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Abstract: Land use and land cover change (LUCC) modeling has continuously been a major research
theme in the field of land system science, which interprets the causes and consequences of land
use dynamics. In particular, models that can obtain long-term land use data with high precision
are of great value in research on global environmental change and climate impact, as land use
data are important model input parameters for evaluating the effect of human activity on nature.
However, the accuracy of existing reconstruction and prediction models is inadequate. In this
context, this study proposes an integrated convolutional neural network (CNN) LUCC reconstruction
and prediction model (CLRPM), which meets the demand for fine-scale LUCC reconstruction and
prediction. This model applies the deep learning method, which far exceeds the performance of
traditional machine learning methods, and uses CNN to extract spatial features and provide greater
proximity information. Taking Baicheng city in Northeast China as an example, we verify that CLRPM
achieved high-precision annual LUCC reconstruction and prediction, with an overall accuracy rate
9.38% higher than that of the existing models. Additionally, the error rate was reduced by 49.5%.
Moreover, this model can perform multilevel LUCC classification category reconstructions and
predictions. This study casts light on LUCC models within the high-precision and fine-grained LUCC
categories, which will aid LUCC analyses and help decision-makers better understand complex
land-use systems and develop better land management strategies.

Keywords: land use and land cover change; machine learning algorithms; convolutional neural
networks; deep learning

1. Introduction

Land use and land cover change (LUCC) is an area of study that examines the rela-
tionship between human economic activities and ecology and helps explain these inter-
actions [1–3]. LUCC is an important driving force that substantially affects the operation
of Earth systems and has been widely applied to fields including ecosystem service as-
sessment, desertification monitoring, and forest inventory [4–6]. LUCC activity not only
directly changes the surface landscape and terrestrial ecosystem but also affects the surface
roughness, albedo, and biogeochemical cycle through these changes and thereby affects re-
gional and even global-scale climate and environmental changes [7–9]. With the successive
implementation of the Land-Use and Land-Cover Change Science/Research Plan, Global
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Land Project (GLP) [10], Future Earth [11] and other major international scientific pro-
grams, the theory and technology of land change science has advanced significantly. In this
research field, the land system is the research object of interest to systematically measure,
model, and understand the coupled human–environmental system [12]. The improvement
and supplementation of long-term series LUCC data with high-resolution information
is essential to promote the systematic and comprehensive study of LUCC processes and
their effects [13]. With the rapid development of remote sensing technology, the number
of high-resolution, wide-coverage satellite images has increased exponentially, providing
broad prospects for using intelligent recognition technology to generate spatiotemporal
land use (LU) data [14]. However, obtaining high-quality interannual images covering
large areas is challenging, and some historical data and documents are no longer available.
Therefore, it is particularly valuable to use natural geographic features and the related
human activities to generate LUCC with a high resolution for a given year. The interannual
reconstruction of LUCC is useful for understanding the LUCC processes (such as temporal
and spatial characteristics and causes), the impact of LUCC on terrestrial ecosystem climate
regulation services, the impact of LUCC on soil conservation services, and the impact
of LUCC on food-supply services. LUCC modeling methods can also be used to predict
LUCC in to the future and hence the future land use state. Thus, long-term LUCC scenarios
could be forecasted by integrating historical land use data and future simulated data, which
would offer scientific and practical value for the study of environmental and ecological
changes [15].

LUCC models facilitate interpreting the causes and consequences of land-use dynam-
ics and support policy-makers in making informed and rational decisions [16,17]. Moreover,
LUCC models have been found to be effective in predicting the future state and spatial
distribution of land use by using the knowledge acquired from previous years [18,19]. The
modeling method has proven most effective in LUCC reconstruction and simulation [20].
The literature offers numerous LUCC model methods, each with its own advantages and
drawbacks [17]. Current LUCC models offer multiple methodological approaches [21].
They can be static or dynamic, spatial or nonspatial, deductive or inductive, and agent
based or pattern based [17]. Generally, empirical statistical models use a variety of element
statistical analyses. By analyzing the importance of each element to LUCC, it quantifies the
mutual influence of LUCC and each driving factor and characterizes the statistical cause of
LUCC. Empirical statistical models include linear regression models, logistic regression
models, principal component analysis, gray relational analysis, canonical correlation anal-
ysis, and system dynamics methods. Spatial statistical models and nonlinear regression
models are usually based on massive data of changes in the spatial distribution of LU,
LUCC, and various factors. The stochastic model is mainly based on various conversion
probability models of LUCC, such as the Markov chain model, land conversion model, and
cellular automata (CA)–Markov model. The conceptual mechanism model can analyze
the causality of LUCC. This approach uses theories and physical laws to simulate the
behavioral mechanism of each driving force. Integrated models generally consider spatial
and nonspatial features and, according to the research objectives, integrate different models
to determine the most appropriate means to solve the problem, incorporating statistical cal-
culations and the expertise of specialists in the field [22–24]. The LUCC process is divided
into relatively simple subprocesses. Each subprocess uses related models for modeling.
Truly integrated models include a feedback land system related to other systems such as
climate and hydrology [25].

