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Abstract: Based on deep learning, this paper proposes a new hybrid neural network model, a
recurrent deep neural network using a feature attention mechanism (FA-RDN) for GNSS-R global
sea surface wind speed retrieval. FA-RDN can process data from the Cyclone Global Navigation
Satellite System (CYGNSS) satellite mission, including characteristics of the signal, spatio-temporal,
geometry, and instrument. FA-RDN can receive data extended in temporal dimension and mine the
temporal correlation information of features through the long-short term memory (LSTM) neural
network layer. A feature attention mechanism is also added to improve the model’s computational
efficiency. To evaluate the model performance, we designed comparison and validation experiments
for the retrieval accuracy, enhancement effect, and stability of FA-RDN by comparing the evaluation
criteria results. The results show that the wind speed retrieval root mean square error (RMSE) of
the FA-RDN model can reach 1.45 m/s, 10.38%, 6.58%, 13.28%, 17.89%, 20.26%, and 23.14% higher
than that of Backpropagation Neural Network (BPNN), Recurrent Neural Network (RNN), Artificial
Neural Network (ANN), Random Forests (RF), eXtreme Gradient Boosting (XGBoost), and Support
Vector Regression (SVR), respectively, confirming the feasibility and effectiveness of the designed
method. At the same time, the designed model has better stability and applicability, serving as a new
research idea of data mining and feature selection, as well as a reference model for GNSS-R-based
sea surface wind speed retrieval.

Keywords: GNSS-R; sea surface wind speed retrieval; deep learning; long-short term memory
(LSTM) neural network; attention mechanism

1. Introduction

Global Navigation Satellite System Reflectometry (GNSS-R) technology is a relatively
new remote sensing technology. Using navigation satellites as the transmitting source, it re-
ceives and processes the reflected signals to obtain corresponding geophysical information.

The concept of this technology was first proposed by Martin-Neria in 1993 [1]. Auber
discovered in 1994 that the GPS scattering signal, which was usually regarded as noise
elimination, could be received and detected [2]. In 1997, NASA scientists found that there
was a certain relationship between the reflecting surface roughness and the characteristics
of the correlation function of the emission signal through experiments, from which the sea
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surface information could be retrieved [3]. Since then, this technology has been referred to
as GNSS-R, attracting broad attention and developing rapidly.

In October 2003, the British space center launched the United Kingdom-Disaster
Monitoring Constellation (UK-DMC) to verify the principle of GNSS-R in orbit. Different
studies showed that GPS reflections over the sea surface, sea ice, and land could be
collected. These results proved the feasibility of spaceborne GNSS-R [4,5]. In July 2014,
the British Surrey company launched the Technology Demonstration Satellite-1 (TDS-1),
aiming to carry out on-orbit experimental verification of SGR-ReSI payload developed by
SSTL (Surrey satellite technology company) before operational application. This satellite
acquired a large number of time-delay Doppler images of reflected signals, which provided
large amounts of data support for various research [6–8]. NASA launched the Cyclone
Global Navigation Satellite System (CYGNSS) mission at the end of 2016. It was a GNSS-R
constellation composed of eight microsatellites in synchronous orbit. It provided higher
spatiotemporal sampling and showed great potential in retrieving sea surface wind speed
and tropical cyclone prediction [9,10]. Nowadays, GNSS-R application research has been
widely carried out in various fields, such as sea breeze retrieval [11], sea ice detection [12],
soil moisture (SM) [13], desert surface roughness [14], and biomass retrieval [15].

GNSS-R first to be experimentally validated is in the marine field and is expected to
achieve operational applications. Moreover, it is relatively mature in the measurement
of sea surface wind field. Compared with traditional wind measurement methods, such
as microwave scatterometers and synthetic aperture radars [16,17] GNSS-R can use the
electromagnetic wave signals emitted by existing navigation systems and have abundant
signal sources. Moreover, it has the advantages of all-weather, all-day time, global coverage,
high spatial and temporal resolution, and less susceptibility to climatic conditions such as
clouds and rain.

Most of the traditional GNSS-R methods for retrieval of sea surface wind speed are
developed by extracting one or two features from the delay-Doppler map (DDM), such
as normalized bistatic radar cross-section (NBRCS) or the leading edge of the slope (LES).
Then, the functional relationship between one or two physical quantities and sea surface
wind speed is established through vast amounts of measured data. This method is often
referred to the geophysical model function (GMF) method [18]. However, the GMF method
usually selects fewer feature parameters, making the constructed function model relatively
simple. It will lead to limited retrieval accuracy and has the shortcomings of ignoring
factors that may impact the retrieval result, such as the instrument-related properties of
GNSS and other features.

