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Abstract: Terrestrial water storage (TWS) is a critical variable in the global hydrological cycle. The
TWS estimates derived from the Gravity Recovery and Climate Experiment (GRACE) allow us to
better understand water exchanges between the atmosphere, land surface, sea, and glaciers. However,
missing historical (pre-2002) GRACE data limit their further application. In this study, we developed
a random forest (RF) model to reconstruct the monthly terrestrial water storage anomaly (TWSA)
time series using Global Land Data Assimilation System (GLDAS) and Climatic Research Unit (CRU)
data for the Lancang-Mekong River basin. The results show that the RF-built TWSA time series
agrees well with the GRACE TWSA time series for 2003–2014, showing that correlation coefficients
(R) of 0.97 and 0.90 at the basin and grid scales, respectively, which demonstrates the reliability of
the RF model. Furthermore, this method is used to reconstruct the historical TWSA time series for
1980–2002. Moreover, the discharge can be obtained by subtracting the evapotranspiration (ET) and
RF-built terrestrial water storage change (TWSC) from the precipitation. The comparison between the
discharge calculated from the water balance method and the observed discharge showed significant
consistency, with a correlation coefficient of 0.89 for 2003–2014 but a slightly lower correlation
coefficient (0.86) for 1980–2002. The methods and findings in this study can provide an effective
means of reconstructing the TWSA and discharge time series in basins with sparse hydrological data.

Keywords: Lancang-Mekong River basin; random forest; terrestrial water storage; water balance; discharge

1. Introduction

The Lancang-Mekong River basin is the most important transnational water system
in Asia, flowing through China, Laos, Myanmar, Thailand, Cambodia, and Vietnam and
eventually into the South China Sea. The study of terrestrial water storage (TWS) is thus
critical for shipping, hydro-energy, irrigation, and water protection in countries along the
river [1–5]. It provides a new perspective for tracking global water resources and has been
widely applied in monitoring drought, flood potential, and groundwater changes [6–8].

Before GRACE, few TWS data could be used to understand global water resources [9–12].
The Global Land Data Assimilation System (GLDAS) land surface models (LSMs) and
global hydrological models (GHMs) can simulate long-term TWS [10,13]. The TWS is
composed of the following components: snow water equivalent (SWE), canopy water
storage (CWS), surface water storage (SWS), soil moisture storage (SMS), and groundwater
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storage (GWS). However, LSMs and GHMs are unusually not calibrated against GRACE
measurements, which may lead to large deviations and a failure to adequately depict the
TWS [14–17]. Nevertheless, these models contain complicated physical processes and have
more parameters and greater computational complexity [17]. Therefore, there is an urgent
need to develop an efficient data-driven algorithm for TWS reconstruction.

With the advent of remote sensing, machine learning and data mining techniques
have emerged in meteorology and hydrology [18]. Ndehedehe and Ferreira [19] predicted
the TWS using a partial least squares regression (PLSR) model and suggested that the TWS
in some river basins is weakly associated with climate. Huang, et al. [20] quantified the
effects of climate change and human activities on vegetation dynamics using a support
vector machine (SVM) model, providing some guidance for ecological restoration on the
Loess Plateau. Nguyen, et al. [21] proposed an artificial neural network to reconstruct long-
term and high-resolution precipitation, which has been widely used in the geosciences.
Li, et al. [22] combined climate variables and catchment attributes to estimate annual
discharge using a random forest (RF) model. RF is an ensemble method combining several
weak learners to produce a strong learner that yields the optimum results. Additionally,
each variable can be sorted by importance, making this model more explanatory [23–25].
Combined with LSMs and meteorological forcing data, RF provides a comprehensive
perspective on TWSA reconstruction.

Effective discharge monitoring is important for water management and utilization, as
well as the scientific development of dispatch plans [26–28]. However, due to the variation
in regional precipitation frequency and intensity, the estimation of discharge remains
challenging. Encouragingly, the water balance method describes the equilibrium of water
revenue and expenditure, which provides an effective way to estimate discharge [29–31].
The terrestrial water storage change (TWSC) is negligible in the water balance at the annual
level but is essential at the sub-annual level [32–34]. The water balance method allows
us to better understand the water cycle, and discharge can be obtained by subtracting
the evapotranspiration (ET) and the TWSC from precipitation [35,36]. Thus, discharge in
the Lancang-Mekong River basin can be determined using this method with multi-source
remote sensing products [37].

