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Abstract: This study analyzed highly correlated, feature-rich datasets from hyperspectral remote sens-
ing data using multiple statistical and machine-learning methods. The effect of filter-based feature
selection methods on predictive performance was compared. In addition, the effect of multiple expert-
based and data-driven feature sets, derived from the reflectance data, was investigated. Defoliation of
trees (%), derived from in situ measurements from fall 2016, was modeled as a function of reflectance.
Variable importance was assessed using permutation-based feature importance. Overall, the support
vector machine (SVM) outperformed other algorithms, such as random forest (RF), extreme gradient
boosting (XGBoost), and lasso (L1) and ridge (L2) regressions by at least three percentage points.
The combination of certain feature sets showed small increases in predictive performance, while
no substantial differences between individual feature sets were observed. For some combinations
of learners and feature sets, filter methods achieved better predictive performances than using no
feature selection. Ensemble filters did not have a substantial impact on performance. The most
important features were located around the red edge. Additional features in the near-infrared region
(800–1000 nm) were also essential to achieve the overall best performances. Filter methods have the
potential to be helpful in high-dimensional situations and are able to improve the interpretation of
feature effects in fitted models, which is an essential constraint in environmental modeling studies.
Nevertheless, more training data and replication in similar benchmarking studies are needed to be
able to generalize the results.

Keywords: hyperspectral imagery; forest health monitoring; machine learning; feature selection;
model comparison

1. Introduction

The use of machine learning (ML) algorithms for analyzing remote sensing data has
seen a huge increase in the last decade [1]. This coincided with the increased availability of
remote sensing imagery, especially since the launch of the first Sentinel satellite in the year
2014. At the same time, the implementation and usability of learning algorithms has been
greatly simplified with many contributions from the open-source community. Scientists can
nowadays process large amounts of (environmental) information with relative ease using
various learning algorithms. This makes it possible to easily extend benchmark comparison
matrices of studies in a semi-automated way, possibly stumbling upon unexpected findings,
such as process settings, that would not have been explored otherwise [2].

ML methods in combination with remote sensing data are used in many environmental
fields, such as vegetation cover analysis and forest carbon storage mapping [3,4]. The ability
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to predict these environmental variables in unknown regions qualifies ML algorithms as
a helpful tool for such environmental analyses. One aspect of this research field is to
enhance the understanding of biotic and abiotic stress triggers, for example, by analyzing
tree defoliation [5]. Defoliation is known to be a proxy for pathogen and insect damage [6].
While common symptoms are observable across species, some effects and their degree of
severity are species-specific [7]. Defoliation has also been shown to increase predisposition
of tree death from secondary biotic factors up to ten years after the actual defoliation
event [8]. Other approaches for analyzing forest health include change detection [9] or
describing the current health status of forests on a stand level [10].

Vegetation indices have shown the potential to provide valuable information when
analyzing forest health [11,12]. Most vegetation indices were developed with the aim of
being sensitive to changes in specific wavelength regions, serving proxies for underlying
plant physiological processes. In some cases, indices developed for different purposes
than the one to be analyzed (e.g., defoliation of pine trees) may help to explain complex
underlying relationships that are not obvious at first. This emphasizes the need to extract
as much information as possible from the available input data to generate promising
features that can help in improving our understanding of the modeled relationship [13].
A less known index type that can be derived from spectral information is the normalized
ratio index (NRI). In contrast to most vegetation indices, NRIs do not use an expert-based
formula following environmental heuristics; instead, they make use of a data-driven feature
engineering approach by combining (all possible) combinations of spectral bands [14].
When working with hyperspectral data, thousands of NRI features can be derived this way.

Even though ML algorithms are capable of handling highly correlated input variables,
model fitting becomes computationally more demanding and model interpretation more
challenging. Feature selection approaches can help to address this issue, reducing possible
noise in the feature space, simplifying model interpretability, and possibly enhancing
predictive performance [15]. Instead of using wrapper feature selection methods, which
add a substantial overhead to a nested model optimization approach, especially for datasets
with many features, this study focuses on (ensemble) filter methods, which can be directly
integrated into the hyperparameter optimization step during model construction.

Overall, this study aims to show how high-dimensional datasets can be handled
effectively with ML methods while still allowing the interpretation of the fitted models.
The predictive power of non-linear methods and their ability to handle highly correlated
predictors is combined with common and new approaches for assessing feature importance
and feature effects. However, this study focuses mainly on investigating the effects of
filter methods and feature set types on predictive performance rather than interpreting
individual feature effects.

Considering these opportunities and challenges, the research questions of this study
are as follows:

• How do different feature selection methods influence the predictive performance of
ML models of the defoliation of trees?

• Do different (environmental) feature sets show differences in performance?
• Can predictive performance be substantially improved by combining feature sets?
• Which features are most important and how can these be interpreted in this context?

In recent years, various studies that have used hyperspectral data to analyze pest/fungi
infections on trees have been published. Pinto et al. [16] successfully used hyperspec-
tral imagery to characterize pest infections on peanut leaves using random forest, while
Yu et al. [17] aimed to detect pine wilt disease in pine plots in China using vegetation
indices derived from hyperspectral data. Other studies which applied hyperspectral data
for forest health monitoring are [18–20]. Building upon these successful applications of
hyperspectral remote sensing usage in the field of leaf and tree health monitoring, this
work analyzes tree defoliation in northern Spain using airborne hyperspectral data. The
methodology of this study uses ML methods in combination with feature selection and
hyperparameter tuning. In addition, feature importance was analyzed. Incorporating the
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idea of creating data-driven NRIs, this study also discusses the practical problems of high
dimensionality in environmental modeling [21,22].

2. Materials and Methods
2.1. Data and Study Area

Airborne hyperspectral data with a spatial resolution of one meter and 126 spectral
bands were available for four Monterey Pine (Pinus radiata D. Don) plantations in north-
ern Spain. The trees in the plots suffer from infections with pathogens such as Diplodia
sapinea (Fr.) Fuckel, Fusarium circinatum Nirenberg & O’Donnell, Armillaria mellea (Vahl) P.
Kumm, Heterobasidion annosum (Fr.) Bref, Lecanosticta acicola (Thüm) Syd., and Dothistroma
septosporum (Dorogin) M. Morelet causing (among others) needle blight, pitch canker, and
root diseases [23,24]. The first two fungi are mainly responsible for the foliation loss of the
trees analyzed in this study [25]. In situ measurements of defoliation of trees (serving as a
proxy for tree health) were collected by visual inspection by experts. Defoliation in percent
was used as the response variable (Figure 1).

It is assumed that the fungi infect the trees through open wounds, possibly caused by
previous hail damage [25]. The dieback of these trees, which are mainly used as timber,
causes substantial economic losses [26].
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Figure 1. Response variable “defoliation of trees” for plots Laukiz1, Laukiz2, Luiando, and Oiartzun.
n is the total number of trees in each plot, and x̄ the mean defoliation. Values for Laukiz1, Luiando,
and Oiartzun were observed in 5% intervals; for Laukiz2, defoliation was observed at multiple
heights and then averaged, leading to smaller defoliation differences than 5%.