With the development of computer algorithms, improvement of computer hardware
storage and computing capabilities, machine learning has been widely used in computer
vision, natural language processing, and speech recognition. Preliminary attempts have
been made in some applications in the field of remote sensing. For example, Frate et al.
used a multilayer perceptron (MLP) to distinguish artificial coverage areas in urban ar-
eas with high-resolution satellite remote sensing images [19]. M. Chi et al. applied the
Support Vector Machine (SVM) and the genetic algorithm performed feature selection on
hyperspectral data [20]. O. Eroglu et al. used three commonly used machine learning
algorithms, Artificial Neural Network (ANN), Random Forest (RF), and SVM, to retrieve
SM by GNSS-R data [21]. However, the use of machine learning in GNSS-R to invert the sea
surface wind speed is still in the preliminary research and exploration stage. J. Reynolds
and M. Asgarimehr used ANN to retrieve sea surface wind speed by TDS-1 satellite data
and CYGNSS data, respectively. Compared with the geophysical model, the retrieval
accuracy has been improved to a certain extent [22,23]. With improved retrieval accuracy
requirements and the need to simplify data feature extraction, some researchers began to
use deep learning to retrieve wind speed. Y. Liu et al. built a multi-hidden-layer neural
network with deeper network layers to invert wind speed by CYGNSS data and obtained
more accurate results compared with SVM and RF [24]. In addition, X. Chu et al. had also
explored wind speed retrieval with TDS-1 data using deep learning [25].
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Machine learning is a data-driven science. It uses algorithms to parse data and mine
the rules between input data and target to accomplish different tasks. Deep learning is
one of the most critical research branches of machine learning. Its network has a deeper
number of layers and a more complex structure with better feature learning ability. Different
network models can be designed and built according to different task requirements. For
example, the convolutional neural network is commonly used to process image recognition
or classification tasks, while the Recurrent Neural Network (RNN) is often used in Natural
Language Processing (NLP). This paper builds a new hybrid neural network model to
retrieve the global sea surface wind speed through deep learning. We select CYGNSS
feature data and ECWMF wind speeds as the training and testing data for the model. A
feature analysis experiment is also designed to summarize the effect of different types
of input feature schemes on the wind speed retrieval and demonstrate the scientific and
effectiveness of the feature selection. Through the experiments of retrieval performance
comparison and effectiveness analysis, we demonstrate the retrieval accuracy of the model.

The contributions of this paper are as follows:

1. It provides a new feature reference for GNSS-R sea surface wind speed retrieval
through feature engineering;

2. A new network structure is devised to extract the feature time dimension information
in GNSS-R sea surface wind speed retrieval for the first time;

3. The feature attention mechanism is added to implement attention weighting factors
from the dimensions of feature types.

FA-RDN has preferable retrieval capability with relatively high precision and a low
dispersion degree of retrieval results at high wind speed. Therefore, it can be used as a new
model reference for GNSS-R global sea surface wind speed retrieval.

The remainder of the paper is organized as follows: Section 2 presents the data used
in this paper, including original data collection and data pre-processing. Section 3 details
the model designed in this paper, including the structure of the model, the model building
process, and parameter details. Section 4 introduces the evaluation criteria, comparison
models, and experimental design. In Section 5, the experimental results are given and
analyzed. Sections 6 and 7 discuss and summarize the article, respectively, and provide
new ideas for future research.

2. Data
2.1. Data Acquisition

The original data is the L1 band data of the CYGNSS, which consists of eight sub-
satellites that can work simultaneously to receive GPS signals reflected from the sea surface
with latitude coverage of 38◦N to 38◦S, and with a spatial resolution of 25 km × 25 km.
Figure 1 shows the distribution of specular point trajectories of CYGNSS on 7 August 2019, in
which Figure 1A shows the specular point tracks of the CYGNSS 01 satellite, and Figure 1B
shows the specular point tracks of 8 CYGNSS satellites. It is evident in Figure 1 that the
data type is time series trajectory data, and the data is correlated in the time dimension.

The data spanning from 1 August 2019 to 30 August 2019, are selected as the original
data set for training and testing the model. Furthermore, the feature selection refers to the
characteristic parameters used in the sea surface wind speed retrieval by the GMF method,
the error analysis, and the calibration experience of GNSS-R data. A total of 13 features
involving signal attribute, instrument attribute, spatio-temporal attribute and geometry
attribute are selected [26,27], as shown in Table 1.

Besides, the European Centre for Medium-Range Weather Forecasts (ECMWF) reanal-
ysis data from the Copernicus Climate Change Service (C3S) climate data repository, which
provides global wind speed with a spatio-temporal resolution of 12.5 km × 12.5 km and
one hour, are selected as the real sea surface wind speed.
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Figure 1. Distribution of specular point trajectories of CYGNSS on August 7, 2019. (A)Specular point tracks of the CYGNSS 
01 satellite. (B)Specular point tracks of 8 CYGNSS satellites. 
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Figure 1. Distribution of specular point trajectories of CYGNSS on 7 August 2019. (A)Specular point tracks of the CYGNSS
01 satellite. (B) Specular point tracks of 8 CYGNSS satellites.

Table 1. List of selected features.