A review of the current state-of-the-art approaches to LUCC modeling noted a growing
interest in spatial LUCC modeling. However, there are some deficiencies of the traditional
models. On the one hand, the models do not implement the LUCC classification of
multilevel categories (including Level I and Level II categories). The Level I level categories
can only describe LUCC in general. In the multilevel classification model we studied, the
Level II category is subdivided into 24 types according to the classification system provided
by the Chinese Academy of Sciences (Table A1 shows the LU classification and coding). For
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example, forestland is subdivided into four types—forestlands, spinneys, open woodland,
and other forestland—in Level II. Only by considering all the subtypes can we accurately
implement targeted policies for all types of forestlands to effectively manage and calculate
carbon emissions. The previous model cannot guarantee that all types of LUs are accurately
reconstructed. Therefore, data can only be assembled based on various thematic maps or
manual interpretations of remote sensing images. On the other hand, the reconstruction
accuracy, especially on a spatial scale of more than 10,000 square kilometers, does not meet
research requirements [26]. The accuracy of LUCC is the basis for studying the changes
and mechanisms of LUCC and is a prerequisite for the scientific application of LUCC. The
lack of an integrated model for accurate annual reconstruction and prediction makes it
difficult to provide scientific data support for land planning and global environmental
change research [27]. In this context, exploring a novel modeling method to solve these
problems is an urgent need.

Deep learning in neural networks has strong learning ability, the increase in data
volume has an obvious effect in terms of improved accuracy, and the characteristics of cum-
bersome feature engineering are no longer needed. Various neural networks are changing
how we interact with the world. Among them, the recurrent neural network (RNN) has
the characteristics of a recursive mechanism, which can transmit historical information
between time steps. Long short-term memory (LSTM) with long-term sequence images
can effectively learn long-term time dependence and perform accurate land cover classifi-
cation. The convolutional neural network (CNN) is another type of deep neural network
that usually uses convolution filters to extract hidden features of local regions [28–30].
This research uses natural geographic features and geographic features related to human
activities, combines temporal and spatial relationship information and integrates them
into CNNs, and establishes a CNN LUCC reconstruction and prediction model (CLRPM)
to meet the growing demand for fine-scale LUCC reconstruction and prediction, thereby
innovating to address existing research gaps [31–33].

2. Materials and Methods
2.1. Study Area

The Baicheng area is located in northwestern Jilin Province, China (121◦38′–124◦22′E,
44◦13′57”–46◦18′N, Figure 1). From northwest to southeast, the terrain shifts from low
mountains to hills and then plains, with a slight rise in the southwest. Situated on and
around the plain at the eastern foot of the Daxinganling Mountains, the Baicheng area is
located at an altitude of 120–673 m. The study area experiences a temperate continental
monsoon climate (with the climatic characteristics of sufficient sunlight, high precipitation
variability, frequent drought but rare flooding, and overlapping rainy and hot seasons), an
average annual precipitation of 399.9 mm, an average annual temperature of 5.2 ◦C, and an
average≥10 ◦C active accumulated temperature of 2996.2 ◦C, which are suitable conditions
for the growth of mid- and late-maturing crop varieties. The per capita coverage of arable
land, grassland, forestland, water surface, and reed areas is highest for Baicheng city within
the Jilin Province. Baicheng City includes one district, two cities, and two counties under
its jurisdiction, with a total area of 26,000 square kilometers. The population count has
varied over the last few decades from 2,025,891 in 2000 to 2,032,356 in 2010 to 1,551,378
in 2020.

Baicheng is in a typical area where agriculture and animal husbandry interlace, with
various landforms and a temperate, semiarid, and semi-humid monsoon climate. The
distribution and changes in LU types fully reflect the combined effects of the natural
environment and human activities.
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Figure 1. Location of the study area.

2.2. Data and Processing

In this study, we used the China’s Land Use/Cover Dataset (CLUD), which was de-
veloped by the Chinese Academy of Sciences (CAS), with a mapping scale of 1:100,000 [34]
and 24 LU categories. The length of each time section was set to five years, i.e., 2000,
2005, 2010, 2015, and 2020. The remote sensing information was from the Landsat imagery
database, and all the remote sensing images were downloaded from the U.S. Geological
Survey (USGS) website (www.usgs.gov, accessed on 12 December 2020).

The 90 m Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM)
data were adopted, and the aspect, slope, elevation, and other surface information were
obtained using Surface Tool in ArcGIS Version 10.7.0.10450. The geomorphological data
were from the Geomorphologic Atlas of the People’s Republic of China [35]. The soil data
were from the 1:500,000 soil type map for Jilin Province. The soil texture was determined
based on the contents of sand, silt, and clay. The contents of the particles in these three size
classes are expressed as percentages.

