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Abstract: Central courtyards are primary components of vernacular architecture in Iran. The di-
rections, dimensions, ratios, and other characteristics of central courtyards are critical for studying
historical passive cooling and heating solutions. Several studies on central courtyards have compared
their features in different cities and climatic zones in Iran. In this study, deep learning methods
for object detection and image segmentation are applied to aerial images, to extract the features
of central courtyards. The case study explores aerial images of nine historical cities in Bsk, Bsh,
Bwk, and Bwh Köppen climate zones. Furthermore, these features were gathered in an extensive
dataset, with 26,437 samples and 76 geometric and climatic features. Additionally, the data analysis
methods reveal significant correlations between various features, such as the length and width of
courtyards. In all cities, the correlation coefficient between these two characteristics is approximately
+0.88. Numerous mathematical equations are generated for each city and climate zone by fitting the
linear regression model to these data in different cities and climate zones. These equations can be
used as proposed design models to assist designers and researchers in predicting and locating the
best courtyard houses in Iran’s historical regions.

Keywords: central courtyard; deep learning; features extraction; data analysis; Iran

1. Introduction
1.1. Historical Architecture of Iran

Vernacular architecture, which has developed throughout time, uses a variety of novel
techniques and technologies to address a variety of contextual requirements in order to
improve sustainability [1,2] and urban identity [3]. Moreover, historic and vernacular
architecture as an attraction of cities [4], it can help the economic prosperity [5]. Iran’s
vernacular architecture has perfected the skill of context adaptation by developing distinct
structures in the country’s many areas. Despite their fundamental differences, vernacular
designs of these regions have a common philosophical underpinning: sustained contextual
adaptability [6,7]. Indeed, by definition, a vernacular structure is constructed by locals,
employing traditional methods and locally accessible materials to suit domestic ways of
living [8], which is consistent with what is currently known as sustainability. That is why
it is highly critical to protect these structures instead of reconstruct them [9]. The house’s
cooling and heating systems are primarily passive [10] in regard to fulfilling varying
demands [11], which results in varying architectural approaches in vernacular structures.
This strategies are very important in the sustainability of this style of architecture as studies
have shown that the rate of energy consumption of buildings may increase in the future
due to future uncertainties [12,13] and the design should be optimized in all aspects [14].
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Iranian architects have developed various solutions and methods from natural char-
acteristics to suit the country’s diverse climatic conditions [15]. In traditional Iranian
architecture, cost efficiency was among the most critical factors to be considered. Therefore,
materials used in desert architecture must be readily accessible, cheap, and economical.
Additionally, vernacular architects used locally accessible materials to construct a haven
from atmospheric pollutants [16].

A great example of sustainability in Iranian architecture can be found in Yazd, which
has the most significant surviving historic urban fabric in the country. Due to Yazd’s hot
and dry climate, providing occupants with high living standards was a real challenge for
architects [17]. The requirement to protect people from the summer heat and scorching sun
has significantly impacted the design methods used to construct shade zones. Thus, the ur-
ban design was dense, to provide maximum protection from inclement weather [18,19],
and central courtyards were used to meet daylight requirements and fit the design with
the climate (Figure 1).

Figure 1. Urban configuration of Yazd.

As an indistinguishable element of houses in the central plateau of Iran, the central
courtyard played a structural role at the macro, middle, and micro scales in municipalities,
segments, and structures, and similarly, as a repeated element, presented the vacuum
concept as a fundamental component of a coherent urban development model. Central
courtyards (vacuum spatial grid) serve as an organizer in the microsystem of structures,
particularly small classical houses in Iran (Figure 2). Since spaces are organized around it,
and when the courtyard is excluded, the house’s spatial organization is disrupted [20].

Figure 2. The connection between vacuum spaces and urban designs in Yazd, Shiraz, and Esfe-
han [20].

Houses with courtyards have been utilized and improved for an extended period
because they are advantageous for building in hot-arid climates. Most ancient civilizations
used this technique in central Iran and several other arid regions of the Middle East. In hot-
arid regions and deserts, central yards effectively protect people from severe environmental
conditions. In desert regions, rooms that face the yard are often sheltered from severe heat,
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winter cold, windstorms, and sand [19,21,22]. As part of the house’s structure, the court-
yard has a consistent structure and will improve and complement space arrangement.
Understanding the relationship between components in the organizational structures of
Iranian homes is critical to comprehend their interactions. Thus, the connection between
the components and the whole in any spatial organization system is determined by various
variables, including form, material, size, color, function, and content. Fundamentally,
in the relationship between parts and a whole, if one part differs from the others, in one or
more characteristics, it represents a distinct component that exists independently of the
whole and functions within an organizational system. The component’s form is the most
significant predictor of a reciprocal connection between it and the whole (Figure 3).

