland accounts for only 0.18% area of Tibet, and highland barley
occupies 70% area of cropland, which plays a critical role in guaranteeing the livelihood and
promoting social stability of herdsmen in Tibet. Tibet has unique plateau climate features,
characterized by a large air temperature range between daytime and nighttime, and low-
level precipitation with a highly pronounced spring and summer peak, which differs
significantly from other regions at the same latitude dominated by the Mediterranean and
semidesert/desert climates [34]. The annual mean air temperature varies between −2.4 ◦C
and 12.1 ◦C, and the annual mean precipitation varies between 66.3 mm and 894.5mm [35].

2.2. Data Collection

PML-V2 ET components product was used to investigate the characteristics and
variations in ET components of highland barley in this study. This product was based on the
PML-V2 model, which was initially developed by Leuning et al. [18] and Zhang et al. [19]
and further revised by Gan et al. [20] and Zhang et al. [1,21] through the improvements in
the surface conductance model. Coupled with MODIS data, including land use, albedo,
leaf area index, surface-specific emissivity, and GLDAS meteorological data, including solar
radiation, air temperature, precipitation, and water vapor pressure, a PML-V2 algorithm
was employed to generate global ET components product with 500 m and 8-day resolution.
These product data were evaluated using the measurements at 95 widely distributed flux
towers globally, with the RMSE of 0.69 mm/day [1]. It was also validated across different
regions in China and proved to be reliable data for investigating the variations in ET
components across different ecosystems [36–38]. In this study, the PML-V2 ET product
from 2001 to 2020 covering the study area was obtained from the Google Earth Engine
(https://developers.google.com/earth-engine/datasets, accessed on 27 July 2021).

https://developers.google.com/earth-engine/datasets
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Figure 1. Location of the study area and the distribution of meteorological stations and cropland of highland barley.

The land use data of Tibet in 2015 were collected from the Resource and Environment
Science and Data Center, Chinese Academy of Sciences (https://www.resdc.cn, accessed on
27 July 2021). These data were interpreted from the Landsat images, with 30 m resolution.
Meteorological data, including sunshine duration (SD), air temperature (T), precipitation
(P), and air pressure (AP), water vapor (WP), and relative humidity (RH) were obtained
from the China Meteorological Data Service Center at 5 meteorological stations during
the same period with ET product. The distribution of meteorological stations is shown in
Figure 1, and detailed information on these stations is listed in Table 1.

Table 1. Detailed information on meteorological stations.

Site Name Altitude
(m a.s.l)

Longitude
(◦E)

Latitude
(◦N)

P
(mm)

T
(◦C)

AP
(hpa)

WP
(hpa)

SD
(h)

RH
(%)

Lazi 4000 87.60 29.08 356.28 7.70 623.76 3.98 2941 32.37
Nanmulin 4000 89.10 29.68 500.88 6.39 625.85 4.56 2765 40.59

Mongzhugongka 3804 91.73 29.85 590.78 7.04 640.61 5.08 3020 44.57
Zedang 3551 91.77 29.25 402.80 9.40 660.53 5.46 2814 42.18
Jiangzi 4040 89.60 28.92 284.62 5.84 624.35 4.57 3104 44.64

https://www.resdc.cn
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2.3. The Selection of Pure Pixels of Cropland

The cropland mainly lies on the narrow alluvial plain along the main stream in Tibet.
The limited area, coupled with its fragmented landscape, resulted in a limited number of
pure pixels of highland barley ET obtained from the PML-V2 product with 500 m resolution.
In order to retrieve a series of ET components’ data from the pure pixels of highland barley,
the cropland selected from land-use data of Tibet was overlaid with the grid of the PML-V2
ET product and high-resolution satellite images from Google Earth. A total of 687 pure
pixels of PML-V2 ET product for highland barley were identified, as shown in Figure 1.

2.4. Analysis Method

(1) PML-V2 Model

The PML-V2 model used total primary productivity and atmospheric CO2 concen-
tration to estimate canopy conductance, thereby realizing a joint estimation of ET and
total primary productivity. ET was divided into three main components: vegetation
transpiration (Ec), soil evaporation (Es), and canopy interception evaporation (Ei) [1,21].

