
remote sensing  

Article

Assessing the Utility of Sentinel-1 Coherence Time Series for
Temperate and Tropical Forest Mapping

Ignacio Borlaf-Mena 1,* , Ovidiu Badea 2,3 and Mihai Andrei Tanase 1,2

����������
�������

Citation: Borlaf-Mena, I.; Badea, O.;

Tanase, M.A. Assessing the Utility of

Sentinel-1 Coherence Time Series for

Temperate and Tropical Forest

Mapping. Remote Sens. 2021, 13, 4814.

https://doi.org/10.3390/rs13234814

Academic Editors: Michele Martone

and Armando Marino

Received: 14 September 2021

Accepted: 23 November 2021

Published: 27 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Geology, Geography and Environment, University of Alcalá, Calle Colegios 2,
28801 Alcalá de Henares, Spain; mihai.tanase@uah.es

2 Department of Forest Monitoring, Romanian National Institute for Research and Development in Forestry,
INCDS “Marin Drăcea”, Bulevardul Eroilor 128, 077190 Voluntari, Romania; obadea@icas.ro

3 Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements,
Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov,
Ludwig van Beethoven Str. 1, 500123 Braşov, Romania
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Abstract: This study tested the ability of Sentinel-1 C-band to separate forest from other common land
use classes (i.e., urban, low vegetation and water) at two different sites. The first site is characterized
by temperate forests and rough terrain while the second by tropical forest and near-flat terrain.
We trained a support vector machine classifier using increasing feature sets starting from annual
backscatter statistics (average, standard deviation) and adding long-term coherence (i.e., coherence
estimate for two acquisitions with a large time difference), as well as short-term (six to twelve days)
coherence statistics from annual time series. Classification accuracies using all feature sets was high
(>92% overall accuracy). For temperate forests the overall accuracy improved by up to 5% when
coherence features were added: long-term coherence reduced misclassification of forest as urban,
whereas short-term coherence statistics reduced the misclassification of low vegetation as forest.
Classification accuracy for tropical forests showed little differences across feature sets, as the annual
backscatter statistics sufficed to separate forest from low vegetation, the other dominant land cover.
Our results show the importance of coherence for forest classification over rough terrain, where forest
omission error was reduced up to 11%.
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1. Introduction

Forest ecosystems host a large portion of terrestrial biodiversity, and provide many
ecosystem services, such as timber and food production, risk mitigation (i.e., flood, erosion),
and climate regulation, as forests hold a large portion of terrestrial biomass, and its growth
and degradation play an essential role on climate and atmospheric CO2 dynamics. This
has prompted several international agreements to preserve forest services and biodiversity,
along with specific procedures to track forest cover and status. One of the earliest interna-
tional efforts for tracking forest status was undertaken under the Food and Agriculture
Organization (FAO) through the global Forest Resources Assessment (FRA), whose first
report was published in 1948. FRA defines forest as areas with tree canopy cover above
10%, 5 m minimum tree height, and a minimum extent of 0.5 Ha [1].

Forests’ increasing importance is reflected by subsequent conventions such as the
United Nations (UN) Rio Convention on Biological Diversity [2], and the UN Framework
Convention on Climate Change [3], UNFCC. The UNFCC was extended by the Kyoto
protocol and the Paris agreements [4,5] with the commitment of the signatory countries to
reduce their greenhouse gasses emissions through, among other, reforestation programs.
Further forest-related agreements include the Bonn Challenge [6], a global effort for forest
restoration, and the New York declaration of forests [7], aimed at reducing the rate of defor-
estation. Agreements under the UNFCC use indicators considered critical to characterize
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Earth’s climate, the so called essential climate variables (ECVs) [8] which are assessed
and monitored through a range of programs and frameworks to track compliance. For
example, between 2005 and 2015 the UN funded the REDD+ program, focused on “Re-
ducing emissions from deforestation and forest degradation and the role of conservation,
sustainable management of forests and enhancement of forest carbon stocks in develop-
ing countries” [9]. REDD+ requires the implementation of measurement, reporting and
verification (MRV) systems as part of developing national forest monitoring systems. In
the context of MRV systems, remote sensing technologies were used to keep track of forest
status thanks to the short revisit times and consistent large-scale coverage.

Currently, most forest related ECVs are retrieved from earth observation satellites, with
the European Space Agency (ESA) Climate Change Initiative (CCI) funding the extraction
of many forest-related variables (i.e., land cover, above ground biomass, burned area) along
with other ECVs (i.e., aerosols, sea surface temperature, snow cover, etc.). Remote sensing is
the only technology able to provide the short revisit times and large-scale coverage needed
for such tasks [10]. Recent approaches on forest/non-forest (FNF) classification leveraged
optical imagery from AVHRR, MODIS, MERIS or Landsat, despite the cloud cover related
problems of such sensors [10–14]. Active systems such as space-borne light detection and
ranging (LiDAR) are sensitive to forest height and fractional cover, which are important
indicators for separating forested areas [1]. However, the use of space-borne LiDAR is
limited by its sparse coverage and cloud cover as is the case for the global ecosystem
dynamics investigation (GEDI) instrument onboard the international space station [15].
Active systems based on synthetic aperture radar (SAR), are not affected by cloud cover,
provide continuous or near continuous coverage (due to distortions over rough terrain),
and are sensitive to forest presence [10,12,16].