In this study, we built monthly TWSA time series using an RF model in the Lancang-
Mekong River basin for 2003–2014 and reconstructed the TWSA from 1980 to 2002. More-
over, discharge can be effectively estimated using the water balance method incorporating
the RF-built TWSA data, which justifies the reliability and applicability of the RF model.
The rest of this article is organized as follows. Sections 2 and 3 describe the study area,
data resources, and methods. The reconstruction of the TWSA time series and estimated
discharge is presented in Section 4. The uncertainty in multi-source products is discussed
in Section 5, followed by conclusions in Section 6.

2. Study Area and Data Resources
2.1. Study Area

The Lancang-Mekong River is the twelfth longest river in the world and the seventh
longest river in Asia; it is well known as the most important transnational water system in
Asia. It originates in Yushu Tibetan Autonomous Prefecture, Qinghai Province, China. The
mainstream spans 4350 km and covers an area of over 795,000 km2. The Lancang-Mekong
River basin consists of two parts: the Lancang River in China and the Mekong River in
mainland Southeast Asia. The Lancang River Basin covers 164,800 km2, accounting for
21% of the area, with an average annual flow rate of 2140 m3/s and an average annual
outbound water volume of 76.5 billion m3 [1,38,39]. The Mekong River Basin is dominated
by croplands, and the Southern Vietnamese region is one of the world’s most famous crop
growing areas, known as the “Rice Bowl of Vietnam” [40] (Figure 1b).
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Figure 1. The Global Multi-Resolution Terrain Elevation Data (a) and the Terra and Aqua combined Moderate Resolution
Imaging Spectroradiometer (MODIS) Land Cover Type (b) in the Lancang-Mekong River basin.

The Kratie hydrological station is located on the mainstream in the lower Mekong
River, which controls the entire red border range in Figure 1. The elevation of the basin
declines from northwest to southeast, with an average over 4000 m in China, and the terrain
is relatively flat downstream [41] (Figure 1a). Located in the center of the tropical monsoon
regions in Asia, the Lancang-Mekong River has great differences in water flow during
dry and flooding periods [1]. The Indian summer monsoon brings rich moisture from
September to October, with a peak flow of 757,000 m3/s. It is relatively dry from January
to February, with a minimum flow rate of 1250 m3/s [39]. Precipitation and snowmelt are
the primary sources of water, and the Lancang-Mekong River basin is known to be largely
a rain-fed rather than snow-fed river [42]. In the Lancang River Basin, snowmelt mainly
comes from the Tibetan plateau, while precipitation is the main discharge source of the
Mekong River [39,43].

2.2. Data Sources
2.2.1. Terrestrial Water Storage (TWS)

The Gravity Recovery and Climate Experiment (GRACE) is a collaboration between
the National Aeronautics and Space Administration (NASA) and the German Aerospace
Center (DLR). It uses a pair of twin satellites to monitor changes in the Earth’s gravitational
field and study the Earth’s water resource geology and climate [44,45]. Due to the rough
spatial resolution, it is especially suitable for a study area larger than 200,000 km2 [36,46].

In this study, we chose the 0.25◦ × 0.25◦ GRACE RL06 product (Table 1) from the Center
for Space Research (CSR-RL06, http://www2.csr.utexas.edu/grace/RL06_mascons.html
(accessed on 27 November 2021)) to analyze the TWS. The mass concentration blocks have
superior performance compared with the standard spherical harmonic approach, which
can significantly increase the amplitude and spatial localization of the recovered TWSA
data [47]. Moreover, land and ocean signals can be better separated, and the data require no
additional striping or smoothing. To ensure a consistent spatial resolution, the data were

http://www2.csr.utexas.edu/grace/RL06_mascons.html
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resampled to 0.5◦ × 0.5◦. Data of the missing months were filled in by interpolation [40].
The TWSA and TWSC are considered Equations (1) and (2).

TWSAt = TWSt − TWS2004−2009 (1)

TWSCt =
(TWSAt+1−TWSAt−1)

2
(2)

where t denotes the month, the TWSA data are calculated by subtracting the average
TWS from 2004–2009 from the monthly TWS, and the TWSC is defined as the mean of the
variation in the TWS for every other month [48].

Table 1. Details of the multi-source products used in this study.