NO Name Type

1 SNR Signal attribute
2 NBRCS Signal attribute
3 LES Signal attribute
4 SP_gain Instrument attribute
5 PRN Instrument attribute
6 SP_Lon Spatio-temporal attribute
7 SP_Lat Spatio-temporal attribute
8 SP_Time Spatio-temporal attribute
9 SP_Angle Geometry attribute
10 SP_AZ_orbit Geometry attribute
11 SP_AZ_body Geometry attribute
12 SP_Theta_orbit Geometry attribute
13 SP_Theta_body Geometry attribute

2.2. Data Pre-Processing

To ensure the data quality, the data are quality controlled and screened. The CYGNSS
feature data and wind speed with a value of NAN are excluded, the CYGNSS feature
data are screened according to the quality control (QC) tags, which are used to filter the
data by setting different QC bits, such as spacecraft attitude error, specular point position,
data transmission and calibration error, and noise interference or abnormal data, and then
the CYGNSS feature data are matched with the ECWMF wind speed data in time and
space based on bilinear interpolation. Figure 2 shows the histogram and kernel density
estimation of wind speed distribution after spatio-temporal matching. From Figure 2, we
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can see that the wind speed is mainly in the range of 3~9 m/s, and the number of low and
high wind speeds is less compared to the medium wind speed.

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 23 
 

 

Table 1. List of selected features. 

NO Name Type 
1 SNR Signal attribute 
2 NBRCS Signal attribute 
3 LES Signal attribute 
4 SP_gain Instrument attribute 
5 PRN Instrument attribute 
6 SP_Lon  Spatio-temporal attribute 
7 SP_Lat Spatio-temporal attribute 
8 SP_Time Spatio-temporal attribute 
9 SP_Angle Geometry attribute 

10 SP_AZ_orbit Geometry attribute 
11 SP_AZ_body Geometry attribute 
12 SP_Theta_orbit Geometry attribute 
13 SP_Theta_body Geometry attribute 

Besides, the European Centre for Medium-Range Weather Forecasts (ECMWF) rea-
nalysis data from the Copernicus Climate Change Service (C3S) climate data repository, 
which provides global wind speed with a spatio-temporal resolution of 12.5 km × 12.5 km 
and one hour, are selected as the real sea surface wind speed. 

2.2. Data Pre-processing 
To ensure the data quality, the data are quality controlled and screened. The CYGNSS 

feature data and wind speed with a value of NAN are excluded, the CYGNSS feature data 
are screened according to the quality control (QC) tags, which are used to filter the data 
by setting different QC bits, such as spacecraft attitude error, specular point position, data 
transmission and calibration error, and noise interference or abnormal data, and then the 
CYGNSS feature data are matched with the ECWMF wind speed data in time and space 
based on bilinear interpolation. Figure 2 shows the histogram and kernel density estima-
tion of wind speed distribution after spatio-temporal matching. From Figure 2, we can see 
that the wind speed is mainly in the range of 3 ~ 9m/s, and the number of low and high 
wind speeds is less compared to the medium wind speed. 

 
Figure 2. Wind speed quantity distribution. Figure 2. Wind speed quantity distribution.

Due to the difference in dimension and order of magnitude between feature data, the
feature data need to be normalized. The calculation formula is as follows:

h′i =
hi − hmin

hmax − hmin
(1)

By scaling the feature data value to the interval [0, 1], the effects of dimension and
order of magnitude are eliminated. It also improves the computational efficiency of the
model and accelerates the convergence speed of the model.

3. Method
3.1. Objective

The neural network can be regarded as a complex nonlinear system, which solves
regression or classification problems by fitting the nonlinear relationship between input
data and the output. GNSS-R sea surface wind speed retrieval is classified as a regression
problem. At present, most of the wind speed retrieval network models or GMF models can
be expressed as follows:

yt = M(xt) (2)

M is the designed network model or function model, yt is the wind speed value at
time t, xt =

[
x1

t , x2
t , x3

t , . . . , xm
t
]

is the feature data input to the model at that time, and m is
the number of feature types.

In this article, we feature of the current moment and plan to mine the historical
information of the features. Therefore, the input data of the model are represented by the
following matrix:

Xt =

x1
t1

x2
t1
· · · xm

t1
x1

t2
x2

t2
· · · xm

t2
· · · · · · · · ·
x1

tw
x2

tw
· · · xm

tw

∈ Rw×m (3)

w is the time window, that is, the step length of historical information. Xt is the input data
matrix at this moment, where xi =

[
xi

t1
, xi

t2
, xi

t3
, . . . , xi

tw

]
is the expansion of the i-th feature



Remote Sens. 2021, 13, 4820 6 of 21

in the time dimension. The number of feature types is determined by feature engineering, as
described in Section 4.3 of the article.

Hence, to satisfy the purpose of mining historical information, we add the LSTM
network layer. Besides, to speed up model training efficiency and improve model retrieval
accuracy, we add the feature attention mechanism by shifting the weight factor mining
from the temporal dimension to the feature type dimension.

3.2. Model and Algorithm

The model consists of five parts: the input layer, the LSTM layer, the feature attention
mechanism module, the fully connected layers, and the output layer. The overall structure
of the model is shown in Figure 3.
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Figure 3. Structure of the FA-RDN model.

The input layer is utilized to receive the input feature data. LSTM layer realizes time
correlation capture of input data. The feature attention mechanism layer calculates the
contribution of each feature to the wind speed retrieval and outputs the corresponding
weighting factor, which is used for weighting. Then the weighted data is calculated through
the fully connected layer, and finally, the wind speed calculated by the model is output
through the output layer.