2.1.1. In Situ Data

The Pinus radiata plots of this study, namely Laukiz1, Laukiz2, Luiando, and Oiartzun,
are located in the northern part of the Basque Country (Figure 2). Oiartzun has the largest
number of observations (n = 559 trees), while Laukiz2 is the largest in area (1.44 ha).
All plots besides Luiando are located within 100 km from the coast (Figure 2). A total
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of 1808 observations are available (Laukiz1: 559, Laukiz2: 451, Luiando: 301, Oiartzun:
497). Field surveys were conducted in September 2016 by experienced forest pathologists.
Defoliation was measured in 5% steps through visual inspection with the help of a score
card. For Laukiz2, values at three height levels (bottom, mid, and top) were available and
averaged into an overall defoliation value, resulting in values that are not multiples of
5% (e.g., 8.33%). The magnitude of human observer errors in such surveys, including the
present one, is not precisely known and has being discussed for many years [27]. Ref. [28]
estimated human observer errors in defoliation surveys to range between 7% and 18%.

Plot	Location
Trees
Basque	Country
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Background	images:	Bing	Maps
CRS:		EPSG	4326	(WGS	84)
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Figure 2. Study area maps showing information about location, size, and spatial distribution of trees for all plots (Laukiz1,
Laukiz2, Luiando, and Oiartzun). The background maps give a visual impression of the individual plot area but do not
necessarily represent the plot’s state during data acquisition.

2.1.2. Hyperspectral Data

The airborne hyperspectral data were acquired by an AISA EAGLE-II sensor during
two flight campaigns on 28 September and 5 October 2016 at noon. All preprocessing steps
(geometric, radiometric, and atmospheric) were conducted by the Institut Cartografic i
Geologic de Catalunya (ICGC). The first four bands were corrupted, leaving 122 bands
with valid information. Additional metadata information is available in Table 1.
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Table 1. Specifications of hyperspectral data.

Characteristic Value

Geometric resolution 1 m
Radiometric resolution 12 bit
Spectral resolution 126 bands (404.08–996.31 nm)
Correction: Radiometric, geometric, atmospheric

2.2. Derivation of Indices

To use the full potential of the hyperspectral data, all possible vegetation indices
supported by the R package hsdar (89 in total) as well as all possible NRI combinations
were calculated. NRIs follow the optimized multiple narrow-band reflectance (OMNBR)
concept of data-driven information extraction from narrow-band indices of hyperspectral
data [13,14]. While various index formulations, such as band ratios or normalized ratios,
are available, indices involving the same bands are strongly correlated. Since the widely
used NDVI index belongs to the group of normalized ratio indices (NRIs), which are
implemented in the hsdar R package, we used the following normalized difference index
(NDI) formula to combine all pairs of reflectances:

NRIi,j =
bandi − bandj

bandi + bandj
(1)

where i and j are the respective band numbers.
To account for geometric offsets within the hyperspectral data, which were reported

by ICGC to be potentially up to one meter, a buffer of one meter radius around the centroid
of each tree was used when extracting the reflectance values. A pixel was considered to fall
into a tree’s buffer zone if the centroid of the respective pixel was touched by the buffer.
The pixel values within a buffer zone were averaged and formed the final reflectance value
of a single tree, and they were used as the base information to derive all additional feature
sets. In total, 121∗122

2 = 7381 NRIs were calculated.

2.3. Feature Selection

High-dimensional, feature-rich datasets come with several challenges for both model
fitting and evaluation:

• Model fitting times increase.
• Noise is possibly introduced into models by highly correlated variables [29].
• Model interpretation and prediction become more challenging [29].

To reduce the feature space of a dataset, several conceptually differing approaches
exist: wrapper methods, filters, penalization methods (lasso and ridge), and principal com-
ponent analysis (PCA) [30–33]. In contrast to wrapper methods, filters have a much lower
computational cost, and their tuning can be added to the hyperparameter optimization step.
In addition, filters are less known than wrapper methods, and, in recent years, ensemble
filters, which have shown promising results compared to single filter algorithms, were
introduced [34]. These two points mainly led to the decision to focus on filter methods for
this work and evaluate their effectiveness on highly correlated, high-dimensional datasets.
Due to this focus, only this subgroup of feature selection methods is be introduced in
greater detail in the following sections.

2.3.1. Filter Methods

The concept of filters originates from the idea of ranking features following a score
calculated by an algorithm [32]. Some filter methods can only deal with specific types of
variables (e.g., numeric or nominal). Filters only rank features; they do not decide which
covariates to drop or keep [35]. The decision of which features to keep for model fitting can
be integrated into the optimization phase during model fitting, along with hyperparameter
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tuning. Thus, the number of top-ranked features to be included in the model is treated as
an additional hyperparameter of the model. This hyperparameter is tuned to optimize the
model’s performance.

Beyond the use of individual filter methods to rank and select features, recent studies
have shown that combining several filters by using statistical operations such as “minimum”
or “mean” may enhance the predictive performance of the resulting models, especially
when applied to multiple datasets [34,36]. This approach is referred to as “ensemble
filtering” [37]. Ensemble filters align with the recent rise of the ensemble approach in ML,
which uses the idea of stacking to combine the predictions of multiple models, aiming
to enhance predictive performance [38–40]. In this work, the Borda ensemble filter was
used [34]. Its overall feature order is determined by the sum of filter ranks of all individual
filters in the ensemble.

Filter methods can be categorized based on three binary criteria: multivariate or
univariate feature use, correlation or entropy-based importance weighting, and linear and
non-linear filter methodology. Care needs to be taken to not weigh certain classes more
than others in the ensemble, as, otherwise, the ranking will be biased. In this study, this was
taken care of by checking the rank correlations (Spearman’s correlation) of the generated
feature rankings of all methods against each other. If filter pairs showed a correlation of 0.9
or higher, only one of the two was included in the ensemble filter, selecting it at random.

2.3.2. Description of Used Filter Methods

Filter methods can be classified as follows (Table 2):

• Univariate/multivariate (scoring based on a single variable/multiple variables).
• Linear/non-linear (usage of linear/non-linear calculations).
• Entropy/correlation (scoring based on derivations of entropy or correlation-

based approaches).

Table 2. List of filter methods used in this work, their categorization, and scientific reference.

Name Group Ref.

Linear correlation (Pearson) univariate, linear, correlation [41]
Information gain univariate, non-linear, entropy [42]
Minimum redundancy, maximum relevance multivariate, non-linear, entropy [43]
Carscore multivariate, linear, correlation [44]
Relief multivariate, linear, entropy [45]
Conditional minimal information maximization multivariate, linear, entropy [46]

The filter “Information Gain” in its original form is only defined for nominal re-
sponse variables:

H(Class) + H(Attribute)− H(Class, Attribute) (2)

where H is the conditional entropy of the response variable (class or Y) and the feature
(attribute or X). H(X) is Shannon’s entropy [47] for a variable X, and H(X, Y) is a joint
Shannon’s entropy for a variable X with a condition to Y. H(X) itself is defined as

H(X) = −
n

∑
i=1

P(xi) logb P(xi) (3)

where b is the base of the logarithm used, most commonly 2.
In order to use this method with a numeric response (percentage defoliation of trees),

the variable was discretized into equal bins nbin = 10 and treated as a categorical variable.

2.4. Benchmarking Design
2.4.1. Algorithms

The following learners were used in this work:
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• Extreme gradient boosting (XGBoost);
• Random forest (RF);
• Penalized regression (with L1/lasso and L2/ridge penalties);
• Support vector machine (SVM, radial basis function Kernel);
• Featureless learner.

RF and SVM are well-established algorithms and widely used in environmental
remote sensing. Extreme gradient boosting (commonly abbreviated as XGBoost) has
shown promising results in benchmarking studies in recent years. Penalized regression is
a statistical modeling technique capable of dealing with highly correlated covariates by
penalizing the model coefficients [48]. Common penalties are “lasso” (L1) and “ridge” (L2).
Ridge regression does not remove variables from the model (penalization to zero), but it
shrinks them towards zero, keeping them in the model. A featureless learner was included
for a baseline comparison.