Product Name Datasets Spatial
Resolution

Temporal
Resolution

Temporal
Coverage Reference

GRACE CSR RL06 Macon TWS 0.25◦ Monthly 2003–2014 [47]

GLDAS NOAH (v2.0) SWE, SMS, CWS 0.5◦ Monthly 1980–2014 [27]

CRU TS v4.03 T, DTR, P, VAP, WET, CLD, FRS,
TMN, TMX, PET 0.5◦ Monthly 1980–2014 [49]

Discharge Q - Daily 1980–2014 [4]

MSWEP

Precipitation

0.1◦ Monthly 1980–2014 [50]

GPCC 0.5◦ Monthly 1980–2014 [51]

PERSIANN-CDR 0.25◦ Monthly 2003–2014 [21]

TRRM 0.25◦ Monthly 2003–2014 [52]

CRU 0.5◦ Monthly 1980–2014 [49]

GLEAM v3.3a/b

ET

0.25◦ Monthly 1980–2014,
2003–2014 [53]

PML-V2 0.05◦ 8 days 2003–2014 [54]

GLDAS NOAH/VIC/CLSM (v2.0) 1◦/0.5◦ Monthly 1980–2014 [35]

2.2.2. Global Land Data Assimilation System

NASA and the National Oceanic and Atmospheric Administration (NOAA) co-developed
the Global Land Data Assimilation System (GLDAS) [27]. The GLDAS Version 2.0 Noah
product was forced by the Princeton meteorological datasets (https://disc.gsfc.nasa.gov/
(accessed on 27 November 2021)) [55], and the resolution was resampled from 1◦ × 1◦ to
0.5◦ × 0.5◦ for GLDAS VIC and CLSM ET products. In this study, the Noah TWS is used for
comparison with the GRACE TWS. Moreover, the Noah TWS (including the soil moisture
storage (SMS, 0–10, 10–40, 40–100, 100–200 cm), snow water equivalent (SWE), and canopy
water storage (CWS)) is used as the input for the RF model (Table 1) [56].

2.2.3. Meteorological Data

Monthly meteorological data with 0.5◦ × 0.5◦ spatial resolution were collected from
the Climatic Research Unit gridded Time Series Version 4 (CRU) [49]. These data are
interpolated from global meteorological observation datasets and updated annually. The
CRU consists of 10 components: the mean 2 m temperature (TMP), diurnal 2 m temperature
range (DTR), precipitation rate (P), vapor pressure (VAP), wet days (WET), cloud cover
(CLD), frost days (FRS), minimum 2 m temperature (TMN), maximum 2 m temperature
(TMX), potential evapotranspiration (PET). Meteorological elements disturbing the TWS
are used as the forcing data in the RF model (Table 1) [57].

To constrain the error caused by uncertainty in the precipitation data, we obtained
five gridded precipitation products: the Multi-Source Weighted-Ensemble Precipitation
(MSWEP) [50], the Global Precipitation Climatology Centre V2018 (GPCC) [51], the Precip-

https://disc.gsfc.nasa.gov/
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itation Estimation from Remotely Sensed Information using Artificial Neural Networks
Climate Data Record (PERSIANN-CDR) [21], the Tropical Rainfall Measurement Mission
(TRMM) [52], and the CRU precipitation products. Moreover, we obtained six ET products
from the Global Land Evaporation Amsterdam Model v3.3a/b (GLEAM) [53], the Penman-
Monteith-Leuning Version 2 (PML-V2) [54,58], and the GLDAS ET products [35]. All the
precipitation and ET products were interpolated to 0.5◦ × 0.5◦ (Table 1).

2.2.4. Discharge Data

Daily discharge observations from 1980–2014 were collected from the Kratie hydrolog-
ical station in Cambodia (Table 1), which is provided by the Mekong River Commission
(MRC) [3,4]. To ensure consistency with each component in the water balance equation,
daily discharge data are aggregated into monthly discharge data.

3. Methods
3.1. Reconstruction of the TWSA Time Series with the RF Model

The RF model, proposed by Breiman [25], is an end-to-end machine learning algorithm
containing multiple decision trees; it has been widely used in geoscience [22]. The core
idea of the RF model is ensemble learning, and the basic unit is a decision tree. Ensemble
learning uses multiple learners and integrates learning methods through specific rules to
achieve better results than a single learner. The bootstrap aggregating (bagging) method
is essential for assembling weak regressors into strong regressors [23]. Random samples
are selected with replacement, and each sample is trained to build the model. The average
of these multiple models is considered the final result. One advantage of the RF model
is the important function of evaluating input characteristics [59]. Each decision tree has
one-third of the out-of-bag (OOB) datasets, which can be used for performance evaluation,
and the OOB error is calculated. By adding noise to the OOB datasets, a new OOB error
can be recalculated. Comparing the error of the datasets before and after adding noise, the
variable’s importance is ranked. The RF model is given by Equation (3), where the TWSA
time series is a function of its associated variables, including the SWE, SMS, and CWS from
GLDAS making up the TWSA and T, DTR, P, VAP, WET, CLD, FRS, TMN, TMX, PET from
CRU affecting the TWSA.