3.2.1. Lstm Layer

The LSTM neural network is a variant of RNN, proposed by Hochreiter and Schmid-
huber [28], which solves the problem of vanishing gradient as well as gradient explosion
that occurs in RNN [29].

LSTM adjusts the degree of retention, reception, and deletion of node information
through gates, including forget gate, input gate, and output gate. The node structure is
shown in Figure 4.
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The calculation formulas of forget gate, input gate, and output gate are as follows:

ft = σ
(

W f [ht−1, xt] + b f

)
(4)

it = σ(Wi[ht−1, xt] + bi) (5)

ot = σ(Wo[ht−1, xt] + bo) (6)

Among them, W and b are the weight matrix and bias of the gating mechanism,
respectively, ht−1 and xt are the output of the LSTM node at the previous moment and
the input feature data at the current moment, respectively. σ is the sigmoid activation
function that scales the output to the [0, 1] interval as the control weights. Each gating
mechanism realizes the control of the degree of information forgetting, receiving, and
output by outputting the control weight of the current node information.

Subsequently, the cell state is updated by short-term memory and gating weight. It is
also referred to as long-term memory. The formula for calculating short-term memory C̃t is
as follows:

C̃t = tanh(Wc[ht−1, xt] + bc) (7)

where Wc and bc are the weight matrix and bias term of short-term memory, respectively,
and tanh is the tanh activation function. The current cell state is then updated with the
following calculation equation.

Ct = Ct−1 · ft + C̃t · it (8)

The output of the LSTM layer at the current moment is calculated as follows:

ht = tanh(Ct) · ot (9)

After that, Ct and ht will be passed on to the next moment. LSTM achieves sequence
learning by transferring data information in the temporal dimension through cell state and
short-term memory.
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3.2.2. Attention Mechanism

The attention mechanism is often applied to deal with NLP problems, such as machine
translation, public opinion monitoring, and automatic summarization. The idea is derived
from the selective attention mechanism of the human brain, which focuses the gaze on key
characteristic regions to enhance the efficiency of information utilization [30]. In the NLP
problem, we calculate the attention distribution between the current and previous words
by the attention mechanism. It can be seen as performing correlation calculations in the
time dimension.

The weight is calculated by designing a scoring function score, which calculates
the correlation between the current state and the historical state. Typically used scoring
functions include the dot product, cosine similarity, and the introduction of an additional
neural network layer. In this paper, we use the neural network layer as the scoring function,
and the calculation formula is as follows:

Scoret = tanh(Whi + Uht + b) (10)

where hi is the historical state, W and U are the weights of this network layer, and b is the
bias. Then, using the softmax function calculates the scoring result, and the computed result
is the weight corresponding to the historical state and the current state. The calculation
formula is as follows:

ai =
exp(Scorei)

∑m
j=1 exp(Scorej)

(11)

However, in the face of regression problems, this weight calculation method is suitable
for time-dimensional attention mining that contains only a single feature. In the GNSS-
R sea surface wind speed retrieval problem, the input contains multiple characteristic
variables. Therefore, we can transfer the attention calculation to the feature type dimension
by improving the scoring function. The calculation formula is as follows:

Scorei = tanh(Wvi + Uhi
tw + b) (12)

where, vi = [hi
t1

, hi
t2

, ∆, hi
tw−1

], then the weight factor of the ith feature can be obtained after
calculation by softmax function.

3.3. Realization

The implementation of the model includes three phases: data processing, training period
of the model, and testing period of the model. The overall process is shown in Figure 5.

The data processing stage provides the dataset used for training and testing the
model. The original data collection, data spatio-temporal matching, and quality control
are described in Section 2 of the article. Then the time series data are transformed into
supervised learning data required for training and testing the network model, Dataset =
{(X1, y1), (X2, y2), . . . (Xn, yn)}, and n ∈ R is the total amount of data. The data are divided
6:4 into train data set and test data set used in the training and testing phases of the model,
respectively. Furthermore, 20% of the data in the training data are reserved as a validation
data set, which are utilized to verify and analyze the model after each parameter update to
prevent the model from overfitting.

The training process of the neural network is briefly described as updating the weights
and biases of each layer of the model to minimize the difference between the output result
and the real value. This quantification process is usually implemented by defining a loss
function. The loss function selected in proposed model is the same as the one used in
previous studies, which is the mean square error (MSE) function [25].
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The training process consists of two stages, forward propagation and backward
propagation. First, the model parameters, namely the weights and biases of each layer,
are initialized randomly [24]. Subsequently, we select a random portion of training data
and obtains the wind speed through the forward propagation process. Then a backward
propagation process calculates the gradient of the loss function concerning each parameter.
The parameters are updated slightly along the gradient direction, and the cycle continues
until the optimal model is trained. This model training method is called batch training.

Finally, we evaluate the performance of the trained model by test data. Besides,
we compare it with frequently used regression models to validate the designed model’s
effectiveness. The specific experiments and their results are shown in Section 4.

In addition, the other hyperparameters of the FA-RDN model are shown in Table 2.
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Table 2. Hyperparameters configuration of FA-RDN model.

Hyperparameter Size/Type Definition/Application

Batch size 64
The size of the dataset that uses part of

the training data to complete the training
once and update the network weights.