In total, the benchmarking grid consisted of 156 experiments (6 feature sets × 3 ML
algorithms× 8 feature-selection methods and for the L1/L2 models, 6 feature sets× 2 models.
The selected hyperparameter settings are shown in Appendix A Table A1. All code and
data are included in the research compendium of this study (https://doi.org/10.5281/
zenodo.2635403 (accessed on 22 November 2021).

2.4.2. Feature Sets

Three feature sets were used in this study, each representing a different approach to
feature engineering:

• The raw hyperspectral band information (HR): no feature engineering
• Vegetation indices (vegetation index (VI)s): expert-based feature engineering;
• Normalized ratio indices (NRIs): data-driven feature engineering.

The idea of splitting the features into different sets originated from the question of
whether feature-engineered indices derived from reflectance values have a positive effect
on model performance. Peña et al. 2017 [49] is an exemplary study that used this approach
in a spectro-temporal setting. Benchmarking learners on these feature sets while keeping
all other variables, such as model type, tuning strategy, and a partitioning method, fixed
makes it possible to draw conclusions on their individual impact. Each feature set has
distinct capabilities that differentiate it from the others. This can have both a positive and
negative effect on the resulting performance, which is one question this study aims to
explore. For example, feature set VI misses certain parts of the spectral range, as the chosen
indices only use specific spectral bands. Feature set NRI will introduce highly correlated
features, for which some algorithms may be more suitable than others.

In addition to these individual feature sets, the following combinations of feature sets
were also compared:

• HR + VI
• HR + NRI;
• HR + VI + NRI.

Some individual features were removed before using the datasets for modeling when
being numerically equivalent to another feature based on the pairwise correlation being
greater than 1 − 10−10. This preprocessing step reduced the number of covariates for
feature set VI to 86 (from 89). This decision was made to prevent numerical issues that may
occur in the subsequent tuning, filtering, and model fitting steps when offering features
with a pairwise correlation of (almost) one. The remaining features were then used as input
for the filter-based feature selection within the CV.

2.4.3. Hyperparameter Optimization

Hyperparameters were tuned using model-based optimization (MBO) within a nested
spatial cross-validation (CV) [50–52]. In MBO, first, n hyperparameter settings are randomly
chosen from a user-defined search space. After these n settings have been evaluated, one

https://doi.org/10.5281/zenodo.2635403
https://doi.org/10.5281/zenodo.2635403
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new setting, which is evaluated next, is proposed by a fitted surrogate model (by default,
a kriging method). This strategy continues until a user-defined stopping criterion is
satisfied [53,54].

In this work, an initial design of 30 randomly drawn hyperparameter settings in
combination with a stopping criterion of 70 iterations was used, resulting in a total budget
of 100 evaluated hyperparameter settings per fold. The advantage of this tuning approach
is a substantial reduction of the tuning budget that is required to find a setting close to the
global optimization minimum. MBO may outperform methods that do not use information
from previous iterations, such as random search or grid search [55]. Tuning ranges used in
this work are shown in Table A1.

To optimize the number of features used for model fitting, the percentage of features
was added as a hyperparameter during the optimization stage [51]. For PCA, the number
of principal components was tuned. The RF hyperparameter mtry was re-expressed as
mtry = pt

sel, a function of the number of selected features, psel. It was thus tuned on a
logarithmic scale by varying t between 0 (i.e., mtry = 1) and 0.5 (i.e., mtry =

√
psel). This

was necessary to ensure that mtry did not exceed the number of features available after
optimizing the feature percentage during tuning.

2.4.4. Spatial Resampling

A spatial nested cross-validation on the plot level was chosen to account for spatial
autocorrelation within the plots and assess model transferability to different plots [52,56].
The root mean square error (RMSE) was chosen as the error measure. Each plot served
as one cross-validation fold, resulting in four iterations in total. The inner level of cross-
validation for hyperparameter tuning also used plot-level cross-validation.

2.5. Feature Importance and Feature Effects

Estimating feature importance for datasets with highly correlated features is a challeng-
ing task for which numerous model-specific and model-agnostic approaches exist [48,57,58].
The strong correlations among features make it challenging to calculate an unbiased
estimate for single features [59]. Methods such as partial dependence plots (PDP) or
permutation-based approaches may produce unreliable estimates in such scenarios because
unrealistic combinations of feature values are created [59]. The development of robust
methods that enable an unbiased estimation of feature importance for highly correlated
variables is subject to current research [60].

In this work, permutation-based feature importance was calculated to estimate feature
importance or effects [61]. With the limitations in mind when applied to correlated features,
the aim was to get a general overview of the feature importance of the hyperspectral bands
while trying to avoid an over-interpretation of results. The best-performing algorithm on
the HR task (i.e., SVM) was used for the feature importance calculation.

To facilitate interpretation, the ten most important indices of the best performing
models using feature sets HR and VI were linked to the spectral regions of the hyperspectral
data that went into their calculation. The aim was to visualize the most important features
along the spectral curve of the plots to better understand which spectral regions were most
important for the model.

2.6. Research Compendium

All tasks of this study were conducted using the open-source statistical programming
language R [62]. A complete list of all R packages used in this study can be found in
the linked repositories mentioned in the next paragraph. Due to space limitations, only
selected packages with high impact on this work are explicitly cited.

The algorithm implementations of the following packages were used: xgboost [63] (ex-
treme gradient boosting), kernlab [64] (support vector machine) and glmnet [65] (penalized
regression). The filter implementations of the following packages were used: praznik [66]
and FSelectorRcpp [67]. Package mlr [68] was used for all modeling related steps, and
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drake [69] was used for structuring the work and for reproducibility. This study is available
as a research compendium on Zenodo (10.5281/zenodo.2635403, (accessed on 22 Novem-
ber 2021). Apart from the availability of code and manuscript sources, a static webpage is
available at https://pat-s.github.io/2019-feature-selection (accessed on 22 November 2021)
which includes additional side analyses that were carried out during the creation of this study.

3. Results
3.1. Principal Component Analysis of Feature Sets

PCA was used to assess the complexity of the three feature sets. Depending on
the feature set, 95% of the variance is explained by two (HR), twelve (VI), and 42 (NRI)
principal component (PC)s. HR features are therefore highly redundant, while the applied
feature transformations enrich the data set, at least from an exploratory linear perspective.

3.2. Predictive Performance

Overall, the response variable “tree defoliation” could be modeled with an RMSE of
28 percentage points (p.p.) (Figure 3). SVM showed almost no differences in RMSE across
feature sets whereas other learners (RF, SVM, XGBoost, lasso and ridge) differed up to
five p.p. (Figure 3). SVM showed the best overall performance with a mean difference
of around three p.p. to the next best model (XGBoost) (Table 3). Performance differences
between test folds were large: Predicting on Luiando resulted in an RMSE of 9.0 p.p. for
learner SVM (without filter) but up to 54.3 p.p. when testing on Laukiz2 (Table 4).

The combination of feature sets showed small increases in performance for some
learners. XGBoost scored slightly better on the combined datasets HR-NRI, NRI-VI, and
HR-NRI-VI compared to their standalone variants (NRI and VI) (Figure 3). However, the
best performances for RF and XGBoost were scored on NRI and HR, respectively. RF
showed a substantial performance increase when using only NRI compared to all other
feature sets, whereas for XGBoost, the worst performances were associated with the VI-
and NRI-only feature sets (Figure 3).