ET = Ec + Es + Ei (1)

Ec =
εAc +

(
ρCp

γ

)
DaGa

ε + 1 + Ga/Gc
(2)

Es =
f εAs

ε + 1
(3)

Ei =
{

fvP, P < Pwet
fvPwet + fv(P − Pwet).P � Pwet

(4)

where ε = s/γ, in which γ is the psychrometric constant (kPa/◦C), and s is the slope of the
curve relating saturation water vapor pressure to temperature (kPa/◦C); A is the available
energy absorbed by the surface (MJ/(m2·day))—that is, net absorbed radiation minus soil
heat flux; As and Ac are the available energy of the soil and vegetation canopy, respectively;
ρ is the density of air (g/m3); Cp is the specific heat of air at constant pressure (MJ/(g·◦C));
Da is the water vapor pressure deficit of the air (kPa); Ga is the aerodynamic conductance
(m/s); Gc (m/s) is the canopy conductance; f is a dimensionless variable that determines
the water availability for soil evaporation; fv is canopy leaf area; P is the daily precipitation
(mm/d); Pwet is the threshold of precipitation when the canopy is enough wet.

(2) Unitary Linear Regression Model

A unitary linear regression model was used to describe the interannual change trend
in ET components of highland barley, and the trend rate (k) was calculated as

k =
n × ∑n

i=1(i × ETi)− ∑n
i=1 i ∑n

i=1 ETi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (5)

where ETi is the ET components of highland barley for the ith year, and n is the number
of years.

F-test was used to measure the significance of the linear trend as follows:

F =
U

Q/(n − 2)
∼ F(1, n − 2) (6)

U =
n

∑
i=1

(
ÊTi − ET

)2 (7)

Q =
n

∑
i=1

(
ETi − ÊTi

)2 (8)
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where U and Q are the sum of regression squares and the sum of residual squares, respec-
tively; n is the sample size; ETi is the ET components of highland barley from PML product;
ÊTi is the estimated ET components by the linear regression model; ET is the average
ET components of highland barley. Python was used to calculate k and F values for the
three components.

(3) Pearson Correlation Analysis

Pearson correlation coefficient (R) was used to explore the relationship between the
variations in ET components and meteorological variables. It was calculated using the
following equation:

R =
n ∑ xiyi − ∑ xi ∑ yi√

n ∑ x2
i − (∑ xi)

2
√

n ∑ y2
i − (∑ yi)

2
(9)

where xi and yi are the ET components and meteorological variables, respectively, and n
is the sample size. The metric R varying between −1 and 1 was adopted to measure the
degree of linear correlation between two variables; a higher absolute value of R suggests a
stronger correlation. The Pearson correlation between ET components and meteorological
variables was calculated by SPSS software.

3. Results and Discussion
3.1. ET Components of Highland Barley in Tibet

The annual mean ET of highland barley was 506.9 mm in Tibet, and the Es, Ec, and Ei
were 391.9 mm, 107.6 mm, and 7.4 mm, respectively, which accounted for 77.3%, 21.2%,
and 1.5% of total ET, respectively. This result suggests that Es was the most important
ET component for highland barley in Tibet, and most of the water was lost through
soil evaporation, which was similar to the results in arid climate regions [5,26,39]. The
ET of highland barley was similar to that of spring maize [40] and winter wheat [4] in
northern China, yet higher than that of corn under microirrigation systems in a semiarid
environment [28]. However, large differences in the ET components varied widely among
different crops and regions. Observations showed that Es, Ec, and Ei ranged from 82.9 mm
and 98 mm, from 217.2 mm to 304.1 mm, and from 11 mm to 16 mm for wheat in northern
China, respectively [4]. The measured Es and Ec were approximately 183 mm-205 mm and
172–185 mm for winter wheat in Syria, respectively [25]. The Ec was up to 469–475 mm in
a mulched agriculture ecosystem [40]. These results suggest that highland barley generally
had much lower Ec and Ei but much higher Es than those of other crops such as wheat and
corn, which was similar to the results observed in arid climate regions [5,28].