Figure 3. Relationships between components and the formation of a cohesive whole [20].

1.2. Deep Learning, Architecture, and Planning

Until recently, computational techniques for structural analysis, design, and devel-
opment have been almost unmatched by methods that analyze the current environment
visually, and convert it to digital data and in-depth information. A few years ago, the field
of computer vision made significant strides in developing programs for identifying and
classifying existing components for various purposes. AlexNet, a convolutional neural
network, may be seen as a forerunner to this 2012 advancement [23]. Airborne and satellite
imaging remote sensing has also become a critical element of classical architecture and
archaeological research, allowing rapid and high-resolution documentation of historical lo-
cations [24–27]. Additionally, it enables the recording and tracking of antique and historical
architectural structures that are unreachable due to endangered species or have been per-
manently destroyed. Satellite and aerial images are becoming increasingly abundant and
diverse, making them ideal for this subject. However, these massive quantities of historical
architectural information are still examined via human labeling and visual examination.
Numerous studies have been conducted on the implementation of deep learning to various
classifications of images, both generic and specialized in different areas [28–31]. Addition-
ally, there are several projects devoted to the categorization of photographs of architectural
heritage, trying to use different methods [32–35]. Since 2016, research utilizing CNNs
to automate identifying historical architectural and archaeological elements has made
significant progress in this field. In this study, the use of CNNs for prospecting vernacular
architecture is demonstrated by extracting characteristics of central courtyards from aerial
and satellite images of ancient cities.

1.3. State of Art
1.3.1. Central Courtyards Studies

The primary goal of this research is to examine the traditional central courtyard
idea as a passive cooling technique for enhancing interior thermal conditions in Iran’s
BS climate. An empirical survey was conducted to analyze three significant courtyard
architecture variants, including their orientation, size, and ratios, as well as their opaque
and transparent surfaces, in fourteen significant historic buildings in five ancient cities,
including Mashhad, Shiraz, and Tehran in the BSks mesoclimate, as well as Dezful and
Shushtar in the BShs-mesoclimate zone. The analysis considered three design variations:
(1) the courtyard’s orientation, extension, and rotation angle; (2) the courtyard’s size and
ratios concerning the overall wind flow; and (3) the courtyard’s opaque and transparent
surfaces concerning entry points to the overall wind flow [36]. The examination of criteria
1 for the Nasir al Molk building in Shiraz, one of the fourteen study cases, is depicted
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in Figure 4. Both the house and courtyard were oriented northeast-southwest, with the
courtyard angled 45 degrees to the north.

Figure 4. Examination of criterion 1 for the Nasir al Molk building in Shiraz, (a) courtyard alignment
and rotation angle, (b) building alignment and rotation angle [36].

This research uses the study findings of fourteen courtyard buildings as case studies
to determine the design patterns of courtyard homes at the city level. They summarize the
findings of the criterion analysis to offer an acceptable model for building courtyard homes
in these cities. Additionally, effort was made to suggest a design based on the length, width,
and height ratios (Table 1).

Table 1. Summary of the findings from the three-criteria study conducted in Mashhad, Shiraz, Tehran,
Dezful, and Shushtar. Furthermore, Equations for designing courtyards and the connections between
their length and width at various sizes [36].

Zone Equation Mesoclimate Equation City Equation

BS W = 0.8 L + 0.17 BSks W = 0.73 L + 2.4 Mashhad W = 0.7 L + 3.67
Shiraz W = −0.04 L − 13.9
Tehran W = 1.17L − 4

BShs W = 0.85 L − 2.8 Dezful W = −0.1 L + 8.26
Shushtar W = 0.99 L - 5.49

According to this study, approximately 17% of the courtyard should be dedicated
to natural features, 8% water, and 9% plants. This ratio is feasible for ensuring adequate
thermal comfort in the courtyard and adjacent regions based on observation and prior
research. This quantitative research indicates that Iranian traditional central courtyards
were built with an emphasis on orientation and geometry, concerning physical and natural
factors to function well passive cooling systems. Soflaei et al. used the same technique in
a prior study on various cities and climatic zones to evaluate the physical characteristics
of six significant traditional courtyard homes in Iran’s BWks-mesoclimate area. Findings
indicated that most Iranian courtyards examined were purposefully built to allow direction,
size, and ratio to function as microclimate modifiers.