SVM combined with the “Information Gain” filter achieved the best overall perfor-
mance (RMSE of 27.915 p.p.) (Table 5). Regressions with ridge (L2) and lasso (L1) penalties
showed their best performances on the NRI feature set (Table 3). Combining feature sets for
lasso and ridge did not help to increase performance, and while there was no substantial
difference for lasso, the performance of ridge improved by around two percentage points.
XGBoost showed very poor performances for some feature sets and fills the last ten places
of the ranking (Table 6). Especially when combined with PCA, the algorithm was not able
to achieve adequate performances.

The effects of filter methods on performance differed greatly between the algorithms:
SVM showed no variation in performance across filters (Figure 4). The use of filters for RF
resulted in a substantial increase in performance in all tasks, especially on the HR feature
set where all filters showed an improved score compared to using no filter (Figure 4).
XGBoost’s performance depended strongly on feature selection. In two out of six tasks
(HR, VI), using no filter resulted in the worst performance. XGBoost showed the highest
overall differences between filters for a single task—for feature set HR, the range is up to
13 p.p. (“CMIM” vs. “no filter”) (Figure 4).

When comparing the usage of filters against using no filter at all, there were no instances
in which a non-filtered model scored a better performance than the best filtered one (Figure 4).
For SVM, all filters and “no filter” achieved roughly the same performance on all tasks.

The Borda ensemble filter was not able to score the best performance in any learner/
filter setting (Figure 5). For RF and XGBoost, it most often ranked within the better half
among all filters of a specific task.

The number of features selected during model optimization strongly varied across
learners and plots. RF selected the least features of all three learners, and with the exception
of Oiartzun, only one or two variables were selected. SVM used 210 features or more in all
instances and selected between 16% (Laukiz1) and 81% (Oiartzun) of the features (Table 7).

10.5281/zenodo.2635403
https://pat-s.github.io/2019-feature-selection
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XGBoost also favored using several hundred features with the exception of Laukiz2, for
which only 14 (0.96%) were selected.

Table 3. The overall best individual learner performance across any task and filter method for RF,
SVM, XGBoost, lasso, and ridge, sorted ascending by RMSE (p.p.) including the respective standard
error (SE) of the cross-validation run. For extttregr.featureless, the task is not applicable and was
therefore removed.

Task Model Filter RMSE SE

1 NRI-VI SVM Info Gain 27.915 18.970
2 NRI RF Relief 30.842 12.028
3 HR XGBoost Info Gain 31.165 15.025
4 NRI Lasso-MBO No Filter 31.165 15.025
5 NRI Ridge-MBO No Filter 31.165 15.025
6 - regr.featureless No Filter 31.165 15.025

Table 4. Test fold performances in RMSE (p.p.) for learner SVM on the HR dataset without using a
filter, showcasing performance variance on the fold level. For each row, the model was trained on
observations from all others plots but the given one and tested on the observations of the given plot.

RMSE Test Plot

1 28.12 Laukiz1
2 54.26 Laukiz2
3 9.00 Luiando
4 21.17 Oiartzun

Table 5. Best ten results among all learner–task–filter combinations, sorted in decreasing order of
RMSE (p.p.) and their respective standard error (SE).

Task Model Filter RMSE SE

1 NRI-VI SVM Info Gain 27.915 18.970
2 NRI SVM CMIM 28.044 19.101
3 VI SVM Relief 28.082 19.140
4 NRI-VI SVM Borda 28.102 19.128
5 HR SVM CMIM 28.119 19.123
6 HR SVM MRMR 28.119 19.123
7 VI SVM Info Gain 28.121 19.123
8 NRI SVM PCA 28.121 19.123
9 HR-NRI SVM PCA 28.121 19.123

10 HR-NRI-VI SVM PCA 28.121 19.123

Table 6. Worst ten results among all learner–task–filter combinations, sorted in decreasing order of
RMSE (p.p.) and their respective standard error (SE).

Task Model Filter RMSE SE

1 VI XGBoost No Filter 45.366 6.672
2 HR XGBoost No Filter 44.982 5.378
3 VI XGBoost PCA 44.539 8.187
4 HR XGBoost PCA 44.032 6.183
5 NRI XGBoost PCA 43.433 9.543
6 HR-NRI XGBoost PCA 43.220 2.557
7 HR-NRI-VI XGBoost PCA 41.076 9.862
8 VI RF CMIM 39.980 10.144
9 VI RF Info Gain 39.623 10.616

10 NRI XGBoost Pearson 39.492 11.548
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Table 7. Selected feature portions during tuning for the best performing learner–filter settings (SVM
Relief, RF Relief, XGBoost CMIM) across folds for task HR-NRI-VI, sorted by plot name. “Features (#)”
denotes the absolute number of features selected, and “Features (%)” refers to the percentage relative
to the overall features available in the training sets for each plot (Laukiz1 = 1249, Laukiz2 = 1357,
Luiando = 1507, Oiartzun = 1311). Results were estimated in a separate model tuning step, not within
the main cross-validation comparison.

Learner Test Plot Features (%) Features (#)

RF
Car

Laukiz1 0.00245 1/1249
Laukiz2 0.00359 1/1357
Luiando 0.12448 2/1507
Oiartzun 2.80356 37/1311

SVM
Car

Laukiz1 16.76686 210/1249
Laukiz2 40.77700 554/1357
Luiando 43.80604 661/1507
Oiartzun 81.23205 1065/1311

XGB
Borda

Laukiz1 79.54091 994/1249
Laukiz2 0.96545 14/1357
Luiando 66.27871 999/1507
Oiartzun 41.89759 550/1311

NF,35.516NF,32.62CMIM,31.165

Relief,33.28CMIM,28.119

NF,31.951 NF,36.357

Pearson,36.803MRMR,35.309Relief,28.082

NF,31.165

NF,31.165 No Filter,34.697

Relief,30.842

CMIM,28.044

NF,31.914 NF,33.665

Car,34.361Relief,33.007Info Gain,27.915

NF,31.914

NF,33.535

No Filter,34.196

Car,35.007

PCA,28.121

NF,31.914 NF,33.531

Borda,34.568

Car,34.977

PCA,28.121

HR

VI

NRI

NRI−
VI

HR−N
RIHR−N

RI−
VI

28 30 32 34 36 38 40
RMSE

Learner Lasso Ridge XGBoost RF SVM

Figure 3. Predictive performance in RMSE (p.p.) of models across tasks. Different feature sets are
shown on the y-axis. Labels show the feature selection method (e.g., NF = no filter, Car = “Carscore”,
Info Gain = “Information Gain”, Borda = “Borda”).
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NRI−VI HR−NRI HR−NRI−VI

HR VI NRI

30 35 40 45 50 30 35 40 45 50 30 35 40 45 50

XG

SVM

RF

XG

SVM

RF

RMSE

Filter No Filter

Figure 4. Model performances in RMSE across all tasks, split up in facets, when using no filter method
(blue dot) compared to any other filter method (red cross) for learners RF, SVM, and XGBoost (XG).