Numerous studies showed that the proportion of ET components differed greatly
across different crops and from region to region. Previous studies reported that Ec ac-
counted for 20–80% of ET for row crops [41,42]. Wei et al. [43] found that the Ec/ET ratio
varied substantially between 0.2 and 1.0 for a rice paddy field during the growing season
in Mase, Tsukuba. Aouade et al. [27] observed the ET components of winter wheat in a
semiarid region in Morocco, with the average Ec/ET ratio of 0.69–0.8. Many observations
also revealed obvious differences in Ec/ET ratios across China [44]. For example, the
Ec/ET ratio varied widely from 0.52 to 0.96 for maize in northwestern China [45,46], which
was very similar to the range between 0.51 and 0.98 for winter wheat in Beijing [2], and
slightly higher than the Ec/ET ratio from 0.46 to 0.74 for winter wheat in North China
Plain [47]. The Ec/ET ratios of these crops were much higher than that for highland barley
in Tibet, generally indicating that highland barley has a relatively low transpiration rate in
Tibet properly due to the stress from the extreme climate. Compared with Ec and Es, Ei
accounted for only 1.5% of highland barley ET in Tibet, while Ei was an important compo-
nent of the agricultural soil–plant–atmosphere continuum, regulating the reallocation of
rainfall reaching the crop canopy [26]. Some observations and simulations demonstrated
that Ei can account for a large proportion of ET [6]. For example, Ma et al. [4] found that Ei
can amount to 14–15% of ET for wheat in northern China, which was much higher than



Remote Sens. 2021, 13, 4884 7 of 16

that of highland barley in Tibet. However, many studies on ET partitioning often neglected
this component [4,29].

ET components varied obviously over the altitude. As shown in Figure 2, ET generally
decreased with the increase in altitude, with higher ET observed at 3700–3800 m altitude
zone (Figure 2g). Es and Es/ET ratio showed a decreasing trend with the increase in
altitude from 3500 m to 3800 m and then changed to an increasing trend until reaching
the altitude of 4100 m (Figure 2c,d), while Ec, Ei, and their ratios presented an opposite
changing pattern to Es (Figure 2a,b,e,f).
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3.2. Seasonal Variations in ET Components

The temporal distributions of the daily ET components are presented in Figure 3. ET
components of highland barley showed similar seasonal variation patterns at different
altitude zones; they increased progressively from the beginning of the year and reached
the maximum in August, and then they declined dramatically to the end of the year, while
the peak time for Ei (Figure 3e) was slightly later than that for ET (Figure 3g) and Ec
(Figure 3c). The peak time for Es differed greatly across different altitude zones (Figure 3a);
Es at 3700–3800 m altitude zone reached the maximum on the 161st day in June, which was
much earlier than those for other altitude zones. The maximum Es at 3900–4100 m altitude
zone occurred on the 217th day, which was consistent with ET and Ec, and the maximum
Es was observed on the 185th day in early July for other altitude zones.
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The seasonal variations in ET components for highland barley were similar to that of
other crops such as wheat, corn, and rice [9,23,48,49]. For example, Gao et al. [50] found
that the ET components of spring maize presented a parabolic trend with the peak in the
canopy-increasing stage in Loess Plateau in China. Four years of observations illustrated
that ET, Ec, and Es showed similar seasonal variation patterns with the development of the
canopy for maize in dry, semihumid climate regimes [14]. Both the observed and simulated
ET exhibited similar temporal distributions for drylands in the arid regions of northwestern
China [51].