1.3.2. Aerial Images Remote Sensing

This article compares several techniques for automatically detecting buildings in aerial
photos and laser data with varying spatial resolutions. Five techniques are evaluated in two
research areas utilizing features derived at the pixel and object level, with the precondition
that all methods use the same training set. The techniques are evaluated using error
measurements derived by superimposing the findings on every area’s manually produced
reference map [37]. Land cover classification, using very high-resolution remote sensing
imagery, appears to progress from land-use categorization to pixel-level segmentation.
Inspired by the current breakthrough of deep learning and the filtering technique used in
computer vision, this study proposes a segmentation method that utilizes deep residual
networks to create an image segmentation neural network and a guided filter to exclude
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buildings from remote sensing photos [38]. This study develops a GRRNet for building
extraction by fusing high-resolution aerial imagery with LiDAR point clouds. The updated
residual learning network is utilized as an encoder element of GRRNet to train multi-level
properties from the fusion data. A GFL unit is implemented to avoid inadvertently sending
features and maximize the categorization effects [39].

The first stage of categorization, the extraction function, was performed in this study
through a pre-trained CNN that recovers the deep characteristics of aerial pictures from
different network layers, including the mean pooling layer and any prior convolutional
layer. After dimensional reduction on large vector features, the concatenation algorithm
was expanded to include the derived features from various neural networks. The research
team experimented with different CNN designs to obtain the best results [40]. This article
summarizes the results of a study on identifying qanat shafts using CORONA satellite
imagery from the Cold War period. The application of deep CNNs for automated ar-
chaeological feature detection was investigated through remote sensing. Their case study
involved the qanat structure in Iraq [41].

The efficient non-local residual U-shape network is a new type of network pro-
posed in this research. It consists of a well-designed U-shape encoder/decoder setup
and an optimized non-local block termed the asymmetric non-local block pyramid. The en-
coder/decoder framework is utilized to extract and reconstruct feature charts with great
care, and APNB will gather global contextual information through a self-care method.
The suggested ENRU-Net is evaluated and compared to existing state-of-the-art models
using two widely utilized public aerial image building datasets [42]. This study suggested a
novel deep transfer learning technique for automatically detecting Hakka Weilong Houses,
a renowned ancient dwelling and a major cultural icon for Hakka, a Chinese minority
found worldwide. The RS produced the Hakka Weilong House Image Dataset utilizing
aerial photos of urban and suburban Meizhou [43].

The article described the development of a novel, fully automated three-dimensional
building restoration system capable of producing first-level detail building models from
multi-view aerial images without relying on additional information. The recovered mod-
els in this study come close to the accuracy and reliability of manually defined models.
Three components comprise the proposed method: (1) efficient dense alignment and re-
construction of the earth’s surface; (2) consistent building footprint recovery and polygon
regularization; and (3) extremely accurate building rooftop and base height inference [44].

1.4. Research Goals

Numerous research initiatives in Iran concentrate on ancient central courtyards. They
compared numerous characteristics of central courtyards and homes, including their
orientation and ratio, in a series of case studies [20,36,45–48]. However, conventional
data collecting techniques restricted researchers from conducting a thorough case study of
nearly entire central courtyards in a municipality or across several cities in Iran. This study
will overcome this restriction via machine learning techniques to (VHR) aerial imagery.
It will gather and analyze large amounts of data on central courtyard characteristics to
uncover previously undiscovered meteorological and geometrical variables that influenced
the design of central courtyards. Additionally, this research analyzes the last dataset for the
Iranian historical central courtyard as a passive cooling technique in BS and BW climates, to
offer an architectural model for modern sustainable structures. The finished design model
may serve as a reference for designers and researchers as they progress in the historic
districts of these Iranian cities.