Over the past decades, the SAR backscatter coefficient has been employed for many
forest-mapping studies [10,11,17,18]. Forests tend to have higher backscatter coefficient
than other land cover classes due to the multiple bounces of the signal within the canopy
(volume scattering), allowing a larger amount of energy to return to the sensor. In general,
longer wavelengths provide a larger contrast between forest and other classes [11,19] while
cross-polarized channels are better suited at identifying forest cover since multiple bounces
within the canopy cause the return to lose its original polarization [20,21]. Recent mapping
examples include the ALOS PALSAR forest/non-forest maps [11] which used L-band HV
(horizontal (H) transmit—vertical (V) receive) backscatter to determine forest extent, while
water bodies and non-forest areas are separated using the HH channel.

The utility of the backscatter coefficient for land cover mapping is often limited by
unrelated factors such as dielectric (i.e., soil moisture) and geometric effects (i.e., roughness,
tree stumps and debris left after forest clearing) as well as rain, snow, and freeze-thaw
periods [10,11,13,16,22,23]. For example, the backscatter coefficient may increase after
forest clearing, as tree stumps and woody debris are left exposed (double bounce) and
decrease with time as soil surface dries [11]. Furthermore, some land cover classes may be
misclassified due to their scattering properties’ similarity to those of forest cover (i.e., vine-
yards, urban parks, and gardens). Nevertheless, changes in backscatter may be employed
for detecting changes in the land cover (e.g., forest loss) [24,25].

Phase information may be leveraged for land cover classification to avoid the shortcom-
ings of backscattering intensity, albeit at the cost of increased data volumes and processing
times. Single-pass interferometry has been successfully applied to generate a global for-
est map based on TanDEM-X HH interferometric coherence, i.e., the correlation between
images acquired from different sensor positions acquired at the same time (single-pass)
or at different time steps (repeat–pass) [13]. Repeat–pass interferometric coherence has
been also employed for land cover classification [14,26–29] with shorter temporal baselines
improving the contrast between classes [28,29]. Nevertheless, such contrast may be lost
over some land cover classes (e.g., crops due to tillage) even for images acquired at very
short intervals [28,29]. Using dense time series (6–12 days) may overcome such limitations,
but at a steep increase of data volume. Alternatively, adding coherence estimates from a
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few pairs with long temporal baselines can improve separating some classes, such as urban
cover, ref. [14] with a smaller computational cost.

Regardless of whether phase information has been employed, multitemporal datasets
may inform classifiers on land cover temporal behavior. This information can be leveraged
in several ways, such as using individual observations as features, or using the pixel-wise
annual statistics (i.e., average, standard deviation). When both approaches were tested
in the context of forest mapping, the latter approach obtained improved results [10], as it
reduces data dimensionality and it is less vulnerable to the influence of short-lived events
such as precipitation [10,14,17]. However, it is important to note that the usefulness of such
statistics may be hampered by variability due to thawing/flooding events or infrequent
image acquisition [16]. Within annual statistics layers, SAR backscatter variations are
usually lower over forested areas when compared to other land cover classes such as crops
which are affected by cultivation cycles [10,17]. Forest limited annual variation is related to
scattering from tree canopy and the associated dampening of temporal variations in soil
surface moisture. However, annual variations may not suffice when separating younger
forests as the scattering is influenced by the underlying soil properties [17], or in areas with
pronounced seasonality [10]. Urban areas may also be misclassified as forests, as they have
a similarly low variability. Hence, the annual backscatter average is also needed to separate
forest from urban areas (infrastructure has a high backscatter coefficient [17]).

The objective of this study was to investigate the contribution of radar backscatter and
coherence for forest cover mapping in temperate and tropical settings. Three increasingly
richer feature sets were employed to assess the contribution of the variables that separate
forest from other major land classes such as urban, low vegetation, and water. The first
feature set was derived from annual backscatter statistics, the second set included long-
term coherence (i.e., coherence estimate for two acquisitions with a large time difference)
while for the last set short-term coherence statistics were added (i.e., average and standard
deviation of coherence estimates with a short temporal baseline). The results were assessed
using existing land cover datasets and spaceborne Lidar data.

2. Study Area and Data Employed

The first study area (Figure 1A) was a N-S transect over the Romanian Carpathians
characterized by continuous and discontinuous urban areas, water courses and water
bodies, croplands, tree and bush orchards, herbaceous cover (natural grasslands and
pastures), as well as broadleaf, needleleaf and mixed temperate forest. Forests appear
mainly on over-sloped terrain (Figure 2). It has an approximate area of 25,000 km2. The
second study area (Figure 1B) was in the Brazilian Amazon. It mainly contains broadleaf
tropical forest and cropland mixed with natural vegetation (tree, shrub, herbaceous), with
several water courses and small cities. At this site, forests appear mainly over gentle slopes
(Figure 2). It has an approximate area of 43,000 km2.