TWSA = f(SWE, SMS, CWS, T, DTR, P, VAP, WET, CLD, FRS, TMN, TMX, PET) (3)

We reconstruct the TWSA from the basin and grid scales following the flowchart in
Figure 2. The technical details are briefly introduced below:

(1) The GLDAS and CRU datasets are organized into an N ×M matrix, with N and M
as the number of variables and months. The prediction target is the TWSA.

(2) Applying the bootstrap method, a new set of k samples is randomly selected, and a
regression tree k is established. Each time, the data that are not pumped are called an OOB.

(3) The jth variable X(j) and its values are selected as the segmentation variables, and
the cut-off point, which defines the following two regions, is selected.

R1(j, s) =
{

x
∣∣xj ≤ s

}
, R2(j, s) =

{
x
∣∣xj > s

}
(4)

where the optimal parameters are determined by Equation (5).

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2
∑

xi∈R2(j,s)
(yi − c2)

2

 (5)

We can determine the optimal cut-off points from the input variable j as in Equation (6).

ĉ1 = ave(yi|xi ∈ R1(j, s)), ĉ2 = ave(yi|xi ∈ R2(j, s)) (6)
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The above division is repeated for the two regions until the stop condition is met, and
the least-two-times regression tree is obtained.

(4) The final step is to retrieve the ensemble average of all the individual regression
trees as the reconstructed TWSA.

To obtain a reliable and stable model, leave-one-year-out cross-validation is adopted [22].
All the forcing data from 2003 to 2014 except for one year are used for RF modeling, and the
excluded year is used for the model’s predictions. Rotation estimation of the TWSA year by
year achieves more convincing results (Figure 2c). Moreover, the most important variables
are gradually added to optimize the RF model by eliminating redundant variables through
the normalized root mean square error. Finally, the RF model is extended to the historical
period from 1980 to 2002.

Figure 2. The reconstruction of the TWSA data for the RF model. (a) Forcing datasets; (b) Schematic
of random forest algorithm; (c) Reconstruct TWSA using K-fold cross-validation.

3.2. Estimation Based on the Water Balance Method

The water balance equation (Equation (7)) was employed to calculate the monthly
discharge in the Lancang-Mekong River basin for 1980–2014 [26,29,30,35–37].

Q = P− ET− TWSC (7)
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where ET, P, TWSC, and Q are the monthly evapotranspiration (ET, mm), precipitation
(mm), terrestrial water storage change (mm), and discharge (mm), respectively. In this
study, P was calculated from the MSWEP, GPCC, PERSIANN-CDR, TRMM, and CRU
precipitation products, the ET was calculated using the GLEAM v3.3a/b, PML-V2, and
GLDAS NOAH/VIC/CLSM data, and the TWSC was calculated using the GRACE TWS
dataset. The observed discharge from the Kratie hydrological station is used for model
validation. Limited by the data availability, only three precipitation products (MSWEP,
GPCC, CRU) and four ET products (GLEAM v3.3a, GLDAS NOAH/VIC/CLSM) were
used in the water balance method for 1980–2002.

3.3. Uncertainty Analysis for Discharge Estimation

According to Equation (7) and the theory of uncertainty propagation, the uncertainty
mainly comes from the uncertainty in the precipitation, ET, and TWSC [26,37,57].

UR =
√

U2
P + U2

ET + U2
TWSC (8)

where UR, UP, UET, and UTWSC represent the uncertainty in the discharge, precipitation,
ET, and TWSC, respectively. Uncertainty is inevitable in multi-source datasets, and the
uncertainties in the precipitation and ET are qualitatively estimated using a 95% confidence
interval. Measurement and leakage errors exist in the GRACE TWS datasets [10]. Leak
errors were assumed to be negligible, and measurement errors can be approximately
calculated by the root mean square (RMS) of the TWS residuals, which were acquired from
seasonal trend decomposition using the loess method (STL) [57].