1.5. Case Study

The case study for this research involves nine cities in Iran’s various climate zones
(Figure 5 based on [49]). These cities have different climate conditions for gathering big
data of central courtyards. Therefore, the samples will have a variety of features, according
to the climate zone. Table 2 shows the list of the cities in the case study and the climate
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divisions. These cities are separated into two main climate zones BS and BW: arid/steppe
and arid/desert. BS and BW climates also have two subcategory climate zones: “H and k”
in the cold and hot categories. Thus, there are four climate categories, called Bsh, Bsk, Bwh,
and Bwk.

Figure 5. The Köppen-Geiger climate classification map for different areas of Iran [50].

Table 2. Climate classification of the nine cities in the case study located in various parts of Iran.

Climate Divisions Bsh Bsk Bwh Bwh

Shiraz Abarkooh Bushehr Birjand
Esfehan Semnan Meybod

Kong Yazd

2. Material and Method

Two distinct research methods were employed in this work. The first involved library
research that concentrated on sustainable historical architecture and the passive cooling
effect of central courtyards. The second research method was a survey that focused on the
physical environmental characteristics of close to 30,000 traditional courtyard homes in nine
historic Iranian towns. This research study used a variety of machine learning techniques.
The typical machine learning framework is composed of the following components: data
gathering, preprocessing, model construction, and model validation. Data collection and
preparation result in generating an annotated dataset based on ground truth data or expert
opinion. Post-processing of data is required to identify out-layers or inaccuracies. The
overall surveying component of the research is divided into four distinct stages. The stages
are as follows: (1) detection of courtyards; (2) segmentation of courtyards; (3) extraction
of features; and (4) data analysis. In summary, the procedure begins with extremely
high-resolution aerial images and concludes with a wide assortment of approximately
30,000 samples, including 76 geometric and climatic characteristics. Figure 6 illustrates the
surveying subsection of the study’s flow chart.

Figure 6. Research workflow.



Remote Sens. 2021, 13, 4843 7 of 20

2.1. Very High-Resolution (VHR) Aerial Images

Detecting objects in VHR aerial pictures is a challenging task. The approaches pro-
posed in the literature for solving the object detection problem in VHR images are classified
into two broad categories: traditional approaches that rely on handcrafted features and
deep learning-based approaches that employ a CNN as a feature extractor and achieve
superior performance. Handcrafted features have limited presentation potential and lack
the required precision [51]. Deep learning has exceptional performance in various areas,
including image processing, due to the automated creation of features [23,52–55]. In nu-
merous benchmarks, including PASCAL [56] and COCO [54,55,57,58], region-based CNNs
outperformed conventional object detection techniques [54,55,57–59].

However, object recognition is more straightforward in these benchmarks than it is
in VHR aerial images. Natural photographs depict significantly larger objects than aerial
photographs. Additionally, the appearance of objects changes significantly in VHR images
due to occlusion, shadow, lighting, resolution, and perspective fluctuation. As a result,
object identification in VHR aerial pictures is more challenging than in natural photographs
(Figure 7).

Figure 7. Comparisons of a natural pictures from (a) the COCO dataset and (b) VHR aerial im-
ages [60].

The primary source of input data for this study involves a collection of VHR aerial
images. These images were taken between 2011 and 2016 by Iran’s National Cartographic
Center (Supplementary Materials National Cartographic Center). Aerial photographs of
these nine cities are available in a variety of scales, resolutions, and directions. As a result,
a preprocessing procedure was used to divide these aerial images into smaller images.
Furthermore, the scale and direction of each aerial image of these cities were measured
manually. Except for Esfehan, the aerial images were divided into 60 subdivided images.
Esfehan’s aerial images were subdivided into 30 subimages due to their resolutions being
less than half of the main images. The images were subdivided because their resolutions
(23,080 × 15,080 pixels) were too high for the training and object detection model. Table 3
shows the list of the cities, their pixel scales, and their northern angles.

Table 3. The scale of the pixels and the north direction of each city.