The temporal distributions differed considerably among different ET component ratios.
Ei/ET ratio (Figure 3f) generally presented a similar changing pattern to ET components.
The Es/ET ratio (Figure 3b) increased progressively from the beginning of the year and
reached the maximum in later April, and then it declined to the valley in the middle
of August, and it subsequently increased, reaching the secondary maximum in early
November, then it decreased till the end of the year. This was different from the result
from Dehghanisanij et al. [28], who found that Es decreased with the increase in leaf area
index (LAI) and time. The intra-annual variation in the Es/ET ratio was mainly related to
the growing season of highland barley. From April to August, highland barley reaches its
peak growth period. With the increase in vegetation canopy coverage, the shielding effect
reduced the radiation energy reaching the surface, thus reducing the soil evaporation rate,
and ultimately leading to the decrease in Es/ET. The Ec/ET ratio (Figure 3d) generally
exhibited an opposite changing pattern to the Es/ET ratio, with two valleys corresponding
to the two peaks of Es ratio, and a peak corresponding to the valley of Es ratio, which
was consistent with the seasonal change in the Ec/ET ratio for dryland in northwestern
China [51]. Ma and Song [2] also found that the Ec/ET ratio did not vary significantly
among the seasons for winter wheat in Beijing. The opposite trend between the season
variation in Ec/ET and Es/ET ratios was also observed for maize in northwestern China [9].
Many studies reported different temporal distributions of the Ec/ET ratio of crops from
that of highland barley in Tibet [14]. Gao et al. [50] found that the Ec/ET ratio showed a
parabolic trend for spring maize in the Loess Plateau. Zheng et al. [9] observed a strong
seasonal pattern in the Ec/ET ratio, which increased continuously with the vegetation
growth and then declined after grain filling for maize in northwestern China. A similar
trend was also reported by Wei et al. [24] for rice and corn in Tsukuba, Japan.

ET components were greatly affected by meteorological variables; the correlation
coefficients between the seasonal variation in ET components and meteorological variables
are listed in Table 2. ET components were positively correlated significantly with air tem-
perature (p < 0.01), relative humidity (p < 0.01), and precipitation (p < 0.01). ET and Es
had the strongest correlations with air temperature, followed by relative humidity and
precipitation. Previous studies showed that the meteorological variables had an important
effect on seasonal variations in ET components [5,23,52,53]. Moreover, Ec and Es were
greatly affected by soil moisture [2,54]; higher relative humidity and precipitation can
increase the availability of soil moisture, which can promote the process of soil evaporation
and vegetation transpiration [55]. Observation showed that the Ec rate had a linear rela-
tionship with air temperature for maize in arid regions [23,56]. The significant influence
of air temperature on Ec was also reported by Zhang et al. [57] and Feng et al. [58]. These
results were consistent with the strong correlations between Ec, Es, and air temperature,
relative humidity, and precipitation. Ei correlated most significantly with relative humidity
(p < 0.01) and precipitation (p < 0.01). The result agreed well with that from Zheng et al. [9]
who found that Ei increased with the increase in precipitation for maize in northwestern
China. Previous studies showed that Ei increased slowly with the increase in precipitation,
while it gradually stabilized at maximum evaporation from the canopy, conforming well to
a power function relationship [59,60]. However, the ratio of Ei to the gross precipitation
decreased with the increase in precipitation, generally implying that higher Ei would occur
during small precipitation yet with a longer duration [30]. ET components were negatively
correlated with sunshine duration, while they correlated poorly with water vapor.
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Table 2. Correlation coefficients between the seasonal variations in ET components and meteorological variables.

Meteorological
Variables Es Ec Ei ET Es/ET Ec/ET Ei/ET

SD −0.417 −0.679 * −0.756 ** −0.501 0.437 −0.378 −0.713 *
AP 0.524 0.563 * 0.519 0.548 * 0.187 −0.224 0.448
T 0.976 ** 0.845 ** 0.801 ** 0.965 ** 0.413 −0.477 0.752 **

WV 0.262 0.271 0.217 0.270 0.022 −0.040 0.224
RH 0.929 ** 0.969 ** 0.949 ** 0.964 ** 0.087 −0.161 0.881 **
P 0.856 ** 0.935 ** 0.953 ** 0.901 ** −0.065 −0.007 0.86 **

* Significant at 0.05 significance level; ** Significant at 0.01 significance level.