Activation function f (x) = x
1+|x|

It is used for model computation,
providing nonlinearity to the model, and

improving the expressiveness of
the network.

Loss function MSE

The way of measuring the difference
between the computed output of the

network and the true value in the
training process.

Optimizer Adam
The way to calculate the optimal weights
as well as bias of neural network through

loss function.

Epoch
In this article, it is

determined by early
termination.

The number of a complete traversal of
the entire train dataset at training time.

4. Experiment
4.1. Evaluation Criteria

To evaluate the wind speed retrieval results of the FA-RDN model, three evaluation
criteria, MSE, root mean square error (RMSE), and mean absolute error (MAE), are used in
this paper. The model which obtains the lower results of the above three evaluation criteria
means that model’s output is close to the actual wind speed.

MSE =
1
m

m

∑
i=1

(
yi − y′i

)2 (13)

RMSE =

√
1
m

m

∑
i=1

(
yi − y′i

)2 (14)

MAE =
1
m

m

∑
i=1

∣∣(yi − y′i
)∣∣ (15)

where y is the actual wind speed, y′ is the wind speed calculated by the model, and m is
the total number of test data.

Aiming to represent the enhancement effect of the FA-RDN model more visually,
the percentage improvement compared to the comparison model is presented according
to MSE, RMSE, and MAE. That is, the percent improvement in MSE (PMSE), the percent
improvement in RMSE (PRMSE), and the percent improvement in MAE (PMAE), the compar-
ison models used are described in Section 4.2, and each percent improvement is calculated
as follows:

PMSE =
MSE1 −MSE2

MSE1
× 100% (16)

PRMSE =
RMSE1 − RMSE2

RMSE1
× 100% (17)

PMAE =
MAE1 −MAE2

MAE1
× 100% (18)

MSE1, RMSE1 and MAE1 are calculated from the retrieval results of the comparison
model, while MSE2, RMSE2 and MAE2 are from the FA-RDN model.
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In addition, to intuitively reflect the distribution of the retrieval error, we introduce
the cumulative distribution function (CDF) of the absolute error (AE) between the model
retrieval wind speed and the actual wind speed. The AE calculation formula is as follows:

AEi =
∣∣yi − y′i

∣∣ (19)

Then the CDF of AE is calculated as follows:

FAE(x) = P(AE ≤ x) (20)

4.2. Comparison Model

In this paper, seven comparison models are used to compare and validate the retrieval
performance of the FA-RDN model, including four neural network models, Back Propaga-
tion Neural Network (BPNN), RNN, LSTM, and ANN, and three machine learning models,
RF, eXtreme Gradient Boosting (XGBoost), and Support Vector Regression (SVR).

BPNN, RNN, and LSTM are commonly used neural network models in regression
problems. At the same time, LSTM is also used for comparative verification analysis of the
effectiveness of attention mechanisms. All models are implemented in Python and built on
the Keras platform. The parameters of each neural network model are shown in Table 3.

Table 3. Comparison model’s parameters.

Model Parameter Value

BPNN Hidden neurons
Number of hidden layers

{32,16,16}
{3}

RNN
Hidden neurons

Number of RNN layers
Number of FC layers

{13,16,16,8}
{1}
{3}

LSTM
Hidden neurons

Number of LSTM layers
Number of FC layers

{13,16,16,8}
{1}
{3}

ANN Hidden neurons
Number of hidden layers

{16,16}
{2}

BPNN: BPNN trains the model using an error backpropagation algorithm based on the
gradient descent algorithm and obtains the final model by minimizing the MSE between
the model output and the actual value. It is now one of the most used regression models.
The BPNN usually consists of an input layer, several hidden layers, and an output layer. In
this paper, a BPNN consisting of three hidden layers is built.

RNN: RNN is one of the common regression models, that can model sequence data
and obtain the time correlation. The model’s training also uses the backpropagation
algorithm.

LSTM: The LSTM is part of the FA-RDN model. See Section 3.1 for a detailed descrip-
tion of the LSTM. The network model architecture and parameters of the LSTM are the
same as those of the corresponding components in the FA-RDN, and the LSTM consists of
an input layer, LSTM network layer, fully connected layers, and an output layer.

ANN: ANN is a feedforward neural network designed by the literature [22]. Since
that paper also studies the GNSS-R-based global sea surface wind speed retrieval problem
and selects the feature data from CYGNSS, this model is selected as one of the benchmark
models for comparative validation. This model consists of an input layer, two hidden
layers, and an output layer with 16 neurons in the hidden layers.

RF: Ensemble learning is a frequently used method in machine learning, which im-
proves classification or regression performance by integrating multiple models [31]. RF is
an ensemble learning algorithm based on Decision Tree [32], which has a wide range of
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applications in classification or regression problems, such as classifying land types based
on remote sensing information, estimating SM, and predicting solar radiation [33–35].

XGBoost: XGBoost, an ensemble learning method based on tree models, was proposed
in 2016 [36]. The basic idea is to combine multiple tree models through continuous iteration
to obtain a model with higher accuracy eventually. This method has been used in solving
both regression and classification problems [37,38].

SVR: SVR is one of the essential methods in machine learning. It is an applied branch
of SVM, specifically used to solve regression problems [39]. The idea of SVR is to search for
the optimal hyperplane such that the minimum distance to the hyperplane is obtained for
all elements in the original dataset.