TWSt = Tt + St + Rt (9)

where Tt, St, and Rt represent the trend, seasonal, and residual parts of the TWS, respec-
tively. It is important to note that the residuals decomposed by the STL algorithm contain
sub-seasonal signals and noise.

3.4. Evaluation Metrics

The RF-built TWSA parameter for 2003–2014 is evaluated using the GRACE TWSA,
and the simulated discharge from 1980 to 2014 is evaluated using the observed discharge
from the Kratie hydrological station. In this study, a Taylor diagram is a useful tool
for qualitative analysis. Moreover, the correlation coefficient (R), Nash–Sutcliffe model
efficiency coefficient (NSE), and normalized root mean square error (NRMSE) are used for
model evaluation. R is used to measure the correlation between the predicted and observed
datasets. The NSE is calculated as the magnitude of the simulated dataset’s error variance,
which is a normalized statistic. The NRMSE is mainly used to evaluate the amplitude of
errors. These indicators are calculated as follows.

R =
∑m

i=1
(
x̂i − x̂i

)
(xi − xi)√

∑m
i=1 (x̂i − x̂i)

2
∑m

i=1 (xi − xi)
2

(10)

NSE = 1− ∑m
i=1 (x̂i − xi)

2

∑m
i=1 (xi − xi)

2 (11)

NRMSE =

√
∑m

i=1 (x̂i − xi)
2

∑m
i=1 xi

2 (12)

where m represents the total number of months in the datasets, xi and x̂i represent the
observed and predicted datasets, respectively, and xi and x̂i represent the mean values of
the observed and predicted datasets.
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4. Results
4.1. Evaluation of the RF-Built TWSA Time Series
4.1.1. Evaluation at the Grid Scale

From Equation (3) and Figure 2, we reconstruct the TWSA time series at the grid scale
for 2003–2014. Soil moisture storage is the most important variable for reconstructing the
TWSA time series (Figure 3a). The SMS, TMX, CLD, T, PET, CWS, and P can be an optimal
combination of the RF model (NRMSE = 0.49). Figure 3b presents a boxplot of the R, NSE,
and NRMSE between the GLDAS and RF models in the Lancang-Mekong River basin.
Comparing the minimum, median, third quartile, and maximum values of the boxplots,
the RF model is superior to the GLDAS model with higher R and NSE, and NRMSE values
indicating minor errors. Figure 4a,b intuitively shows the distribution of the scatter plot at
the grid scale, and the fitted line of the RF model is closer to 1:1 than that of the GLDAS
model. Moreover, the RF model is also superior to the GLDAS model in the Taylor diagram
(Figure 4c), with R, NSE, and NRMSE values of 0.83, 0.66, and 0.58 for the GLDAS model,
which are improved by the RF model to 0.90, 0.80, and 0.44, respectively.

Figure 3. Grid-scale analysis in the Lancang-Mekong River basin for 2003–2014. (a) Relative weight
of the variables in the RF models; the red line represents the model error. (b) Comparison between the
GLDAS and RF models; the left (right) panel shows the boxplots of R, NSE, and NRMSE calculated
from the GRACE TWSA and GLDAS TWSA time series (RF-built TWSA time series).

Figure 5 presents the magnitudes and spatial patterns of the R, NSE, and NRMSE
of the GLDAS and RF models for 2003–2014. The GLDAS and RF models exhibit similar
patterns, but the RF model is significantly superior to the GLDAS model. It is worth noting
that the simulation performance of the TWSA time series in the northern Qinghai–Tibet
Plateau region is poor. Compared with the GLDAS model, R increased from 0.80 to 0.90
for the RF model in the southern croplands. Figure 6 shows the cumulative distribution
functions (CDFs) of the R, NSE, and NRMSE and those of the RF model show a clear
improvement over those of the GLDAS model. Moreover, 56.7% of the grid cells show an
NSE larger than 0.8 in the RF model, while the percentage is 21.3% in the GLDAS model.
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Overall, the RF model shows remarkable performance at the grid scale. Furthermore, the
optimized model is extended to 1980–2002.

Figure 4. Performance comparison of the GRACE TWSA and simulated TWSA (GLDAS and RF-built TWSA) at the grid
scale for 2003–2014. The 1:1 line is blue, and the fitted line is red. (a) Scatter plot of the GLDAS TWSA and GRACE TWSA
time series; (b) Scatter plot of the RF-built TWSA and GRACE TWSA series; (c) Taylor diagram for comparing the GRACE
TWSA data and the simulated TWSA data.