City Scale of Pixels in Meters Northern Angle in Degrees

Abarkooh 0.075 −4.76
Birjand 0.083 −1.35
Bushehr 0.099 +30.39
Esfehan 0.058 −31.40

Kong 0.045 +35.23
Meybod 0.074 −68.90
Semnan 0.051 +26.03
Shiraz 0.087 −36.45
Yazd 0.071 −34.60
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2.2. Central Courtyard Detection

For the training dataset, 57 subdivided images from all cities were selected. Next,
1565 courtyards were annotated by Remo app (Supplementary Materials Remo.ai: Image
Datasets Management) to prepare the training and evaluation task dataset. During pre-
processing, 20% of the dataset was randomly separated for the validation task and 80%
for training the model. The data augmentation process increased the training dataset.
The authors selected the training dataset from all nine cities to ensure that the training task
included various central courtyards with distinct characters. Following that, the object
detection model was trained using the PyTorch toolkit.

The article proposes an end-to-end object identification model for VHR aerial pic-
tures that generates high-level multi-scale semantic feature maps with high-quality data
for multi-scale object identification tasks. Extensive tests were conducted utilizing the
ResNet-50 backbone [61]. The proposed model is composed of four different components.
The first subsection is the backbone network, consisting of ResNet 50’s convolutional
blocks. The second subsection is the bottom-up route, which uses the last layer of the
backbone network’s convolutional blocks. The third subsection is the suggested densely
linked feature pyramid network, which is the top-down route. The last subsection is the
predictor head, which is used to predict classes and bounding boxes.

Residual networks [61] are deep convolutional networks in which blocks of convolu-
tional layers are bypassed through shortcut connections. The fundamental blocks, dubbed
"bottleneck" blocks, adhere to two straightforward design principles: (1) when the output
feature map is the same size as the input feature map, the layers have the same number
of filters. (2) When the size of the output feature map is halved, the number of filters is
doubled. Downsampling is accomplished directly via convolutional layers with a stride 2,
and batch normalization occurs immediately after each convolution and before ReLU
activation. When the sizes of the input and output are identical, the identity shortcut is
utilized. When the dimensions become larger, the projection shortcut aligns them through
1 × 1 convolutions. When shortcuts traverse two-dimensional feature maps in either case,
they do so with a stride 2. The network concludes with a 1000 fully connected layer
activated using SoftMax.

In the proposed approach, a FasterRCNN-ResNet-50 Backbone model pre-trained on
COCO-train2017 is used for object identification. Despite the distinction between natural
and aerial images, it is assumed that ResNet-50 trained extensively on ImageNet can still be
used to improve the effectiveness of courtyard identification tasks, as gathering and anno-
tating significant numbers of courtyard samples remains a significant challenge. The first
49 layers of the ResNet-50 Backbone were transferred, pre-trained on COCO train2017,
and left frozen on the courtyard detection task, utilizing transfer learning methods [62].
These layers can be viewed as layers for learning feature extraction.

The evaluation dataset was used to determine the final result of the object detection,
and the result indicated an accuracy of approximately 90% on the evaluation dataset
(Figure 8). The courtyard detection and crop function output are two different datasets of
the courtyards, and the house belonging to the courtyard is called the offset dataset. There-
fore, the crop function produces an image of the detected area in the subdivided image and
an offset image three times bigger in width and height. For example, the second detected
courtyard in the subdivided image “1176-R9 21.jpg” is titled “1176-R9 21 1.jpg” and mea-
sures 190 × 258 pixels in size. Furthermore, the offset image for this detected courtyard is
named “1176-R9 21 1 o.jpg” and measures 479 × 682 pixels in size. These two examples of
the courtyard and courtyard offset datasets are demonstrated in Figure 9. Following that,
two datasets, courtyards and courtyard offset are prepared for image segmentation.
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Figure 8. Samples of the validation dataset after the courtyard detection task.

Figure 9. Examples of a sample with the courtyard ID: 1176-R9 21 1, in the courtyard dataset and the
courtyard offset dataset.

2.3. Image Segmentation

The Remo app (Supplementary Materials Remo.ai: Image Datasets Management)was
used in this study to perform the annotation task for the segmentation step. This step
employs two distinct segmentation models: one for segmenting courtyards and the objects
contained within, and another for segmenting offset images. Each training dataset contains
550 images; thus, the annotation task was completed for 1100 images in this step. For the
first dataset, 4 objects were segmented for training the model: courtyard, a water place,
green area, and shadow. Moreover, the courtyard and its associated house were segmented
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in the offset images. Figure 10 illustrates an image annotation task, such as segmentation,
using the Remo app.

Figure 10. An example of annotation task for training dataset of courtyards.