4.3. Feature Engineering

The wide variety of input features is one of the advantages of neural networks compare
with GMF methods. The scientific and practical features are critical factors affecting the
accuracy of neural network retrieval, so assessing the contribution of different types of
features to the retrieval results and selecting the optimal combination of features through
feature engineering are essential steps in retrieving sea surface wind speed.

Five data combination schemes are constructed to discuss the effects of spatio-temporal
geographic information, spacecraft systems, and attitude information, respectively. All
features and corresponding types are listed in Table 1. Each scheme is shown in Table 4.
Scheme 1 is the benchmark dataset. The GMF method often selects one or more of SNR,
BNRES, and LES as input feature data. For example, NBRCE and LES are chosen in the
article [40], and the article [41] usages SNR. Therefore, these three features, SNR, BNRES,
and LES, are taken as the benchmark dataset in this article. Scheme 2 discusses the impact
of spatiotemporal geographic information: the longitude, latitude, and time of the specular
point. Scheme 3 is the effect of the spacecraft system, including antenna gain and PRN.
Scheme 4 investigates the influence of spacecraft attitude. We choose the angle between
the transmitter to specular point ray and the surface normal and the azimuth angle and
theta angle of the specular point to receiver vector in the receiver’s orbit reference frame
and body reference frame, respectively.

Table 4. The scheme of feature division.

Scheme Dataset Features

1 Dataset 1 SNR, BNRES, and LES (benchmark dataset)

2
Dataset 2 Benchmark dataset + spatio-temporal attribute
Dataset 3 All features − spatio-temporal attribute

3
Dataset 4 Benchmark dataset + instrument attribute
Dataset 5 All features − instrument attribute

4
Dataset 6 Benchmark dataset + geometry attribute
Dataset 7 All features − geometry attribute

5 Dataset 8 All features

The retrieval results and analysis of the FA-RDN model under each dataset are pre-
sented in Section 5.2.1. Through the feature analysis results, it is possible to analyze the
degree of influence of each type of feature on the retrieval result.

4.4. Experimental Design

Comparative experiments and verification experiments are designed to verify the
improvement of the FA-RDN model’s retrieval accuracy, evaluate the effectiveness of each
module, and analyze the model’s wind speed sensitivity.
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A. Performance evaluation

Firstly, to verify the overall retrieval performance of the FA-RDN model, we compare
it with four neural network models, BPNN, RNN, LSTM, and ANN, and three machine
learning models, RF, XGBoost, and SVR under each evaluation criteria. Draw the CDF
of the AE between the retrieval results and the actual wind speeds to reflect the overall
distribution of the retrieval error intuitively.

B. Validity verification

Secondly, we compare and analyze the retrieval results of the FA-RDN and the LSTM
model to verify the effectiveness of the feature attention mechanism. The LSTM’s structure
and hyperparameter settings are the same as the FA-RDN model except that the attention
mechanism module is not added.

C. Stability analysis

Intending to realize the practical application of the model in the future, we need to
validate the retrieval performance of the model from multiple aspects. The retrieval results
of the designed model in the article [23] show high calculated values for low wind speed
models and low values for high wind speeds. At the same time, the article [25] also shows
that the retrieval error increases gradually with the rise of wind speed at medium and high
wind speeds. Therefore, it is necessary to conduct an experimental analysis on the retrieval
results of the FA-RDN model at various wind speeds, which is divided according to the
Beaufort scale.

5. Experimental Results and Analysis
5.1. Feature Analysis

The retrieval results of the FA-RDN model under each dataset are shown in Table 5,
where dataset 1 consisting of SNR, BNRES, LES is the benchmark dataset, dataset 8 contains
all features. The percentage improvement of dataset 2, dataset 4, dataset 6 compared to
dataset1, and the percentage improvement of dataset 8 compared to dataset 3, dataset 5,
dataset 7 under each evaluation criteria are given. Figure 6 is the correlation matrix heatmap
which shows the correlation coefficients among features and between each feature and
wind speed.

Table 5. Characteristic analysis.

Metrics Improvement

MAE MSE RMSE PMAE PMSE PRMSE

Dataset 1 1.36 3.34 1.83 \ \ \
Dataset 2 1.24 2.76 1.66 8.56% 17.38% 9.11%
Dataset 4 1.28 2.99 1.73 5.60% 10.43% 5.36%
Dataset 6 1.27 2.91 1.71 6.35% 12.68% 6.56%

Dataset 3 1.25 2.82 1.68 13.55% 25.65% 13.77%
Dataset 5 1.21 2.62 1.62 10.64% 20.12% 10.63%
Dataset 7 1.21 2.58 1.61 10.30% 18.73% 9.85%
Dataset 8 1.08 2.10 1.45 \ \ \