NRI−VI HR−NRI HR−NRI−VI

HR VI NRI

30 35 40 45 50 30 35 40 45 50 30 35 40 45 50

XG

SVM

RF

XG

SVM

RF

RMSE

Borda Filter Filter

Figure 5. Predictive performances in RMSE (p.p.) when using the Borda filter method (blue dot)
compared to any other filter (red cross) for each learner across all tasks.
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3.3. Variable Importance
Permutation-Based Variable Importance

The most important features for datasets HR and VI showed an average decrease in
RMSE of 1.06 p.p. (HR, B65) and 1.93 p.p. (VI, Vogelmann2) when permuted (Figure 6). For
the HR dataset, most (i.e., six out of ten) relevant features clustered around the infrared
region (920–1000 nm), while for VI, eight out of ten concentrate within the wavelength
range of 700–750 nm (the so/called “red edge”). For HR, four features in the infrared
region (920–1000 nm) were identified by the model to be most important, being associated
with a mean decrease in RMSE of around 1 p.p. Overall, apart from the top five features,
the vast majority of features showed only a small importance with average decreases in
RMSE below 0.5 p.p.
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Figure 6. Variable importance for feature sets HR and VI: Mean decrease in RMSE for one hundred feature permutations
using the SVM learner. The wavelength range on the x-axis matches the range of the hyperspectral sensor (400–1000 nm).
For each dataset, the ten most important features are highlighted as black dots and labeled by name. Gray dots represent
features from importance rank 11 to last. The spectral signature (mean) of each plot was added as a reference on a normalized
reflectance scale [0, 1] (secondary y-axis). VI features were decomposed into their individual formula parts, all instances
being connected via dashed lines. Each VI feature is composed out of at least two instances.
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4. Discussion
4.1. Predictive Performance

The best overall performance achieved in this study (SVM with the “Info Gain” filter,
RMSE 27.915 p.p.) has to be seen in the light of model overfitting (see Section 4.2). Leaving
out the performance on Laukiz2 when aggregating results, the mean RMSE would be
around 19 p.p. However, leaving out a single plot would also change the prediction results
for the other plots because the observations from Laukiz2 would not be available for model
training. Due to the apparent presence of model overfitting in this study, it is suggested
that more training data representing a greater variety of situations are needed. A model
can only make robust predictions if it has learned relationships across the whole range of
the response. Hence, care should be taken when predicting on the landscape scale using
models fitted on this dataset due to their lack of generalizability caused by the limitations
of the available training data. However, when inspecting the fold/level performances,
it can be concluded that the models performed reasonably well, predicting defoliation
greater than 50%, but they failed for lower levels. This applied to all learners of this study.
In this study, the overall performance across all learners can be classified as “poor” given
that only the SVM learner was able to substantially outperform the featureless learner
(Table 3). It is worth noting that data quality issues may have affected model performances,
as discussed below in detail (Section 4.5).

4.1.1. Model Differences

An interesting finding is the strength of the SVM algorithm when comparing its
predictive performance to its competitors (Table 3). These cluster around a performance
of 31 p.p., while SVM scored about 3 p.p. better than all other methods. However, we
refrain from comparing these results (both relatively and absolute) to other studies since
many study design points have an influence on the final result (optimization strategy, data
characteristics, feature selection methods, etc.).

A potential limiting factor in this study could be the upper limit of 70 iterations
used for the XGBoost algorithm (hyperparameter nrounds), especially for feature sets
including NRIs (Table A1). This setting was a compromise between runtime and tuning
space extension with the goal to work well for most feature sets. It may be recommendable
to increase this upper limit to a value closer to the number of features in the dataset in
order to be able to exploit the full potential of this hyperparameter.

4.1.2. Feature Set Differences

One objective of this study was to determine whether expert-based and data-driven
feature engineering have a positive influence on model performance. With respect to
Figure 3, no overall positive or negative pattern related to specific feature sets was found
that would be valid across all models. The performance of RF and XGBoost on the VI
feature set was around 4 to 6 p.p. lower than on others. One reason could be the lack of
coverage in the wavelength range between 810 nm and 1000 nm (Figure 6). In addition, for
all learners but SVM, a better performance was observed when NRI indices were included
in the feature set (i.e., NRI-VI, HR-NRI, and HR-NRI-VI).

4.2. Performance vs. Plot Characteristics

The large differences in RMSE obtained on different test folds can be attributed to
model overfitting (Table 4). An RMSE of 54.26 p.p. reveals the model’s inability to predict
tree defoliation on this plot (Laukiz2). Laukiz2 differs highly in the distribution of the
response variable defoliation compared to all other plots (Figure 1). In the prediction
scenario for Laukiz2, the model was trained on data containing mostly medium-to-high
defoliation values and only few low ones. This caused overfitting on the medium-to-high
values, degrading the model’s predictive performance in other scenarios. When Laukiz2
was in the training set, the overall mean RMSE was reduced by up to 50% with single fold
performances as good as 9 p.p. RMSE (with Luiando as test set).
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There was also no clear pattern in the percentage of features selected based on hyper-
parameter tuning (Table 7). The optimal value for the number of features (interpreted as a
percentage of available features), which are selected from the ranked filter results, is deter-
mined by the internal surrogate learner of the MBO tuning method using the results from
the previous tuning iterations. Due to this iterative approach, MBO is in some ways able to
evaluate how well a learning algorithm plays together with a certain amount of selected
features and is subsequently able to adjust the number of variables to an optimal value. In
general, considering SVM’s relative success, the use of at least a few hundred features from
the combined feature set appears to be beneficial, or at least not harmful when the model’s
built-in regularization is capable of dealing with the resulting high-dimensional situation.

Realizing early during hyperparameter optimization that only a few features are
needed to reach adequate performances can reduce the overall computational runtime
substantially. Hence, regardless of the potential advantage of using filters for increased
predictive performance, these can have a strong positive effect on runtime, especially of
models making use of hyperparameters that depend on the available number of features,
such as RF with mtry.

Ultimately, the results of Table 7 should be taken with care, as they rely on single
model–filter combinations and are subject to random variation. More in-depth research
is needed to investigate the effect of filters on criteria other than performance (such as
runtime), leading to a multi-criteria optimization problem.

4.3. Feature Selection Methods

The usefulness of filters with respect to predictive performance in this study varied.
While the performance of some models (up to 5 p.p. for RF and XGBoost) was improved by
specific filters, some models achieved a poorer performance with filters than without them
(Figure 4). There was no pattern of specific filters consistently resulting in better scores.
Hence, it is recommended to test multiple filters in a study if it is intended to use filters.
While filters can improve the performance of models, they may be more appealing based
on other aspects than performance. Reducing variables can reduce computational efforts
in high-dimensional scenarios and may enhance the interpretability of models. Filters are a
lot cheaper to compute than wrapper methods, and the final feature subset selection can be
integrated as an additional hyperparameter into the model optimization stage.

Models that used the Borda ensemble method in this study did not perform better on
average than models that used a single filter or no filter at all. Ensemble methods have
higher stability and robustness than single ones and have shown promising results in [34].
Hence, their expected main advantage is stable performances across datasets with varying
characteristics. Single filter methods might yield better model performances on certain
datasets but fail on others. The fact that this study used multiple feature sets but only one
dataset and tested many single filters could be a potential explanation of why, in all cases,
a single filter outperformed the ensemble filter. However, studies that use ensemble filters
are still rare, and these are usually not compared against single filters [70]. In summary, in
this study, Borda did not perform better than a randomly selected filter method. More case
studies applying ensemble filter methods are needed to verify this finding. Nevertheless,
ensemble filters can be a promising addition to an ML feature selection portfolio.