When constructing the dataset of factors affecting LU suitability, nine natural geo-
graphic features, i.e., aspect, clay, elevation, geomorphology, lithology, sand, silt, slope,
and distance to river, were chosen. Considering the interaction between the LU system and
human activities, using the LU type data for 5-year intervals (2000 to 2020), the distances to
residential areas, national roads, provincial roads, county roads, village roads, highways,
and railways were obtained using the Near tool in ArcGIS software.

To reconstruct and predict the LUCC for a specific year, spatial feature maps were
generated for the 17 features described above (the geomorphological classification and
coding are described in Table A2; the soil classification and coding are presented in Table A3,
and the lithological classification and coding are described in Table A4). This process was
followed by temporal selection and configuration, resulting in a feature dataset. (In
Figure 2, the process for the year 2025 is illustrated as an example, and the feature dataset
was formed based on the natural geographic features and geographic features related to
human activities). The mapping relationship between the features in 2020 and the LUCC
distribution in 2025 was simulated through the MLAs used for the LRPM.

www.usgs.gov
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Figure 2. Feature datasets (with 2025 as an example).

2.3. Methods

The reconstruction and prediction of LUCC can be seen as the process of studying the
entire grid. Figure 3 describes the LRPM framework, taking the LUCC forecast in 2025 as
an example. Taking the 2020 feature dataset and the corresponding LUCC dataset as the
learning set, MLAs are used to build a model to analyze the relationship between the LU
distribution and the various natural environmental and socio-economic conditions. The
probability of each LU type in a given research unit (one pixel) is calculated by inputting a
feature dataset in 2025 (based on the natural geographic features and geographic features
related to human activities in 2020) and using it to generate a probability map (Figure S1).
The LU type with the highest probability is the simulation result of the grid, and all grids
ultimately constitute a simulated map [36–39]. When the total amount of each LU type
can be determined, we can generate the reconstruction or prediction of LUCC year by
year [40,41]. According to the order of probability from high to low, the land cover is
allocated, and each LU type is allocated to the corresponding geographic location and area
according to the determined amount.
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In this research, the data of a certain year are used as the test set, and the remaining
data are the training and validation sets. The training and validation sets are divided into
ten parts using the 10-fold cross-validation method, in which nine of the parts are used
as a training set and one is used for the validation set. The training set is the data sample
used for model fitting. The validation set is a set of samples set aside separately during the
model training. The validation set can be used to adjust the hyperparameters of the model
and to conduct a preliminary evaluation of the model’s capabilities. The testing set is used
to evaluate the generalization ability of the final model. However, it cannot be used as a
basis for algorithm-related selection such as parameter tunings and selection of features.
The mean value of the ten results is used to estimate the accuracy of the algorithm to obtain
more accurate model results.

2.4. Machine Learning Algorithms (MLAs)
2.4.1. K-Nearest Neighbor (KNN)

KNN is a nonparametric example-based learning algorithm that is not trained to gen-
erate a classification model. In contrast, the category of an unknown sample is determined
by calculating the average of the response variables of the K-adjacent training samples
closest to the unknown sample according to Euclidean distances [42,43].

2.4.2. Support Vector Machine (SVM)

SVM is a nonparametric learning algorithm that is often used in remote sensing
applications [44]. In SVM theory, for a nonlinearly separable dataset composed of two
classes of points, all points of one class can be separated from all points of the other class by
an infinite number of hyperplanes. The hyperplane featuring the greatest margin between
the two classes is selected by using a subset of the training samples called the support
vectors [45]. SVM aims to classify objects separated by the most favorable hyperplane into
recognized categories.

2.4.3. Random Forest (RF)

RF is an ensemble classifier that is widely used due to its classification accuracy [46].
RF applies a bagging operation to generate multiple decision trees based on randomly
selected training data subsets. Each tree is grown independently to its maximum size based
on a bootstrap sample from the training dataset, without any pruning, and each node is
split using the most favorable value in the input variable subset [47]. Then, the category
receiving the most votes in each tree predictor is used to predict the classification.

2.4.4. Deep Learning (DL)

DL is a new direction in the machine learning field and has been introduced to move
closer to machine learning’s original goal (artificial intelligence, AI) [28–30,41,48].

ANN is an MLA that was originally developed to simulate the ability of the human
brain to solve pattern recognition problems. In recent years, ANNs have been increasingly
used for remote sensing image classification. The basic ANN framework consists of dense
networks composed of interconnected neurons organized in layers, with weights assigned
to the connections. These weights are first determined randomly and then iteratively
adjusted for training. We compute the loss—a measure of the difference between the values
predicted by the model and the intended/true/provided value. Then, iteratively and
usually using the gradients computed with backpropagation and an optimizer, we modify
the weights of the model so that the loss is reduced [49].