The results presented in Table 5 show that all three types of features improve the
retrieval accuracy to a certain extent. The retrieval result of adding the geospatial coordinate
information is better than the benchmark dataset, reduces MAE, MSE, and RMSE by 8.56%,
17.38%, and 9.11%, respectively. This result is consistent with the experimental results
in the article [22]. The addition of systematic effects and spacecraft attitude information
can also improve the retrieval accuracy. The retrieval results of dataset 4 and dataset 6
reduce the MAE, MSE, and RMSE by 5.60% and 6.35%, 10.43% and 12.68%, 5.36% and
6.56%, respectively, compared to the benchmark dataset. Figure 7 describes the trend of
retrieval error in each dataset.
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As can be seen from Figure 6, among all feature combination schemes, dataset 8 has
the best retrieval results. Therefore, this set of features is taken as the final input features
for the FA-RDN model.
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5.2. Comparative Verification Experiments
5.2.1. Performance Evaluation

A. Comparison results with neural network models
Table 6 lists the retrieval result of the FA-RDN model and the comparison model. It

also shows the percentage improvement of the FA-RDN model under each evaluation
criteria compared to each comparison model. The bold values in Table 6 represents the
optimal value of the evaluation criteria.

Table 6. Experimental results of comparison and verification of retrieval performance.

Metrics Improvement

MAE MSE RMSE PMAE PMSE PRMSE

BPNN 1.21 2.61 1.62 10.71% 19.67% 10.38%
RNN 1.17 2.40 1.55 6.95% 12.73% 6.58%
ANN 1.25 2.79 1.67 13.05% 24.80% 13.28%

FA_RDN 1.08 2.10 1.45 \ \ \

It is apparent from Table 6 that the FA-RDN model has the best retrieval result com-
pared with BPNN, RNN, and ANN, reduces MAE by 10.71%, 6.95%, and 13.05%, reduces
MSE by 19.67%, 12.73%, and 24.80%, reduces RMSE by 10.38%, 6.58%, and 13.28%, respec-
tively. Moreover, in the evaluation results of the compared models, RNN outperforms
BPNN and ANN, which confirms from another perspective that mining historical informa-
tion helps to improve the inversion accuracy of the models.

Figure 8 shows the scatter plots of model outputs of BPNN, ANN, RNN, and FA-RDN
with the ECWMF wind speed, respectively, and the best regression fitting value, the red
dashed line x = y. The closer the scatter distribution is to the dotted line, the more accurate
the retrieval result of the model is.
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In Figure 8, it can be seen that in terms of the overall fit results, the FA-RDN has the
best fit, with the overall scatter distribution closest to the red dashed line and the least
dispersion, with a Pearson correlation coefficient (Pearson’s r) of 0.879. The second is the
RNN model with a Pearson’s r of 0.86, while the third and fourth are BPNN and ANN
with Pearson’s r of 0.846 and 0.835, respectively.

B. Comparison results with machine learning models
Table 7 shows the retrieval results for each model and percentage improvement

compared to machine learning models. The evaluation criteria results indicate that FA-
RDN has the best performance. Compared with RF, XGBoost, and SVR, FA-RDN model
reduces MAE by 18.10%, 24.94%, and 27.55%, reduces MSE by 32.57%, 36.42%, and 40.92%,
reduces RMSE by 17.89%, 20.26%, and 23.14%, respectively.

Table 7. Retrieval results for each model and percentage improvement compared to machine learn-
ing models.

Metrics Improvement

MAE MSE RMSE PMAE PMSE PRMSE

RF 1.32 3.11 1.76 18.10% 32.57% 17.89%
XGBoost 1.45 3.30 1.82 24.94% 36.42% 20.26%

SVR 1.50 3.55 1.88 27.55% 40.92% 23.14%
FA-RDN 1.08 2.10 1.45 \ \ \

Figure 9 presents the AE CDF plots for the FA-RDN model as well as all comparison
models. The model with larger function values for a given AE has better performance.

The AE CDF value of the FA-RDN model is always greater than that of the comparison
models, which confirms that the FA-RDN model always has a better performance among
comparison models.
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5.2.2. Validity Verification

To further confirm the effectiveness of the feature attention mechanism in improving
the accuracy of wind speed retrieval, the FA-RDN model is compared with the LSTM
model in that experiment. The experimental results are shown in Table 8.

Table 8. Experimental results of verification of the effectiveness of the attention mechanism.

Metrics Improvement

MAE MSE RMSE PMAE PMSE PRMSE

LSTM 1.15 2.34 1.53 5.78% 10.45% 5.37%
FA_RDN 1.08 2.10 1.45 \ \ \

The retrieval result of the FA-RDN model is better than the comparison model, and
reduces the MAE, MSE, and RMSE by 5.78%, 10.45%, and 5.37%, respectively. It fur-
ther confirms the effectiveness of the attention mechanism in improving the wind speed
retrieval accuracy.

5.2.3. Stability Analysis

Figure 10 shows the retrieval results and the amount of data at different wind speeds,
which are divided refer to the Beaufort scale. This figure can also be seen as a numerical
representation of Figure 8D.