PCA, acting as a filter method, more often showed less than optimal results, especially
for algorithms RF and XGBoost. XGBoost in particular had substantial problems when
using PCA as a filter method and accounted for four of the six worst results (Table 6).
However, PCA was able to reduce model fitting times substantially across all algorithms.
Depending on the use case, PCA can be an interesting option to reduce dimensionality
while keeping runtime low. However, information about the total number of features
used by the model is lost when applying this technique. Since filter scores only need to
be calculated once for a given dataset in a benchmark setting, the runtime advantage of a
PCA vs. filter methods might in fact be negligible in practice.
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4.4. Linking Feature Importance to Spectral Characteristics

Unsurprisingly, the most important features for both HR and VI datasets were identi-
fied around the red edge of the spectra, specifically in the range of 680 nm to 750 nm.

This area has the highest ability to distinguish between reflectances related to a high
density/high foliage density and thus the health status of vegetation and its respective
counterpart [71]. However, four out of ten of the most important features of dataset HR
are located between 920 nm and 1000 nm. Looking at the spectral curves of the plots,
apparent reflectance differences can be observed in this spectral range—especially for
plot Oiartzun—which might explain why these features were considered important by
the model.

A possible explanation for the poor performances of most models scored on the VI
dataset compared to all other feature sets could be the lack of features covering the area
between 850 nm and 1000 nm (Figure 6). The majority of VI features covers the range
between 550–800 nm. Only one index (PWI) covers information in the range beyond
900 nm.

4.5. Data Quality

Environmental datasets always come with some constraints that can have potential
influence on the modeling process and its outcome. Finding a suitable approach to extract
the remote sensing information from each tree was a complex process. Due to the reported
geometric offset of up to one meter within the hyperspectral data, the risk of assigning a
value to an observation that would actually refer to a different, possibly non-tree, pixel
was reasonably high. It was concluded that using a buffer radius of one meter can be a
good compromise between the inclusion of information from too many surrounding trees
and an under-coverage of the tree crown. With the chosen radius, we are confident that
we were able to map individual tree crowns while accounting for a possible geometric
offset. This results in all cases in four contributing pixels (=four square meters) for the
extraction of hyperspectral information for a given tree. Even though no results showing
the influence of different buffer values on the extraction were provided, it is hypothesized
that the relationships between features would not change substantially, leading to almost
identical model results. Instead of using a buffer to extract the hyperspectral information,
segmentation could have been considered. However, this method would have required
more effort for no clear added value in our view and would have moved the focus of this
manuscript more to data preprocessing and away from feature selection methods.

Trees located within grid cells on the border of a plot are a notable exception where the
exact number of pixels contributing to the observation’s feature value may be reduced since
the image was cropped to the plot’s extent. Cropping was applied to avoid the accidental
inclusion of background data such as forest roads. However, this effect was deemed to be
of negligible importance.

The available hyperspectral data covered a wavelength between 400 nm and 1000 nm.
Hence, the spectral range of the shortwave infrared (SWIR) region is not covered in this
study. Given that this range is often used in forest health studies [72], e.g., when calculating
the normalized difference moisture index (NDMI) index [73], this marks a clear limitation
of the dataset at hand.

The dataset consists of in situ data collected during September 2016, which was
matched against remote sensing data acquired at the end of September 2016. A multi-
temporal dataset consisting of in situ data from different phenology stages would possibly
improve the achieved model performances. However, this would also require the costly
acquisition of hyperspectral data of these additional timestamps.

The R package hsdar was used for the calculation of vegetation indices [74]. All
indices that could be calculated with the given spectral range of the data (400–1000 nm)
were used. This means that even though Table A2 lists all indices available in the package,
not all listed indices were used in this study. Although this selection included a large
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number of indices, some possibly helpful indices might have been missed due to the
restriction of the hyperspectral data.

Overall, the magnitude of uncertainty introduced by the mentioned effects during
index derivation cannot be quantified. Such limitations and uncertainties apply to most
environmental studies and cannot be completely avoided.

4.6. Practical Implications on Defoliation and Tree Health Mapping

Even though this work has a strong methodological focus by comparing different
benchmark settings on highly correlated feature sets, implications on tree health should be
briefly discussed in the following. Due to the outlined dataset issues in Section 4.5, which
are mainly responsible for the resulting poor model performances, the trained models are
not suited for practical use, e.g., to predict defoliation in unknown areas, due to the high
mapping uncertainty. However, the general approach of utilizing hyperspectral data to
classify the health status of trees partly led to promising results. For example, due to the
narrow bandwidth of the hyperspectral sensor, small parts of the spectrum (mainly in the
infrared region) were of higher importance to the models (e.g., see Figure 6), meaning that
they helped the models to distinguish between low and high tree defoliation. If spatial
offset errors of the image data and possible background noise can be reduced (possibly
by making use of image segmentation), we believe that model performances could be
substantially enhanced. Such improved models, starting around an RMSE of 20% and
less, should be able to provide added value to support the long-term monitoring of forest
health and early detection of fungi-affected tree plots. Nevertheless, overall the use of
defoliation as a proxy for forest health should be critically reconsidered as it comes with
various practical issues, starting from potential offsets during data collection, varying leaf
density due to tree age, and differing effects between tree species, to name just a few.

4.7. Comparison to Other Studies

While most defoliation studies operate on the plot level using coarser resolution
multispectral satellite data [10,75,76], there are also several recent studies using airborne
or ground-based sensors at the tree level. Among these, refs. [77,78] used ground-level
methods, such as airborne laser scanning (ALS) and light detection and ranging (LiDAR).

Studies focusing on tree-level defoliation mainly used ground-level methods, such
as ALS or LiDAR [77,78]. Ref. [77] used ordinary least squares (OLS) regression methods
while [78] retrieving information from ground-level RGB photos using convolutional neural
networks (CNN). However, neither of them used spatial CV for model assessment, and [78]
did not perform feature selection (FS). The authors of [79] used a partial least squares (PLS)
model with high-resolution digital aerial photogrammetry (DAP) to predict cumulative
defoliation caused by the spruce budworm. Study results indicated that spectral features
were found to be most helpful for the model. Incorporating such features (both spectral
and structural) could be a possible enhancement for future works. No studies were found
to model defoliation caused by Diplodia sapinea (Fr.) Fuckel with remote sensing data, and
most studies focused on describing the tree conditions based on local sampling [80,81].

The field of (hyperspectral) remote sensing has had a strong focus on using RF for mod-
eling in recent years [82]. However, in high-dimensional scenarios, tuning the parameter
mtry becomes computationally expensive. To account for this and the high dimensionality
in general, studies used feature selection approaches, such as semi-supervised feature
extraction [83], wrapper methods [84–86], PCA, and adjusted feature selection [87]. In
general, applying feature selection methods on hyperspectral datasets has shown to be
effective, regardless of the method used [88,89]. However, no studies were found that
made explicit use of filter methods in combination with hyperparameter tuning in the field
of (hyperspectral) remote sensing. Potential reasons for this absence could be an easier
programmatic access to wrapper methods and a higher general awareness of these com-
pared to filter methods. Applying the filter-based feature selection methodology shown in
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this study and its related code provided in the research compendium might be a helpful
reference for future studies using hyperspectral remote sensing data.

When looking for remote sensing studies that compare multiple models, it turned out
that these often operate in a low-dimensional predictor space [90] or use wrapper methods
explicitly [86].