CNNs are currently very popular in the field of deep learning, and CNN models have
been used in various applications and fields, especially for image- and video-processing
projects. The main building block of a CNN is the filter, i.e., the kernel, the function of
which is to extract relevant features from the input using the convolution operation.
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2.5. Algorithm Selection and Optimization

Previous studies have shown SVM to be unsuitable for analyzing large datasets. In
our experiment, we were not able to obtain a result through SVM after more than 200 h of
computation, indicating that SVM is indeed not suitable for use in LUCC reconstruction
and prediction over large areas. When using KNN, the default n-neighbors value of 5 was
chosen. When using RF, the n-tree value was set to 512 [50].

CNNs are relatively complex and have been developing rapidly. AlexNet [51], VG-
GNet [52], inceptionNet [53], ResNet [54], and DenseNet [55] have had especially great
impacts. In this study, for comparison, we adopted two algorithms, ResNet and DenseNet,
which exhibit outstanding performance and have been widely accepted by researchers
(Figure 4).
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ResNet is characterized by easy optimization and an accuracy that can be improved by
appropriately increasing the depth. Its internal residual blocks are connected in a jumping
manner, which alleviates the problem of gradient disappearance caused by increased
depths in deep neural networks.

DenseNet is a CNN with dense connections in which any two layers are directly
connected, i.e., the input of each layer of the network is the union of the outputs of all
the previous layers, and the feature map learned by this layer is directly passed to all
the following layers as an input. The use of dense connections alleviates the problem of
gradient disappearance, strengthens feature propagation, encourages feature reuse and
greatly reduces the number of parameters.

ANN and CNN (ResNet, DenseNet) frameworks are shown in Figure 4. The main
hyperparameters used can be found in the original text (17 is the number of features
(Figure 2), and N×N is the size of the tensor centered on the prediction grid):

A pooling layer is another building block of a CNN. The function of pooling is to
progressively reduce the spatial size of the representation to reduce the network complexity
and computational cost.

Batch normalization is a regularization technique and usually facilitates training by
adding extra layers to a deep neural network. The new layer performs standardizing
and normalizing operations on the input of a layer coming from a previous layer. The
normalizing process in batch normalization takes place in batches, not as a single input.

The accuracy of each training epoch during the training process of CNNs network is
shown in Figure 5. In terms of overall accuracy and computation time (Table 1), ResNet-18
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outperformed the other networks. Thus, we chose it to be integrated with the CNN to
perform LUCC reconstruction and prediction.
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Table 1. Overall accuracy and computation time.

ResNet-18 ResNet-50 DenseNet-121 DenseNet-201

2010 89.19% 88.56% 86.43% 86.75%
2020 93.97% 94.00% 93.19% 93.57%
Time 6.6 h 10 h 8.3 h 11 h

2.6. Prediction Assessment

To estimate the LUCC predictions, we used overall accuracy to evaluate the predic-
tion capability of various algorithms. This metric is expressed as the following equation
(Equation (1)):

overall accuracy =
CC
TS

(1)

where CC denotes the number of samples of correctly classified values and TS denotes the
total number of samples.

Another standard method for evaluating the accuracy of LUCC simulations is the
three-map comparison method, which determines the amount of error and the spatial
allocation error of a simulation map mainly by superimposing the simulated change map
and the reference change map for comparison and analysis. The accuracy of the model
was determined by comparing the model with the blank model (a model without any
change) [56–58].

This method requires three LU maps, i.e., the reference map at the simulation start
time (t1), the reference map at the simulation end time (t2), and the simulation map at
the simulation end time (t2), for comparative analysis in validating the LU change model.
The observed LU change map, i.e., the reference change map, which reflects the actual
dynamic LU changes, can be obtained by superimposing the reference map at time t1
and the reference map at time t2. Similarly, the simulated LU change information (i.e.,
the simulated change map), which reflects the simulated behavior of the model, can be
obtained by superimposing the reference map at time t1 and the simulation map at time
t2. This verification method allows us to understand the consistency (or deviation) of the
comparative analysis between the simulated map and the reference map (i.e., the actual
LU type map) at time t2. The accuracy of the model in simulating LUCC changes can be
determined by comparing the reference change map and the simulated change map based
on four indicators that indicate whether the pixel change is correct or incorrect: hits, misses,
false alarms, and null success. These indicators are defined below.
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1. Hit: a certain pixel is predicted to change and has indeed changed.
2. Miss: a certain pixel is predicted to be unchanged but has actually changed.
3. False alarm: a certain pixel is predicted to change and has actually not changed.
4. Null success (also referred to as “correct rejection”): a certain pixel is predicted to be

unchanged and has actually not changed, i.e., neither the simulated change map nor
the reference change map show changes.