Es/ET and Ec/ET ratios were not correlated with all the meteorological variables
(Table 2), generally indicating that their seasonal variations were affected by the environ-
ment (such as sowing time, highland barley varieties), irrigation practice, and management
rather than meteorological variables, which was reported by many studies [24,61]. For
example, Ma and Song [2] revealed that seasonal changes in the Ec/ET ratio could be well
described as a function of LAI for winter wheat in Beijing, implying that crop development
plays a critical role in allocating the ET components. Yang et al. [44] also found a stronger
correlation between the LAI and Ec/ET ratio of winter wheat. It is commonly reported
that Es/ET and Ec/ET ratios varied exponentially and logarithmically with the increase
in LAI for most crops, respectively [2,62,63]. This relationship was confirmed by many
observations at field scale and model simulations at regional scales [24,41,46,64], while
Ei/ET ratio correlated most significantly with relative humidity (p < 0.01), followed by
precipitation (p < 0.01), air temperature (p < 0.01), and sunshine duration (p < 0.01).

3.3. Changing Trend of ET Components during 2001–2020

The variations in ET components and their ratios during 2001–2020 are shown in
Figure 4. On average, ET of highland barley presented a decreasing trend with the rate of
−3.79 mm/y (Figure 4g), while it increased significantly (p < 0.05) from 2001 to 2013 with
the rate of 8.03 mm/y, and then sharply decreased (p < 0.01) until 2020, with the rate of
−25.61 mm/y. ET did not have a universal trend at different altitude zones; it increased
slightly at 3500–3600 and 3700–3800 m altitude zones, and a decreasing trend was observed
for other altitude zones, with the most prominent changes at the 4000–4100 m altitude
zone. Es decreased significantly (p < 0.05) with the rate of −4.88 mm/y (Figure 4a), while
it increased significantly (p < 0.05) from 2001 to 2013 with the rate of 5.36 mm/y, and
then sharply decreased (p < 0.01) until 2020, with the rate of −26.39 mm/y. The changing
trend was similar to that of ET. Ec at different altitude zones presented a similar increasing
trend during 2001–2020 (Figure 4c), with larger fluctuation occurring at 3700–3800 m and
3500–3600 m altitude zones, while Ei (Figure 4e) generally exhibited a similar trend to Ec.

The Es/ET ratio decreased significantly (p < 0.05) with the rate of −0.44%/y during
2001–2020 (Figure 4b), resulting in an 8.34% decrease in the Es/ET ratio. The decreasing
trend was more pronounced after 2010. The Ec/ET ratio (Figure 4d) generally showed
an opposite trend to the Es/ET ratio. It increased significantly (p < 0.05) with the rate
of 0.43%/y, resulting in an 8.08% increase in the Ec/ET ratio; a sharply increased trend
(p < 0.01) was observed during 2010–2020. The Ei/ET ratio (Figure 4f) at different altitude
zones had a similar changing trend, i.e., it slightly decreased during 2001–2010 and then
changed to a slightly increasing trend during 2010–2020.

Many studies have been conducted to investigate the interannual variations in ET
components over regional scales. Jiang et al. [65] used the improved SWH model to parti-
tion ET and analyzed the temporal variations in ET components in the Yellow River Basin.
The results suggested that ET, Ec, and Es were significantly elevated during 1981–2010,
and the air temperature was the most important factor affecting the variations. This was
consistent with previous findings [66,67]. The increasing trend in ET components was
also reported for the other regions [50,68]. Some studies revealed the increase in ET over
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the Tibet Plateau consequent to global warming [69,70]. For example, Wang et al. [36]
estimated the ET components using the PML model and found that Es, Ec, and Ei exhibited
an increasing trend during 1982–2012. The ET estimated from the water balance model also
presented an increasing trend for 16 catchments [71,72]. This phenomenon of increasing
trends had also been observed in Mediterranean-climate regions during almost the same
period [73]. Additionally, the effect of temperature on the ET in the alpine region was more
pronounced than that in other regions [74]. However, due to the lack of time-series datasets
for the observations of ET components, few studies have been conducted for crops.
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ET components were not correlated significantly with meteorological variables (Table 3);
this was most likely due to the fact that Tibet has a unique plateau climate with an average
precipitation of less than 480 mm [35], which is much lower than the ET demand, resulting
in a severe water shortage for cropland. Under these conditions, it has been a common
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practice to irrigate cropland using the available water, making it important for influencing
the soil moisture and crucial for affecting the interannual changes of Es and Ec for highland
barley in Tibet. Previous studies also revealed the response of crop ET components to
irrigation [44,75]. Compared with Es and Ec, the interannual variation in Ei was more
influenced by meteorological variables, especially the precipitation characteristics. As
can be seen from Table 3, Ei/ET ratio correlated significantly with precipitation (p < 0.05),
which is consistent with the result from Wang et al. [36], who found that Ei was correlated
significantly with precipitation in eastern Tibet.