The Mask R-CNN model was used in this study to perform example segmentation.
The proposed method rapidly identifies objects in a picture while simultaneously creating
a high-quality segmentation mask for each instance. Mask R-CNN enhances faster R-
CNN by introducing a branch projecting an object mask parallel to the current branch for
the bounding box identification. Mask R-CNN is easy to train and provides a minimal
overhead compared to Faster R-CNN, which runs at five frames per second. Additionally,
Mask R-CNN is easily generalizable to various applications, such as estimating human
postures within the same framework [63].

In CNN models, the word “backbone” refers to the feature extractor network. These
feature extractor networks collect features from the input picture and then upsample
them using a basic CNN decoder module to produce segmented masks. The backbone
network’s purpose is to supply a segmentation mask for every individual object’s polygon
initialization. As shown in the original mask R-CNN, the instance segmentation model
creates a segmentation mask for every instance in the scene. A bounding-box detection
step is introduced to anticipate individual key points and segment the picture into distinct
building instances [64].

As shown in Figure 11, the backbone network employs the standard two-stage instance
segmentation method provided by mask R-CNN [65]. Since this method operates by predict-
ing the segmentation mask, it is divided into detection and segmentation tasks. The design
generates well-localized ROI features, which are critical to the model’s performance.

Figure 11. A diagrammatic representation of the backbone network for a mask R-CNN model [66].

Mask R-CNN is used to identify and then segment objects. The detection process pro-
duces localized ROIs using a feature map generated by a feature extractor, such as ResNet,
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a feature extractor often employed in two-stage object recognition [61,67]. For semantic
segmentation, the features of each ROI are fed into basic convolutional layers and object
masks. This study applies transfer learning to a mask R-CNN model from Detectron2 [68].
To this end, a ResNet-50 backbone pre-trained on COCO-train2017 is used [61]. After
training the model with the two courtyards and courtyard offset datasets, the model was
evaluated with a 20% test dataset. The evaluation demonstrates that courtyards, shadows,
and houses achieve greater than 90% accuracy in classification, bounding-box, and masking
tasks. However, the accuracy of water places and green areas was approximately 80%.
Figure 12 illustrates several examples of evaluation datasets following the segmentation
task. These images are segmented by the machine for testing the result of the training task.
For example, the machine wrongly segmented the shadow of the green areas (yellow lines)
in samples that show low accuracy, in some cases.

Figure 12. Examples of segmentation task evaluations on the testing dataset. (a) Segmentation of
the courtyard (blue), shadow (red), green areas (yellow), and water places (green) in the courtyards
dataset. (b) Segmentation of courtyard (red) and house (blue) in the courtyards offset datasets.

3. Results
3.1. Feature Extraction and Dataset Gathering

The image segmentation was applied to the courtyards, and courtyard offset datasets,
and the result was a set of polygons for each courtyard’s objects. The next step was to
extract features and collect datasets to create around 30,000 samples with 76 features to
create the final comprehensive datasets. In this study, all polygons were combined from the
same object class into a single object. Following that, each object’s area in square meters was
measured. The minimum bounding box for courtyards, houses, and water places was then
identified for further measurements (Supplementary Materials MinimumBoundingBox).
Figure 13 depicts a fitting minimum bounding box on a polygon. In addition, to extract the
geometrical features of the selected object, the dimensions and direction of the minimum
bounding box were measured.
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Figure 13. An example of a polygon’s minimum bounding box. The red line represents the poly-
gon created by the segmentation task that depicts the courtyard object. Furthermore, blue is the
courtyard’s minimum bounding box.

Rather than geometric features, the dataset now includes several climatic features
for each city. The EnergyPlus Weather Format (EPW) (Supplementary Materials Weather
Data|EnergyPlus)files were then used to extract climatic data for each city. The EPW files
contained the climatic information of each city for 14 years (2004–2018). After exporting the
climatic data, the mean, min, max, and 50% were calculated for the 14 years and then added
to the main dataset. As a result, the final features for each courtyard were 76 geometric
and climatic data points. Table 4 summarizes these features in terms of their geometric and
climatic classifications. The final dataset consisted of 29,191 samples collected from nine
cities. Following that, the data were ready for additional analysis.

Table 4. The list of extracted features from the segmentation task (geometric) and EPW files (climatic).