3. Results
3.1. Results Comparison

To verify the model, a comparative analysis of the model’s simulation results and a
manual interpretation must be performed. Table 2 shows the overall accuracy of the KNN,
ANN, RF, and CNN models when performing LUCC reconstruction using the test dataset
(2005, 2010, 2015, 2020), indicating that the overall accuracy is ranked in the following
order: ANN < KNN < RF < CNN. CNN significantly improved the overall accuracy of the
reconstruction by 13.12, 10.22, and 4.01%; i.e., the error rate was decreased by 57, 51.5, and
30.76%, respectively.

Table 2. Comparison of the overall accuracy.

KNN ANN RF CNN

2005 84.82% 83.57% 90.12% 94.16%
2010 83.40% 81.70% 88.61% 89.93%
2015 80.94% 77.54% 86.49% 89.33%
2020 84.58% 82.39% 90.38% 94.44%

Average 83.44% 81.30% 88.40% 91.97%

Table 3 and Figure S2 show the evaluation results of various algorithms (i.e., KNN,
ANN, RF, and CNN) on the dataset (2005, 2010, 2015 and 2020) using the three-map
evaluation method. The model integrated with CNN performs best in terms of error
amount and space allocation.

Table 3. Results of the three-map evaluation method.

2005 2010 2015 2020 Average

KNN

Hits 3.38% 1.51% 1.85% 3.37% 2.53%
Misses 0.83% 0.24% 0.39% 0.37% 0.46%

False alarms 11.46% 14.95% 16.99% 11.75% 13.79%
Null success 84.30% 83.28% 80.75% 84.50% 83.20%

ANN

Hits 3.39% 1.53% 1.83% 3.35% 2.50%
Misses 0.83% 0.22% 0.41% 0.39% 0.46%

False alarms 12.71% 16.63% 20.37% 13.94 15.91%
Null success 83.05% 81.59% 77.37% 82.31% 81.08%

RF

Hits 3.51% 1.14% 1.00% 3.49% 2.28%
Misses 0.71% 0.61% 1.24% 0.25% 0.70%

False alarms 5.98% 12.03% 12.22% 5.93% 9.04%
Null success 89.79% 86.20% 85.52% 90.31% 87.95%

CNN

Hits 0.54% 0.22% 0.26% 0.20% 0.31%
Misses 3.67% 1.53% 1.98% 3.53% 2.68%

False alarms 2.10% 8.47% 8.60% 1.96% 5.28%
Null success 93.66% 89.76% 89.14% 94.28% 91.71%

As shown in Figure 6, in the LUCC reconstruction for 2020, four regions were chosen
to show the differences in the simulation results obtained using different MLAs (note:
LU classification and coding are shown in Table A1). The parts of the simulation result
that are significantly different from the interpretation are marked in red. The simulation
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results obtained using the LRPM integrated with the CNN matched the LU mapping more
accurately than the results obtained using the other MLAs.
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3.2. LUCC Reconstruction and Prediction for the Period from 2006 to 2030

In recent years, with the rapid development of automated and semiautomated inter-
pretation, the interpretation accuracy for Level I categories has generally ranged between
70 and 90%, while that of supervised classification, which has been widely used in this field,
has been below 80%. For Level II categories, manual interpretation or human–computer
interactive interpretation is mostly used. The average accuracy with the training data
reached 92.9% in this study. However, given the high labor and time costs of manual
interpretation, year-by-year interpretation is still very challenging to achieve for a large
geographic area [59–67].

Based on the manual interpretation of LUCC data over a time period with 5-year
intervals, interannual LUCC data were generated for the intervals using the LRPM; in this
way, a continuous and unified LUCC dataset for a certain period can be economically and
quickly created to provide valuable basic data for in-depth investigations of regional LU
changes.

Figure S3 (Note: LU classification and coding are shown in Table A1) shows the
interannual LUCC dataset (with a 90 m resolution) generated for the study area for the
period from 2006 to 2030, which took less time to generate and showed high accuracy.

3.3. Variable Importance Assessment via RF

As with feature selection, feature importance evaluation is of great importance in
LUCC research. For such evaluations, the RF algorithm is valuable. In this study, we
used the RF algorithm to demonstrate the relative importance of model input variables.
As shown in Table 4, the feature related to the distance to roads was the most important,
followed by the distances to rivers and settlements. The sum of the importance values of
three features related to the DEM (i.e., elevation/slope/aspect) also reached 11.9%. This
approach yields a method for the selection of geographic feature data used in the model.

Table 4. Variable importance assessment.