Refs. [91,92] are more similar in their methodology but focus on a different response
variable (woody cover). Ref. [91] used machine learning with ALS data to study dieback
of trees in eucalyptus forests. A grid search was used for hyperparameter tuning and
forward feature selection (FFS) for variable selection. Ref. [92] analyzed woody cover in
South Africa using a spatial CV and FS approach [93] with an RF classifier. Ref. [94] shows
a similar setup; they used hyperspectral vegetation indices and a nested CV approach for
performance estimation, and they estimated variable importance targeting woody biomass
as the response. In the results, lasso showed the best performance among the chosen
methods. However, the authors did not optimize the hyperparameters of RF, which makes
a fair comparison problematic since the other models used internal optimization. The
discussion section of [94] lists additional studies that made use of shrinkage models for
high-dimensional remote sensing modeling.

In summary, no studies could be found that used filter methods for FS or made use
of NRI indices in their work and had a relation to tree health. This might relate to the
fact that most environmental datasets are not high dimensional. In fact, many studies
use fewer than ten features, and issues related to correlations are often solved manually
instead of relying on an automated approach. These manual approaches might suffer from
subjectivity and may limit the reproducibility of results.

Other fields (e.g., bioinformatics) encounter high-dimensional datasets more often.
Hence, more studies using (filter-based) feature selection approaches can be found in this
field [95,96]. However, bioinformatics differs conceptually in many ways from environmen-
tal modeling, and, therefore, no greater focus was put into comparing studies of this field.
The availability of high-dimensional feature sets will increase in the future due to higher
temporal and spectral resolutions of sensors. In addition, a high-spatial resolution comes
with the possibility of calculating many textural features. Hence, the ability to deal with
high-dimensional datasets becomes more important, and unbiased robust approaches are
needed. We hope that this work and its methodology raise awareness about the application
of filter methods to tackle high-dimensional problems in the environmental modeling field.

5. Conclusions

This study analyzed the effectiveness of filter-based feature selection in improving
various machine-learning models of defoliation of trees in northern Spain based on hyper-
spectral remote-sensing data. Substantial differences in performance occurred depending
on which feature selection and machine learning methods were combined. SVM showed
the most robust behavior across all highly correlated datasets and was able to predict the
response variable of this study substantially better than other methods.

Filter methods were able to improve the predictive performance on datasets in some
instances, although there was no clear and systematic pattern. Their effectiveness depends
on the algorithm and the dataset characteristics. Ensemble filter methods did not show a
substantial improvement over individual filter methods in this study.

The addition of derived feature sets was, in most cases, able to improve predictive
performance. In contrast, feature sets that focused on only a small fraction of the available
spectral range (i.e., dataset VI) showed a worse performance than the ones that covered
a wider range (400–1000 nm; HR, NRI). NRIs can be seen as a valuable addition to the
optimization of predictive performance in the remote sensing of vegetation.

Features along the red-edge wavelength region were most important for models dur-
ing prediction. With respect to dedicated vegetation indices, all versions of the Vogelmann
index were seen as the most important indices for the best performing SVM model. This
matches well with the actual purpose of these indices—they were invented to detect de-
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foliation on sugar maple trees (Acer saccharum Marsh.) caused by pear thrips (Taeniothrips
inconsequens Uzel) [97]. However, assessing feature importance for highly correlated fea-
tures remains a challenging task. Results might be biased and should be taken with care to
avoid overgeneralizing from individual studies.

Finally, the potential of predicting defoliation with the given study design was rather
limited with respect to the average RMSE of 28 p.p. scored by the best performing model.
More training data covering a wider range of defoliation values in a larger number of forest
plantations are needed to train better models that can create more robust predictions.
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The following abbreviations are used in this manuscript:

AGB above-ground biomass
ALE accumulated local effects
ALS airborne laser scanning
ANN artificial neural network
AUROC area under the receiver operating characteristics curve
BRT boosted regression trees
CART classification and regression trees
CNN convolutional neural networks
CV cross-validation
DAP digital aerial photogrammetry
ENM environmental niche modeling
FFS forward feature selection
FPR false positive rate
FS feature selection
GAM generalized additive model
GBM gradient boosting machine
GLM generalized linear model
ICGC Institut Cartografic i Geologic de Catalunya
IQR interquartile range
LiDAR light detection and ranging
LOWESS locally weighted scatter plot smoothing
MARS multivariate adaptive regression splines
MBO model-based optimization
MEM maximum entropy model
ML machine learning
NDII normalized difference infrared index
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NDMI normalized difference moisture index
NIR near-infrared
NRI normalized ratio index
OLS ordinary least squares
OMNBR optimized multiple narrow-band reflectance
PCA principal component analysis
PDP partial dependence plots
PISR potential incoming solar radiation
PLS partial least-squares
POV proportion of variance explained
RBF radial basis function
RF random forest
RMSE root mean square error
RR ridge regression
RSS residual sum of squares
SAR synthetic aperture radar
SDM species distribution modeling
SMBO sequential-based model optimization
SVM support vector machine
TPR true positive rate
VI vegetation index
XGBoost extreme gradient boosting
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Figure A1. Spearman correlations of NRI feature rankings obtained with different filters. Filter names
refer to the nomenclature used by the mlr R package. Underscores in names divide the terminology
into their upstream R package and the actual filter name.
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Appendix A.2

Table A1. Hyperparameter ranges and types for each model. Hyperparameter notations from the
respective R packages are shown.

Model
(Package) Hyperparameter Type Start End Default

RF
(ranger)

xtry dbl 0 0.5 -
min.node.size int 1 10 1
sample.fraction dbl 0.2 0.9 1

SVM
(kernlab)

C dbl 2−10 210 1
σ dbl 2−5 25 1

XGBoost
(xgboost)

nrounds int 10 70 -
colsample_bytree dbl 0.6 1 1
subsample dbl 0.6 1 1
max_depth int 3 15 6
gamma int 0.05 10 0
eta dbl 0.1 1 0.3
min_child_weight int 1 7 1

Appendix A.3

Table A2. List of available vegetation indices in the hsdar package.

Name Formula Reference

Boochs D703 [98]
Boochs2 D720 [98]
CAI 0.5× (R2000 + R2200)− R2100 [99]

CARI a = (R700 − R550)/150 [100]
b = R550 − (a× 550)
R700 × |(a× 670+ R670 + b)

R670 × (a2+1)|0.5

Carter R695/R420 [101]
Carter2 R695/R760 [101]
Carter3 R605/R760 [101]
Carter4 R710/R760 [101]
Carter5 R695/R670 [101]
Carter6 R550 [101]
CI R675 × R690/R2

683 [102]
CI 2 R760/R700 − 1 [103]
ClAInt

∫ 735nm
600nm R [104]

CRI1 1/R515 − 1/R550 [103]
CRI2 1/R515 − 1/R770 [103]
CRI3 1/R515 − 1/R550 × R770 [103]
CRI4 1/R515 − 1/R700 × R770 [103]
D1 D730/D706 [102]
D2 D705/D722 [102]
Datt (R850 − R710)/(R850 − R680) [105]
Datt2 R850/R710 [105]
Datt3 D754/D704 [105]
Datt4 R672/(R550 × R708) [106]
Datt5 R672/R550 [106]
Datt6 (R860)/(R550 × R708) [106]
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Table A2. Cont.