Figure 5. Spatial distribution of the R, NSE, and NRMSE values calculated from the GRACE TWSA and simulated TWSA
(GLDAS and RF-built TWSA) for 2003–2014. (a–c) represent the analysis results of the GLDAS model, and (d–f) represent
the RF model.
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Figure 6. (a–c) represent the Cumulative distribution functions (CDFs) of the R, NSE, and NRMSE values derived from the
Figure 5. Red indicates the GLDAS model, and green indicates the RF model.

4.1.2. Evaluation at the Basin Scale

The basin-scale analysis provides a more comprehensive evaluation of the RF-built
TWSA time series. The reliability of the RF model has been verified at the grid scale, and
the grid-averaged TWSA time series can be used in Lancang-Mekong River basin analysis.
Figure 7 shows a comparison between the GRACE and the RF-built TWSA, as well as
the reconstructed historical TWSA. The Kfold cross-validation shows that they are well
adapted for every year during 2002–2014. The R between GRACE and the RF-built TWSA
ranges from 0.96 to 0.99, the NSE ranges from 0.82 to 0.98, and the NRMSE ranges from
0.15 to 0.41. The RF-built TWSA for each year is credible. Overall, the monthly TWSA
time series can be accurately depicted by the RF model, and the seasonal fluctuations are
consistent with those from the GRACE TWSA time series. Encouragingly, the historical
TWSA time series in the Lancang-Mekong River basin was also reconstructed for 1980–2002
(Figure 7).

Figure 7. Comparisons of the monthly TWSA data in the Lancang-Mekong River basin for 1980–2014 (red: GRACE TWSA,
green/blue: RF-built TWSA), and the shade represents the uncertainty in TWSA data.

Figure 8a,b suggest the superior performance of the RF model compared to the GLDAS
model for 2003–2014. Figure 8c clearly shows the advantages and disadvantages of the
RF and GLDAS models. The simulated TWSA that agrees well with the GRACE TWSA
lies closest to the red star and red arc. In contrast, the simulated TWSA time series from
the GLDAS model shifts away from the GRACE TWSA time series. Quantitative analysis
at the basin scale shows better simulation results by the RF model (R = 0.97, NSE = 0.93,
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NRMSE = 0.26) and less desirable results (R = 0.93, NSE = 0.81, NRMSE = 0.44) by the
GLDAS model. Although the GLDAS model has good correlation, the scatter plot exhibits
large deviations, while the RF-built TWSA time series is more convincing. Moreover, the
performance of the TWSA time series is significantly improved at the basin scale compared
to that at the grid scale.

Figure 8. Performance comparison of the GRACE TWSA and simulated TWSA (GLDAS and RF-built TWSA) at the basin
scale for 2003–2014. The 1:1 line is blue, and the fitted line is red. (a) Scatter plot of the GLDAS TWSA and GRACE TWSA
time series; (b) Scatter plot of the RF-built TWSA and GRACE TWSA series; (c) Taylor diagram for comparing the GRACE
TWSA data and the simulated TWSA data.

4.2. Estimated Discharge by the Water Balance Method

The discharge calculated by both the water balance method (Equation (7)) with the
GRACE TWSC (WB-GRACE) and the RF-based TWSC (WB-RF) achieves good agreement
with the field measurements (Figure 9a,b). The shades represent the uncertainty in the
precipitation and ET, and the range of the monthly average 95% confidence interval errors
is 14.64 mm. Figure 9c,d present the results of simulated discharge, and the scatter plots
obtained by the WB-GRACE and WB-RF are closer to the 1:1 line. The Taylor diagram
(Figure 9e) indicates that the discharge estimated by the WB-RF is superior to that esti-
mated by the WB-GRACE for 2003–2014, and the estimated discharge achieves similar
performance for 1980–2002.