Feature Importance Feature Importance Feature Importance

Aspect 14.94% Provincial road dis 8.94% Lithology 2.73%
Rivers dis 10.22% Geomorphology 8.51% Soil 2.00%

National road dis 10.05% County road dis 7.34% Sand 1.08%
Residential dis 10.00% Village road dis 6.37% Silt 1.06%
Highway dis 9.84% Elevation 6.33% Clay 0.87%
Railways dis 9.01% Slope 4.13%

4. Discussion
4.1. Comparisons with Previous Studies

In a previous study, we proposed a model that integrates deep learning for LUCC
reconstruction, namely, DLURM. Zhenlai County, China was selected in that study, and
the performance of the proposed DLURM was validated by comparing the DLURM to
the HLURM and CA–Markov models. (HLURM is an excellent integrated model that
has been published, is widely recognized and exemplifies the capabilities of the current
mature models.) The experimental results showed that DLURM had a significantly better
overall accuracy in terms of reconstruction, reaching 92.87%. Compared with the results
of the traditional models, the overall accuracy of the DLURM model improved by 9.66
and 6.89%, i.e., the error rate decreased by 57.53 and 49.14%, respectively. The DLURM
model also had high robustness. Compared with the simulation results of the HLURM and
CA–Markov models, the spatial distribution of LUCC based on DLURM can better match
the actual LU spatial distribution. DLURM has been demonstrated to be one of the best
LUCC reconstruction models [1].

In order to show the innovative progress and value of CLRPM, we used DLURM and
CLRPM to complete the LUCC reconstruction of Baicheng City in 2005, 2010, 2015, and
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2020, and to compare them in Figure S4. Table 5 shows the overall accuracy of DLURM
and CLRPM. Compared with that of DLURM, the overall accuracy of CLRPM increased
by 9.38%, which indicates that the error rate decreased by 49.5%. Table 6 shows the
evaluation results using the three-map evaluation method. By comparison, CLRPM has a
higher reconstruction accuracy on a spatial scale of more than 10,000 square kilometers and
can therefore accurately predict LUCC. CLRPM is an integrated model for high-accuracy
annual LUCC reconstructions and predictions.

Table 5. DLURM and CLRPM overall accuracy comparison.

DLURM CLRPM

2005 86.58% 94.16%
2010 84.81% 89.93%
2015 78.65% 89.33%
2020 86.26% 94.44%

Average 84.08% 91.97%

Table 6. Results of the three-map evaluation method (comparison of CLRPM and DLURM).

2005 2010 2015 2020 Average

DLURM

Hits 0.69% 0.22% 0.27% 0.21% 0.35%
Misses 3.53% 1.54% 1.98% 3.54% 2.65%

False alarms 9.65% 8.47% 8.61% 1.97% 7.18%
Null success 86.12% 89.77% 89.14% 94.29% 89.83%

CLRPM

Hits 0.54% 0.22% 0.26% 0.20% 0.31%
Misses 3.67% 1.53% 1.98% 3.53% 2.68%

False alarms 2.10% 8.47% 8.60% 1.96% 5.28%
Null success 93.66% 89.76% 89.14% 94.28% 91.71%

The implementation of the LUCC classification of multilevel categories (including
Level I and Level II categories) adheres to the following standards:

1. Effective multilevel classification of LUCC should not simply consider the overall
accuracy rate; the reconstruction accuracy rate of each Level II category must also reach a
very high level.

2. The Level II category with a reconstruction accuracy rate greater than 80% is
considered an effective reconstruction, and most Level II category reconstructions should
meet this standard.

3. The secondary category with a reconstruction accuracy rate of less than 66% is con-
sidered an invalid reconstruction, and there should be no Level II category reconstruction
below this standard.

We use DLURM and CLRPM to implement the LUCC classification of multilevel
categories (including Level I and Level II categories). Table 7 presents the reconstruction ac-
curacy for 24 types of LUs (with “n/a”, indicating that no such LU distribution exists in the
Baicheng area). Compared with the representative DLURM of the traditional model, only
two types of LUs have lower overall reconstruction accuracy. The 15 types of reconstruction
accuracies of DLURM are less than 80%. The overall accuracy of CLRPM reconstruction is
higher than 80% for all 21 existing LUs in the Baicheng area except three. There is no LU
with an accuracy of less than 66% achieved by CLRPM, and there are six types of DLURM.
These results show that CLRPM can achieve LUCC classification of multilevel categories
(including Level I and Level II categories).
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Table 7. Accuracy of various LU reconstructions.

Code Level I Categories Level II Categories DLURM CLRPM

11
Arable land

Paddy Field 76.12% 79.10%
12 Dry Field 89.07% 95.95%

21

Forestland

Forestland 45.94% 84.52%
22 Spinneys 61.45% 89.42%
23 Open Woodland 62.44% 86.75%
24 Other Forestland 70.95% 90.00%

31
Grassland

High-coverage Grassland 72.50% 87.83%

32 Medium-coverage
Grassland 71.56% 86.91%

33 Low-coverage Grassland 75.74% 88.86%

41

Water

Rivers 94.87% 84.00%
42 Lakes 71.67% 86.58%
43 Reservoir 89.86% 94.98%
46 River Banks 84.23% 95.98%

51
Settlement

Urban Land 77.11% 81.41%
52 Rural Residential Areas 96.78% 91.62%
53 Other Construction Land 64.14% 71.59%

61

Other unused land

Desert 77.80% 91.22%
63 Saline–Alkaline Land 78.95% 92.98%
64 Marshland 81.50% 90.73%
65 Bare Land 34.79% 66.45%
66 Bare Rock 49.31% 100.00%

The comparison between DLURM and CLRPM shows that CLRPM innovatively fills
the gaps in the previous research.