As can be seen in Figure 10, FA-RDN has higher retrieval accuracy in light air to strong
breeze, that is, wind speeds from 0.3 m/s to 13.9 m/s. In calm and moderategale, that is,
wind speed from 0.0 m/s to 0.3 m/s and from 13.9 m/s to 17.2 m/s, the retrieval error
increases slightly, and has a significant increase after the wind speed is higher than 20.8
m/s. This result is consistent with the result of article [25], that is, in calm and higher wind
speed, the retrieval results are worse than low and medium wind speed. In general, the
FA-RDN model has less error fluctuation and better stability under the wind speed range
of 20.8 m/s.
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6. Discussion

In the feature analysis, all datasets are divided into five groups based on different
combinations of features, as shown in Table 5. The percentage improvement after adding
different types of features compared to the baseline dataset is compared separately by exper-
iment. The experiments confirm that adding the selected feature types, i.e., spatio-temporal
geographic information, spacecraft systems, and attitude information, all influence the
overall retrieval results. After comparing the retrieval results of all datasets under each
evaluation metric, as shown in Figure 6, the final input feature scheme is selected for the
designed model, that is, dataset8 with all features is added, which improves MAE, MSE,
and RMSE by 20.22%, 37.15%, and 20.72%, respectively, compared with the benchmark
dataset. However, it is worth noting that the three feature types mentioned above are still
the result of manual selection after analysis. In the follow-up research, we are designing
an end-to-end retrieval model that can expand the selection range of feature types, and
has the ability to automatically select feature types that have a proportional boost to the
retrieval results [42].

Tables 6–8 list the retrieval results of each model, and Figure 7 shows the fitting
between the retrieval results of the model and the true value of wind speed. The FA-
RDN model has optimal results for each evaluation metric, MAE, MSE, and RMSE, with
results of 1.08 m/s, 2.10 m/s, and 1.45 m/s, respectively. Besides, the overall density
distribution and the distribution of the highest density for the fitted scatter of the designed
model are closest to the x = y line, having the smallest offset at high wind speeds and the
highest Pearson’s r value of 0.879 compared to other network models. Meanwhile, RNN
has suboptimal retrieval result, which further confirms that mining the data’s temporal
correlation information helps improve retrieval accuracy. In combination with Figure 9,
the retrieval results are inferior at high wind speeds compared to low and medium wind
speeds. This result may be due to the low sensitivity of the CYGNSS L1 observations at
high wind speeds [40,43], and the small percentage of data samples at high wind speeds,
see Figure 2. Therefore, in the future study, in addition to further expanding the selection of
model input features, it is planned to add sea surface information to assist in the retrieval,
such as sea surface height, wavelength, wave direction, and alleviate the data imbalance
problem to improve the model retrieval accuracy.

7. Conclusions

This paper proposes a hybrid network model for the retrieval of global sea surface wind
speeds. The recurrent deep neural network using improved attention mechanism can mine
the temporal correlation information of the input features from the temporal dimension.
The original data is from the L1 band data of the CYGNSS and the ECMWF. We compare
and analyze the influence of temporal-spatial geographical features, systematic effects, and
spacecraft attitude information on the retrieval accuracy through feature engineering.
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It is confirmed that the FA-RDN model has better wind speed retrieval results, reduc-
ing the RMSE by 12% to 40% compared to all comparison models. Moreover, the retrieval
results verify the effectiveness of the attention mechanism in optimizing the retrieval results
and the historical reference information that helps to improve the model’s accuracy. In
general, this paper provides a feature reference and a new reference model for retrieving
GNSS-R sea surface wind speed based on neural network.

In future research, in addition to the temporal dimension, information can also be
added for reference from a spatial perspective. Satellites network observations can be
carried out to simultaneously extract information on the spatial correlation between multi-
ple reflection points. Besides, further research and experiments can be conducted on the
architecture of the network model.
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Abbreviations

AE Absolute error
ANN Artificial Neural Network
BPNN Backpropagation neural network
CDF Cumulative distribution function
CYGNSS Cyclone Global Navigation Satellite System
DDM Delay-Doppler map
GMF Geophysical model function
FA-RDN Recurrent deep neural network using feature attention mechanism
LES Leading edge of the slope
LSTM Long-short term memory
MAE Mean absolute error
MLP Multilayer Perceptron
MSE Mean square error
NBRCS Normalized bistatic radar cross-section
NLP Natural Language Processing
Pearson’s r Pearson correlation coefficient
PMAE Percent improvement in MAE
PMSE Percent improvement in MSE
PRMSE Percent improvement in RMSE
PRN GPS pseudo random noise code
RMSE Root mean square error
RNN Recurrent Neural Network
RF Random Forest
SM Soil moisture
SNR DDM signal to noise ratio
SP_AZ_body The azimuth angle of the specular point to receiver vector in the receiver’s

body reference frame
SP_AZ_orbit The azimuth angle of the specular point to receiver vector in the receiver’s

orbit reference frame
SP_Angle The angle between the transmitter to specular point ray and the surface normal
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SP_gain The antenna gain towards specular point
SP_Lat The latitude of the specular point
SP_Lon The longitude of the specular point
SP_Theta_body The theta angle of the specular point to receiver vector in the receiver’s

body reference frame
SP_Theta_orbit The theta angle of the specular point to receiver vector in the receiver’s

orbit reference frame
SP_Time The time of the specular point
SVM Support Vector Machine
SVR Support Vector Regression
TDS-1 Demonstration Satellite-1
UK-DMC United Kingdom-Disaster Monitoring Constellation Technology
XGBoost eXtreme Gradient Boosting
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