Quantitative analysis shows that the discharge calculated from the WB-RF performed
better for 2003–2014 (R = 0.89, NSE = 0.78, NRMSE = 0.32), followed by that calculated
from the WB-GRACE (R = 0.86, NSE = 0.73, NRMSE = 0.35). The estimated discharge
from the WB-RF outperformed the discharge (2003–2014) calculated by the WB-GRACE;
thus, the reliability of the estimated discharge is demonstrated directly. The discharge
calculated by the WB-RF also achieved desirable performance for 1980–2002 (R = 0.84,
NSE = 0.70, NRMSE = 0.37), and the expandability of the estimated discharge was further
demonstrated. The estimated discharge for 1980–2002 achieved lower performance than
the discharge for 2003–2014, which was partially caused by the limited frequency of the
multi-source datasets, as only part of the P and ET are used for 1980–2002. Moreover, the
discharge calculated by the WB-RF in this research seems to have better metrics than the
results from Xie, et al. [26], with an NSE of 0.66.
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Figure 9. Comparison between the estimated discharge (WB-GRACE, WB-RF) and the observed discharge in the Lancang-
Mekong River basin during 1980–2014. (a,b) refer to monthly estimated discharge time series using WB-GRACE and WB-RF,
respectively, and the shades represent the uncertainty of discharge. (c,d) are the scatter plots of the estimated discharge and
observed discharge. The 1:1 line is blue, and the fitted lines are red (1980–2002) and green (2003–2014). (e) Taylor diagram
for comparing the estimated discharge and observed discharge.

5. Discussion
5.1. Reliability and Uncertainty in the RF Model

Although data-driven methods are less explanatory than physical methods, they can
achieve higher performance and execution efficiency [17]. With the enhancement of the
acquisition capacity of remote sensing data, the era of big data has arrived. Moreover,
with the rapid interdisciplinary development, the application of machine learning and
data mining in the field of meteorology and hydrology is increasing [60]. Compared with
physical methods, data-driven methods can achieve faster calculation speed and higher
precision [9]. Furthermore, more advanced machine learning algorithms, such as recursive
neural networks, should be explored in the future.

Unfortunately, there are limited datasets available. Only the SWE, SMS, and CWS in
the GLDAS model are adopted, and the CRU meteorological forcing data are also used
to improve the performance of the model [9,57]. Figure 5 shows that the grid cells in the
northern Qinghai-Tibet Plateau region, with lower performance in terms of an increasing
glacier melt in the Lancang-Mekong River basin, are not taken into consideration [61].
The performance of machine learning methods is largely influenced by the model’s input
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variables. In the future, we will fully account for other explanatory variables affecting the
TWSA, such as surface water storage and groundwater storage. The discharge estimated
by the WB-RF in Figure 9 is well illustrated, with NSE exceeding 0.7, and the seasonal
frequency is well captured. Compared with other parts, there is a significant discrepancy in
peak discharge, which leads to a decrease in the prediction accuracy. It is suspected that the
RF model does not contain sequence information, and effective integration of multi-year
information could further improve the prediction accuracy.

5.2. Uncertainties in the Water Balance Equation

Figure 10a–k present the magnitudes and spatial patterns of precipitation and ET
products. Precipitation and ET present similar spatial distributions, decreasing from the
southeast to the northwest. Figure 10l,m present the differences among multi-source
products, and the fluctuation in the multi-source ET is larger than that of the precipitation
products. The ET from the GLDAS-CLSM data is the largest, while that from the GLDAS-
VIC data is the smallest. Figure 11a,b qualitatively depict the 95% confidence interval
error of precipitation and ET, respectively. The uncertainty in the precipitation is 16.57 mm
and that in the ET is higher than that in the precipitation at 27.01 mm. In addition, the
uncertainty in the TWSC can be calculated by Equation (9), which reaches 36.05 mm.

Figure 10. The spatial and temporal distribution of precipitation and ET products. (a–e) correspond to the spatial distribution
of the CRU, GPCC, MSWEP, PERSIANN, and TRMM precipitation products, respectively; (f–k) correspond to the spatial
distribution of the GLDAS-CLSM, GLDAS-Noah, GLDAS-VIC, GLEAM-V3A, GLEAM-V3B, and PML-V2 ET products,
respectively; (l) corresponds to the monthly precipitation time series from (a–e); (m) corresponds to the monthly ET time
series from (f–k). Limited by the data availability, only three precipitation products (MSWEP, GPCC, CRU) and four ET
products (GLEAM v3.3a, GLDAS NOAH/VIC/CLSM) were used in the water balance method for 1980–2002.