We take 2020 as an example and compare the reconstruction results of CLRPM and
DLURM with a manual interpretation in Figure 7. We compared seven of the typical
research areas, and the CLRPM simulation results marked in red are significantly better.
It can be found that our new reconstruction model CLRPM has obvious advantages as
detailed below.

The overall accuracy rate is significantly higher, and the simulation results are more
in line with the actual spatial distribution.

Many traditional methods cannot effectively distinguish the secondary classification
(Forestland, Spinneys, Open Woodland and Other Forestland; High-coverage Grassland,
Medium-coverage Grassland and Low-coverage Grassland; Bare Land and Bare Rock). The
improvement of the reconstruction accuracy of each of the Level II categories of CLRPM is
exceptional. Comprehensive consideration of each subcategory is the basis for our accurate
implementation of policies, effective management, and calculation of carbon emissions.

The integration of LUCC reconstruction and prediction is successfully achieved.
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Figure 7. Comparison of simulated results in the study area for 2020.

4.2. Reason for Improvement

The LUCC suitability of each grid point depends not only on the point itself but also
on the values of the features of the point and its neighboring points as well as their spatial
relationships. The accuracy of the calculated suitability improved as the adjacent grid
range expanded, and the fit between the reconstructed and predicted LUCC and the actual
LUCC also improved.

Figure 8 takes 2010 as an example to show the training process under different prox-
imity training processes. Table 8 shows the overall accuracy of different proximities. The
results confirm the improved accuracy with an expanding grid range, and as the proximity
increased, the marginal benefit gradually decreased. In this study, the adjacent grid range was
expanded to 17× 17 (with 16 adjacent grids), and the potential spatial elements were captured
through the CNN so that the neighborhood effect could be comprehensively represented.
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Figure 8. Different proximity training processes (for 2010 as an example).

Table 8. Overall accuracy of different proximity.

Proximity (with n Adjacent Grids) Overall Accuracy

0 79.11%
1 82.64%
6 87.51%
8 88.02%

14 88.98%
16 89.18%

The CNN makes good use of the expansion of proximity to improve accuracy, which
the other MLAs cannot do (the performance of the other MLAs does not improve for n > 2).
The CLRPM is better than the traditional LUCC reconstruction model, precisely because it
can learn the location distribution information and consider the influence of proximity [51].

4.3. Study Limitations

As shown in Figure 8, after the proximity exceeds 17 × 17, the performance no longer
increases, which means that CNN cannot further clarify the value of the LUCC spatial
distribution, and CLRPM cannot further improve the accuracy of LUCC reconstruction
and prediction.

CLRPM cannot obtain the reconstruction and prediction of LUCC in a wider spatial
range. Since CLRPM needs to create N×N tensors of all grids and perform operations, the
expansion of the space range will cause an exponential increase in the demand for storage
space and floating-point operations per second. Currently, reconstruction and prediction
of more than 100,000 square kilometers cannot be completed, such as in the Jilin Province
in Northeast China.

CLRPM cannot make full use of data from multiple years. At present, many years
of data only provide a larger training set, and the relevance of the relationship between
grid evolution and the improvement in LUCC reconstruction and prediction accuracy is
ignored.

The following research directions should be pursued in future studies.
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The use of semantic segmentation models should be explored to study the recon-
struction and prediction of LUCC over large temporal and spatial areas and regions with
different ecological geographic features.

LSTM could be introduced to determine the patterns of temporal and spatial evolution
to obtain more accurate LUCC predictions.

Future studies should use high-resolution datasets and consider various drivers such
as land-use policies, population density, space, and geophysical and socioeconomic factors,
and the impacts of different factors should be analyzed.

4.4. Conclusions

Overall, the novel research garnered in this paper can be summarized as follows:
We launched CLRPM, an integrated solution model that accurately completes the

annual reconstruction and prediction of LUCC. Long-term LUCC prediction and recon-
struction implemented by CLRPM are of great value for the study of global environmental
changes and climate impacts. The more accurate LUCC parameters provided by CLRPM
are important model input parameters for evaluating the impact of human activities on
the environment and climate. The scientific basis it provides is used to formulate laws
and plans.

CLRPM is a model used to implement multilevel (including Level I and Level II
categories) LUCC classification. The overall reconstruction accuracy of most LU subdivision
types exceeds 80%. The multilevel classification of LUCC plays a critical role in LU and land
protection. This metric is the basis for natural resource protection, effective management,
and carbon emission calculations.