Name Formula Reference

Datt7 (R860 − R2218)/(R860 − R1928) [107]
Datt8 (R860 − R1788)/(R860 − R1928) [107]
DD (R749 − R720)− (R701 − R672) [108]
DDn 2× (R710 − R660 − R760) [109]
DPI (D688 ∗ D710)/D2

697 [102]
DWSI1 R80/R1660 [110]
DWSI2 R1660/R550 [110]
DWSI3 R1660/R680 [110]
DWSI4 R550/R680 [110]
DWSI5 (R800 + R550)/(R1660 + R680) [110]
EGFN (max(D650:750)−max(D500:550))

(max(D650:750) +max(D500:550))
[111]

EGFR max(D650:750)/ max(D500:550) [111]
EVI 2.5× (R800 − R670)

(R800 − (6× R670)− (7.5× R475) + 1) [112]
GDVI (Rn

800 − Rn
680)/(Rn

800 + Rn
680) [113]

GI R554/R677 [114]
Gitelson 1/R700 [115]
Gitelson2 (R750 − R800/R695 − R740)− 1 [103]
GMI1 R750/R550 [103]
GMI2 R750/R700 [103]
Green NDVI R800 − R550

R800 + R550
[116]

LWVI_1 (R1094 − R983)
(R1094 + R983)

[117]

LWVI_2 R1094 − R1205
R1094 + R1205

[117]

Maccioni R780 − R710)
R780 − R680

[118]

MCARI ((R700 − R670)− 0.2× (R700 − R550))×
(R700/R670)

[119]

MCARI2 ((R750 − R705)− 0.2× (R750 − R550))×
(R750/R705)

[120]

mND705 (R750 − R705)
R750 + R705 − 2× R445

[121]

mNDVI (R800 − R680)
R800 + R680 − 2× R445

[121]
MPRI R515 − R530

R515 + R530
[122]

MSAVI 0.5 × ((2 × R800 + 1)2 − 8 × (R800 −
R670))

0.5 [123]

MSI R1600
R817

[124]
mSR R800 − R445

R680 − R445
[121]

mSR2 (R750/R705)− 1
R750/R705 + 1)0.5 [125]

mSR705 R750 − R445
R705 − R445

[121]
MTCI R754 − R709

R709 − R681
[126]

MTVI 1.2× (1.2× (R800− R550)−
2.5× (R670 − R550))

[127]

NDLI log(1/R1754)− log(1/R1680)
log(1/R1754) + log(1/R1680)

[128]

NDNI log(1/R1510)− log(1/R1680)
log(1/R1510) + log(1/R1680)

[128]

NDVI R800 − R680
R800 + R680

[129]
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Table A2. Cont.

Name Formula Reference

NDVI2 R750 − R705
R750 + R705

[130]
NDVI3 R682 − R553

R682 + R553
[131]

NDWI R860 − R1240
R860 + R1240

[73]
NPCI R680 − R430

R680 + R430
[111]

OSAVI (1+ 0.16)× (R800 − R670)
R800 + R670 + 0.16 [132]

OSAVI2 (1+ 0.16)× (R750 − R705)
R750 + R705 + 0.16) [120]

PARS R746
R513

[133]
PRI R531 − R570

R531 + R570
[134]

PRI_norm PRI× (−1)
RDVI× R700/R670

[135]
PRI * CI2 PRI ∗ CI2 [136]
PSRI R678 − R500

R750
[137]

PSSR R800
R635

[138]
PSND R800 − R470

R800−R470
[138]

PWI R900
R970

[139]
RDVI R800 − R670√

R800 + R670
[140]

REP_LE
Red-edge position through
linear extrapolation [141]

REP_Li Rre =
R670 + R780

2 [142]
700+ 40× (Rre − R700)

(R740 − R700))

SAVI (1+ L)× (R800 − R670)
(R800 + R670 + L) [143]

SIPI R800 − R445
R800 − R680

[144]

SPVI
0.4 × 3.7 × (R800 −
R670) − 1.2 × ((R530 −
R670)

2)0.5
[145]

SR R800
R680

[146]
SR1 R750

R700
[147]

SR2 R752
R690

[147]
SR3 R750

R550
[147]

SR4 R700
R670

[148]
SR5 R675

R700
[133]

SR6 R750
R710

[149]
SR7 R440

R690
[150]

SR8 R515
R550

[151]
SRPI R430

R680
[144]

SRWI R850
R1240

[102]

Sum_Dr1 ∑795
i=626 D1i [152]

Sum_Dr2 ∑780
i=680 D1i [153]

SWIR FI R2
2133

R2225 × R3
2209

[154]
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Name Formula Reference

SWIR LI
3.87 × (R2210 − R2090) −
27.51 × (R2280 − R2090) −
0.2

[155]

SWIR SI
−41.59× (R2210 − R2090) +
1.24 × (R2280 − R2090) +
0.64

[155]

SWIR VI
37.72 × (R2210 − R2090) +
6.27 × (R2280 − R2090) +
0.57

[155]

TCARI
3 ∗ ((R700 − R670) −
0.2 × R700 − R550) ×
(R700/R670))

[127]

TCARI/OSAVI TCARI/OSAVI [127]

TCARI2
3 × ((R750 − R705) −
0.2 × (R750 − R550) ×
(R750/R705))

[120]

TCARI2/OSAVI2 TCARI2/OSAVI2 [120]

TGI −0.5(190(R670 − R550) −
120(R670 − R480))

[156]

TVI
0.5 × (120 × (R750 −
R550) − 200 × (R670 −
R550))

[157]

Vogelmann R740
R720

[97]
Vogelmann2 R734 − R747

R715 + R726
[97]

Vogelmann3 D715
D705

[97]
Vogelmann4 R734 − R747

R715 + R720
[97]

Appendix A.4

The following information was provided by the Institut Carogràfic i Geològic de
Catalunya, which was in charge of image acquisition and data preprocessing.

The AISA EAGLE-II sensor was used for airborne image acquisition with a field of
view of 37.7 °. Its spectral resolution is 2.4 nm and ranges from 400 nm to 1000 nm.

The conversion of digital numbers (DN) to spectral radiance was made using software
designed for the instrument. Images were originally scaled in 12 bits but were radio-
metrically calibrated to 16 bits, reserving the highest value (65,535) for null values. The
procedure was applied to the 23 previously selected images. Finally, the geometric and
atmospheric corrections were applied to the images.

The aim of this procedure was to reduce the positional errors of the images. The
cartographic reference system in use was EPSG 25830. Positioning was achieved by
coupling an Applanix POS AV 410 system to the sensor, integrating GPS and IMU systems.
The system provides geographic coordinates of the terrain and relative coordinates of
the aircraft (attitude) at each scanned line. Additionally a DSM from GeoEuskadi with a
spatial resolution of 1 m was used. The orthorectified hyperspectral images were compared
to orthoimages (1:5000) from GeoEuskadi. This comparison was used as the base to
calculate RMSE, which was below the ground sampling distance in the across and along
track directions.

The radiance measured by an instrument depends on the illumination geometry
and the reflective properties of the observed surface. Radiation may be absorbed or
scattered (Rayleigh and Mie scattering). Scattering is responsible for the adjacency effect,
i.e., radiation coming from neighbors’ areas to the target pixel. The MODTRAN algorithm
was used to model the effect of the atmosphere on the radiation. To represent the aerosols
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of the study area, the rural model was used. In addition, optical thickness was estimated
on pixels with a high vegetation cover. Columnar water vapor was estimated by a linear
regression ratio where the spectral radiance of each pixel at the band of the maximum
water absorption (906 nm) is compared to its theoretical value in the absence of absorption.
Nonetheless, this technique is unreliable in the presence of a spectral resolution as in
this case. To resolve this, the water vapor parameter was selected manually according to
the smoothness observed on the reflectance peak at 960 nm. This was combined with a
mid-latitude summer atmosphere model. The output of this procedure was reflectance
from the target pixel scaled between 0 and 10,000.

The image acquisitions were originally attempted during one day (29 October 2016).
Due to the variable meteorological conditions, some stands had to be imaged one day later.
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