Remote Sens. 2021, 13, 4831 14 of 18

Figure 12 quantitatively presents the effects of precipitation and ET on the estimated
discharge during 2003–2014, which are visually expressed in the heatmap. The estimation of
discharge from the WB-RF (R = 0.74–0.89, NSE = 0.26– 0.75, NRMSE = 0.34–0.59) was slightly
superior to that from the WB-GRACE (R = 0.66–0.86, NSE = 0.23–0.70, NRMSE = 0.37–0.60).
For different combinations of precipitation and ET, the results vary greatly. In this study,
five precipitation products and six ET products are used to reduce the uncertainty caused
by a single data product [26,29,30]. Moreover, the uncertainty in the TWSC caused by
leakage and measurement errors is calculated by Equation (9). The rigorous uncertainty
in the GRACE TWS is still ongoing, with an average uncertainty value of 2 cm [11]. The
coarser spatial resolution of GRACE TWSA introduces greater errors into the water balance
equation, and machine learning is a valuable tool for the assimilation of observational
and modeled information to achieve higher spatial and temporal resolutions for GRACE
TWSA [9,62], thus promoting the application of the GRACE satellite.

Figure 11. Monthly estimated discharge using the WB-RF. (a,b) correspond to the uncertainty in the
precipitation and ET components in the water balance method, respectively.

Figure 12. The quantitative performance of the multi-source precipitation and ET products on the es-
timated discharge. (a,b) refer to the estimated discharge using WB-GRACE and WB-RF, respectively.
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5.3. Outlook of the Data-Driven Method

With rapid interdisciplinary development, the application of machine learning and
data mining in the field of meteorology and hydrology is increasing [60]. Although data-
driven methods are less explanatory than physical methods, they can achieve higher
performance and execution efficiency [9,17]. With the enhancement of the acquisition
capacity of remote sensing data, the era of big data has arrived. Combining physical
process models with data-based methods will guide machine learning in the future [63].
Although the RF model has performed well in TWSA simulation, it can be improved in the
following aspects. A more persuasive physical process (characteristics of snowmelt and
the effect of human activity such as reservoir storage changes, etc.) should be considered
in the data-driven approach. Furthermore, the RF is an ensemble learning method without
consideration of temporal correlation. More advanced machine learning algorithms, such
as recursive neural networks, should be explored in the future.

6. Conclusions

The TWSC is an indispensable component in the estimated discharge at the sub-annual
level. The missing historical GRACE data limit its further application, and a method to
fill in the gaps is urgently needed. To help address the limitations, the TWSA time series
is reconstructed by the RF model based on GLDAS and CRU data, and the performance
of this model is optimized through the NRMSE. Furthermore, the water balance method
is employed to estimate discharge in the Lancang-Mekong River basin, combining the
average precipitation (MSWEP, GPCC, PERSIANN-CDR, TRMM and CRU), ET (GLEAM
v3.3a/b, PML-V2 and GLDAS NOAH/VIC/CLSM), and RF-built TWSA data. The primary
conclusions are summarized as follows.

In general, the RF model can effectively construct the monthly TWSA time series and
fill in missing historical data. The performance of the TWSA time series constructed by the
RF model is better than that of the GLDAS TWSA at grid and basinscales. The R, NSE, and
NRMSE values are 0.90, 0.80, and 0.44, respectively, for the RF model at the grid scale and
0.97, 0.93, and 0.26, respectively, at the basin scale for 2003–2014. Better performance at the
basin scale is caused by wide spatial coverage. The RF-built TWSA time series achieves low
performance in the northern Qinghai–Tibet Plateau region without considering the snow
melting process. Moreover, the historical GRACE TWSA time series from 1980–2002 was
effectively reconstructed. The GLDAS land surface model data and CRU meteorological
data have greatly enriched the hydrological database, and the RF model can effectively
integrate and utilize effective information to reconstruct the GRACE time series. As an
ensemble learning method in machine learning, the RF model has the potential to explore
the complex relationship between big data in the hydrological field.

The RF-built TWSA time series, combined with the water balance method, can be
used to successfully estimate discharge in the Lancang-Mekong River basin. Overall, the
discharge calculated by the WB-RF agrees well with the observed discharge (R = 0.89,
NSE = 0.78, NRMSE = 0.32). In addition, desirable results are also obtained for 1980–2002
(R = 0.84, NSE = 0.70, NRMSE = 0.37). The uncertainty in the estimated discharge is
quantitatively assessed, and the average uncertainties of the precipitation, ET, and TWSC
are 16.57, 27.01, and 36.05 mm, respectively. Surface discharge is an important part of
the water cycle, and the estimation of discharge is difficult in areas without hydrological
stations. This study combines the water balance equation and multi-source remote sensing
products, which confirms the reliability of the estimated discharge and provides guidance
for sustainable water resource management in the Lancang-Mekong River basin. For
complex terrains, harsh climates, or underdeveloped areas, this method can be used as an
effective discharge monitoring method.
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