At a spatial scale of more than 10,000 square kilometers, the reconstruction accuracy
of CLRPM is higher than that of the previous model. Compared with that of DLURM, the
overall accuracy of CLRPM increased by 9.38%, which means that the error rate decreased
by 49.5%. The LUCC simulation is more accurate and better matches the actual LU spatial
distribution. CLRPM can help us obtain an accurate and in-depth understanding of
LUCC changes.
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Appendix A

Table A1. LU classification and coding.

Code Level I Categories Level II Categories

11
Arable land

Paddy Field
12 Dry Field

21

Forestland

Forestland
22 Spinneys
23 Open Woodland
24 Other Forestland

31
Grassland

High-coverage Grassland
32 Medium-coverage Grassland
33 Low-coverage Grassland

41

Water

Rivers
42 Lakes
43 Reservoir
45 Sea Shoreline
46 River Banks

51
Settlement

Urban Land
52 Rural Residential Areas
53 Other Construction Land

61

Other unused land

Desert
62 Gobi Desert
63 Saline–Alkaline Land
64 Marshland
65 Bare Land
66 Bare Rock
67 Others

Table A2. Geomorphological classification and coding.

Code Geomorphology Code Geomorphology Code Geomorphology

0 Low-altitude lacustrine
plain 11 Low-altitude alluvial

floodplain 22 Sloping low-altitude erosion and
denudation of low platform

1 Low-altitude lacustrine
plain covered by sand 12 Low-altitude alluvial

low floodplain 23 Sloping low-elevation erosion and
denudation of high platform

2 Low-altitude lake beach 13 Low-altitude alluvial
high floodplain 24 Sloping low-elevation erosion and

denudation of high platform

3 Low-elevation beach
covered by lake sand 14

Sand-covered
low-elevation alluvial

high floodplain
25 Inclined low-elevation alluvial

proluvial low platform

4 Low-altitude lacustrine low
terrace 15 Low terrace of

low-altitude river 26 Fluctuating low-altitude alluvial
proluvial high platform

5 Lake 16 Flat low-elevation
alluvial fan plain 27 Low-altitude alluvial lacustrine

high terrace

6 Low-altitude lacustrine
alluvial plain 17 Low-altitude valley

plain 28 Erosion and denudation of
low-altitude gentle low hills

7 Low-altitude lake alluvial
low terrace 18

Low-altitude fixed
gently fluctuating

sandy land
29 Erosion and denudation of

low-altitude gentle high hills

8 Low-altitude alluvial
lacustrine plain 19

Low-altitude
semi-fixed gently
fluctuating sandy

land

30 Semi-fixed grass/shrub sand pile
at low altitude

9 Low-elevation alluvial
lacustrine low terrace 20 High terrace of

low-elevation river 31
Low erosion and denudation,

gentle undulation and low
mountains

10 Low-altitude alluvial plain 21 Low-altitude alluvial
low platform 32 Erosion and low fluctuation,

gentle slope



Remote Sens. 2021, 13, 4846 18 of 21

Table A3. Soil classification and coding.

Code Soil Code Soil Code Soil

0 Chernozem 10 Alkalized chestnut soil 20 Swamp soil

1 Leaching chernozem 11 Chestnut soil 21 Meadow swamp soil

2 Calcareous chernozem 12 Neogene soil 22 Saline swamp soil

3 Light chernozem 13 Alluvial soil 23 Low peat soil

4 Meadow chernozem 14 Grassland sandy soil 24 Saline soil

5 Saline chernozem 15 Meadow sandy soil 25 Meadow solonetz

6 Dark chestnut soil 16 Meadow soil 26 Lakes and reservoirs

7 Chestnut soil 17 Calcareous meadow soil 27 River

8 Meadow chestnut soil 18 Albic meadow soil 28 Sandbanks and
islands in rivers

9 Salinized chestnut soil 19 Saline meadow soil

Table A4. Lithological classification and coding.

Code Lithology Code Lithology Code Lithology

0 Holocene alluvium 12 Holocene alluvium 24 Wanbao formation

1 Holocene alluvial diluvium 13 Holocene aeolian deposits 25 Hongqi formation

2 Holocene aeolian deposits 14 Holocene swamp deposits 26 Zhesi formation

3 Upper Pleistocene 15 Holocene alluvial lacustrine
deposits 27 Jurassic granodiorite

4 The Pleistocene system is not divided 16 Holocene series 28 Jurassic plagioclase granite

5 Manitu formation 17 Holocene lacustrine deposits 29 Jurassic diorite

6 Manketou Xibo formation 18 Upper Pleistocene alluvium 30 Jurassic diorite porphyrite

7 Wanbao formation 19 Glacial water deposits of the
upper Pleistocene 31 Permian monzogranite

8 Jurassic granite porphyry 20 Lower Pleistocene glacial
water deposits 32 Permian plagiogranite

9 Jurassic diorite porphyrite 21 Baiyin Gaolao group 33 Quaternary water body

10 Permian granite 22 Fujiawazi formation 34 Low floodplain accumulation

11 Holocene Series 23 Jubao formation 35 Alluvial and glacial water
deposits
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