Geometric (22 Features) Climatic (54 Features)

Courtyard area (m2),
Water place area (m2),

Green area (m2),
Courtyard length (m),
Courtyard width (m),

Courtyard direction (deg),
Water place length (m),
Water place width (m),

Water place direction (deg),
House area (m2),

House length (m),
House width (m),

House direction (deg),
City,

Water place/Courtyard area Ratio,
Green/Courtyard area Ratio,
Courtyard/House area Ratio,

Water place/House area Ratio,
Green/House area Ratio,

Courtyard Ratio,
House Ratio,

Water place Ratio

climate divisions, latitude, longitude,
altitude, temp air mean,

temp air min, temp air 50%,
temp air max, temp dew mean,
temp dew min, temp dew 50%,

temp dew max,
relative humidity mean,
relative humidity min,
relative humidity 50%,
relative humidity max,

atmospheric pressure mean,
atmospheric pressure min,
atmospheric pressure 50%,

atmospheric pressure max, etr mean,
etr min, etr 50%, etr max,

ghi infrared mean, ghi infrared min,
ghi infrared 50%, ghi infrared max,

dni mean, dni min, dni 50%, dni max,
dhi mean, dhi min, dhi 50%, dhi max,

global hor illum mean,
global hor illum min,
global hor illum 50%,
global hor illum max,

diffuse horizontal illum mean,
diffuse horizontal illum min,
diffuse horizontal illum 50%,
diffuse horizontal illum max,

wind direction mean,
wind direction 50%,

wind speed mean, wind speed min,
wind speed 50%, wind speed max,

precipitable water mean,
precipitable water min,
precipitable water 50%,
precipitable water max,
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3.2. Data Analysis

The first step of data analysis was data preprocessing. During data preprocessing,
the out layers or incorrectly detected features were identified. For instance, there were
several courtyards with an area of less than one (m2) in size; as a result, they were identified,
and the entire sample from the dataset was removed. Numerous samples in the dataset
contained incorrect data due to the impossibility of checking the results of courtyard
detection and image segmentation after each step. However, it was straightforward at
identifying and deleting this information from the final dataset. It was expected that
approximately 20% of the dataset would contain incorrect data due to a 10% error in object
detection and a 10% error during the image segmentation steps. Throughout the data
analysis stage, an attempt was made to uncover relations between the dataset features by
the use of the Pearson correlation coefficient.

3.3. Dataset Analysis of the Cities

The final dataset contained 29,190 samples and 77 columns, one of which was a
courtyard ID column. The dataset was reduced to 26,437 samples after preprocessing and
removing incorrect and outlier data. As a result, approximately 9.5% of the courtyard
detection and segmentation were incorrect. Consequently, these records were deleted
from their dataset. After data preprocessing, the final dataset contained 26,437 rows
× 77 columns. The first step in reading a dataset is to visualize all of its values in a
single plot to understand their distribution. As a result, using a heatmap across the
entire dataset is a viable solution (Figure 14). It shows that, for example, the correlation
between courtyard length and courtyard width is approximately 0.88, showing a strong
relationship between these two variables. Furthermore, there is no correlation between
the house ratio and latitude features, as the heatmap indicates that these features have a
correlation coefficient of 0.033.

Figure 14. The heatmap of the dataset’s geometric features.
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Another visualization method used in this research was scatter plots, which show how
the data are affected by different features. For instance, the scatter plot of courtyard area
and water place area demonstrates a logical spreading of data (Figure 15).

Within the visualization, different extracted features can be compared and analyzed
in order to reach meaningful results. In this respect, the above visualizations are some
examples of the implementation of the generated dataset. It should be mentioned that
while reaching meaningful relationships among features is highly significant, and it is
not the goal of this paper. Therefore, the mentioned graphs show the possibilities of
using the datasets as an example. In this respect, the most important example of this
dataset’s outcome would be a model for the courtyard shape, which will be explained in
the following section.

Figure 15. The scatter matrix of several geometrical features of the dataset.