Table 3. Correlation coefficients between the interannual variations in ET components and meteorological variables.

Meteorological
Variables Es Ec Ei ET Es/ET Ec/ET Ei/ET

SD 0.415 0.196 0.056 0.460 0.203 −0.193 −0.263
AP 0.042 −0.182 0.125 0.000 0.098 −0.110 0.122
T 0.078 −0.067 0.048 0.062 0.089 −0.092 −0.006

WV 0.183 0.158 −0.080 0.218 0.058 −0.046 −0.211
RH −0.040 −0.304 0.503 −0.102 0.159 −0.199 0.507
P −0.239 −0.153 0.432 −0.267 −0.099 0.069 0.609 *

* Significant at 0.05 significance level.

3.4. Limitations

This study mainly dealt with seasonal and interannual variations in ET components
and their ratio in highland barley in regions with different altitudes and then analyzed the
correlation between the ET components and meteorological factors. However, there are still
some limitations. In fact, the ET components of highland barley were affected by climate
change, as well as by soil properties and barley varieties. Moreover, the meteorological
factors affecting ET components were sunshine duration, air temperature, precipitation,
air pressure, water vapor, and relative humidity used in this paper, as well as other
meteorological variables such as wind speed, maximum air temperature, minimum air
temperature, and water vapor deficit, all of which have an impact on ET component
variations and need further research in future studies.

4. Conclusions

This study investigated the characteristics and variations in ET components and their
proportions of highland barley in Tibet using the PML ET product during 2001–2020 and
explored the relations between the variation in ET components and meteorological factors.
The results showed that Es was the most predominant ET component and accounted
for 77.3% of the total ET of highland barley in Tibet. ET components varied obviously
over the altitude; ET generally decreased with the increase in altitude, with higher ET
observed at 3700–3800 m altitude zone. Es and the Es/ET ratio showed a decreasing trend
with the increase in altitude from 3500 m to 3800 m and then changed to an increasing
trend until reaching the altitude of 4100 m, while Ec, Ei and their ratios presented an
opposite varying pattern to ES. Seasonal variations in daily ET components of highland
barley displayed a parabolic pattern peaked in August, while the temporal distributions
differed considerably among different ET component ratios. The Ei/ET ratio generally
presented a similar changing pattern to ET components. The Es/ET ratio showed a
dual parabolic pattern with two peaks in April and November and a valley in August,
while the Ec/ET ratio generally exhibited an opposite changing pattern to the Es/ET
ratio. Seasonal variations in ET components were greatly affected by meteorological
variables. ET components were correlated significantly with air temperature, relative
humidity, and precipitation, while the seasonal variations in Es/ET and Ec/ET ratios were
more influenced by the environment (such as sowing time, highland barley varieties),
irrigation practices, and management rather than meteorological variables. Es and its
ratio in highland barley decreased significantly during 2001–2020, while the Ec/ET ratio



Remote Sens. 2021, 13, 4884 13 of 16

generally showed an opposite trend to the Es/ET ratio; Ei and its ratio presented an
insignificantly decreasing trend. The interannual variations in ET components were not
significantly correlated significantly with meteorological variables, while the Ei was more
influenced by meteorological variables, especially precipitation characteristics.
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