4. Discussion
Proposed Model for the Dimension of the Central Courtyard

One of the study’s outcomes is a proposal for a design model for central courtyards,
as a passive energy solution in these particular cities. Additionally, this dataset can pose as
a model for additional cities, by running the central courtyard feature extraction model
on other aerial images of various cities. The design model’s purpose is to determine the
optimal direction and dimension of a central courtyard in these cities or to forecast the
shape of a destroyed central courtyard in the historical region of the cities represented
in the datasets. It can also serve as a model for developing and reconstructing historical
districts in heritage cities. For instance, in the historical region of Yazd, Iran, there is an
empty field. The proposed design model in this study will predict the courtyard’s optimal
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direction, dimension, and area, based on thousands of samples taken throughout Yazd. It
predicts these features through the use of data science prediction models, such as linear
regression (Figure 16). The results reveal a strong correlation between the length and
width of central courtyards in all cities, indicating a distinct pattern in the design of central
courtyard houses throughout Iran’s history.

Figure 16. Relationship between length and width of the studied courtyards and the linear regression
prediction equation.

Rather than a single mathematical equation, the dataset contains prediction equations
for each climatic zone and city. It shows how the proportion of central courtyards varies
by city and climatic zone (Table 5 and Figure 17). The mathematical equation for linear
regression varies in weight between 0.63 and 0.72 in various cities. Additionally, the second
column of this table included an equation for each of the climatic zones. Furthermore,
the final mathematical equation for the dataset’s entire courtyards is included in the first
column of this table.

Table 5. The mathematical equations for calculating the length and width of courtyards in various
cities and climatic zones.

Dataset (Figure 16) Climate Zones Cities (Figure 17)

Dataset W = 0.68L + 1.45 BSh (a)W = 0.64L + 1.95 Shiraz (H)W = 0.64L + 1.95

BSk (b)W = 0.69L + 1.45 Abarkooh (a)W = 0.69L + 1.34

Esfehan (d)W = 0.68L + 1.73

BWh (c)W = 0.7L + 1.04 Bushehr (c)W = 0.66L + 1.52

Semnan (g)W = 0.7L + 0.93

Kong (e)W = 0.72L + 0.8

BWk (d)W = 0.67L + 1.53 Meybod (f)W = 0.63L + 2.49

Birjand (b)W = 0.67L + 1.48

Yazd (i)W = 0.67L + 1.32
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Figure 17. The scatter plot and linear regression line depict the length and width of courtyards in
various cities included in the dataset.

5. Conclusions

The features of central courtyards were extracted in this study, in order to collect big
data for future research. The flow chart in Figure 6 indicates that this study is divided into
four distinct steps. These steps are as follows: (1) preprocessing VHR aerial images for
object detection and detection of courtyards using a faster RCNN model; (2) segmentation
of the objects in the courtyards using mask RCNN; (3) extraction of features associated
with each object and collection of big data; and (4) data analysis and data science of the
dataset to discover mathematical relations between features. In summary, the procedure
begins with extremely high-resolution aerial images and concludes with a vast collection
of 26,437 samples, each of which contains 76 geometric and climatic features. Additionally,
the final data analysis models revealed several relations and correlations between the final
dataset features. It demonstrated that, while the direction and dimension ratios of central
courtyards vary across cities and climatic zones, they all serve a purpose. Furthermore,
the proposed design model can guide researchers and designers working in historic cities.
The model can predict and identify the optimal form of a central courtyard in a historic
region based on thousands of courtyard samples. In summary, this paper postulates that
machine learning techniques used in computer vision and data science are highly beneficial
for studying historic architecture. This research demonstrates that it is possible to study
over 26,000 courtyard samples in a dataset using only a single computational method.

In this research, the authors faced several technical and practical challenges, and in
order to minimize the challenging areas and consider the available computational resources,
some limitations were considered. Since detecting water places and green areas needed
further tuning, and this task was not among the main goals of this research, the authors
did not focus on this part. Apart from that, courtyards located between two subdivided
images were not considered in the dataset as it reduced the model’s accuracy. Finally, the
VHR aerial images do not cover all historical cities in Iran or the Middle East, which is why
a limited number of cities could be selected as the case study.
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For future studies, extending the dataset over the borders of Iran would be recom-
mended to study the impact of this style of architecture on other Middle Eastern countries.
Moreover, detecting more details in the courtyards, such as their height, could add value
to this dataset. In terms of analyzing the dataset, focusing on each dual relationship of
features can reveal details about the principles of the central courtyard’s design in this style
of architecture.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
rs13234843/s1. National Cartographic Center; Remo.ai: Image Datasets Management; Minimum-
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