Dual-polarized (VV, VH) single look complex (SLC) images acquired by Sentinel-1 A
and B satellites (C-band) in interferometric wide swath mode (IWS) were used. The SLC
images have a pixel spacing of 14.1 m in azimuth and 2.3 m in range. At the temperate
site (Romania), we processed all overlapping acquisitions (6-day repeat interval) from
both, ascending (29, 131) and descending (7) “orbital tracks” for years 2017–2019 to ensure
complete coverage of the rough Carpathians terrain. Data from these three orbits were
normalized (geometric, radiometric, interferometric) using the 12 m TanDEM-X digital
elevation model (DEM) [30] (©DLR, Deutsches Zentrum für Luft- und Raumfahrt 2019). For
the tropical site (Brazil) we processed a time series for years 2018 and 2019, including only
images from Sentinel-1A (12-day repeat interval) to ensure coherence observations with
the same temporal baseline. Notice that Sentinel-1B satellite started to consistently acquire
images over the area after May 2019. For the flatter terrain at the tropical site, the use of
data from one relative orbit (54) was considered sufficient. SAR processing at this site was
based on the NASADEM height data [31,32].
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Figure 1. Extent of the study areas ((A), temperate, Romania; (B), tropical, Brazil). the white outline
represents the extent of the sites. Background imagery is courtesy of Google Satellite.

We used preexisting land cover maps as data sources to generate a consistent layer for
training and validation purposes including:

• 2018 Corine land cover (CLC), generated by manual digitalization over satellite im-
agery with a minimum polygon area of 25 hectares [33,34], with an overall accuracy
of 88.7% within the boundaries of Romania [35].

• 2015 European Space Agency Climate Change Initiative land cover dataset (ESA
CCI LC, from here on CCILC), generated at 300 m resolution with a time series of
optical data (AVHRR, MERIS, SPOT-VGT, POBA-V) and machine learning [36], with
an accuracy of 75.1% [37].

• 2016 global urban footprint (GUF), generated at 12 m resolution with texture and
intensity of TanDEM-X imagery, with an accuracy of 85–88% [38].

• 2011–2015 TanDEM-X forest non-forest map (TFNF), generated with 50 m resolution
from TanDEM-X bistatic coherence data, with an estimated accuracy of 85–93% [13].

• 2017 Advanced land observing satellite phased array type L-band synthetic aperture
radar forest/non-forest map (ALOS PALSAR FNF, shortened to AFNF) generated at
25 m resolution using backscatter data, with an accuracy of 85–95% [11].
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To account for possible changes after the creation of the mentioned land cover datasets,
we used the GEDI level 2B data from period 20/04/2019–15/04/2020 (both sites) and one
Sentinel-2 image (tropical site, tiles 19LEK, 19LEL, 19LFK, 19LFL, 19LGK, 19LGL) acquired
24 August 2020.

3. Methods
3.1. SAR Data Processing

Before SAR data processing, the DEMs employed for SAR co-registration and ra-
diometric/geometric corrections were mosaicked. Both the TanDEM-X DEM and the
NASADEM tiles were received in equiangular coordinates. The TanDEM-X DEM, received
as height above the ellipsoid with 12 m pixel spacing, was mosaiced and resampled to 20 m
using bilinear interpolation. The NASADEM, received with a pixel size of 30 m and geoidal
height reference, was mosaiced and shifted to ellipsoidal heights.
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The Sentinel-1 SLC sub-swathes were assembled into a single image and multi-looked
to a pixel spacing of approximately 25 m, using a factor of 7 in range, and 2 in azimuth.
This allowed reducing the impact of speckle while bringing the pixel size closer to the
resolution intended for analysis. The first image acquired in each relative orbit served
as master. All remaining acquisitions were co-registered, by relative orbit, to the master
image using an iterative process based on intensity matching and spectral diversity with
the DEM as auxiliary dataset [39]. The DEM was employed to generate a lookup-table
(LUT), relating its own coordinates (map coordinates) and the SAR image coordinates
(range-doppler coordinates), as well as auxiliary layers containing information on terrain
slope and orientation, local incidence angle, scattering area and layover and shadowed
areas. Interferograms were generated between subsequent image pairs as well as at yearly
intervals starting with the master image acquisition date. Two series of interferograms
were thus obtained for each relative orbit: (1) the long-term series containing two to three
yearly estimates, and (2) the short-term series containing near weekly (6 days) or bi-weekly
(12 days) estimates depending on the study area. The topographic phase was subsequently
removed and coherence was estimated for each interferogram using a two-step adaptive
approach [40,41].

The backscatter intensity was calibrated to terrain flattened γ0, considering the in-
cidence angle and the terrain scattering area estimate [42–44]. A multi-temporal speckle
filter was applied to reduce speckle [17]. Coherence and backscattering intensity estimates
were orthorectified using an inverse distance resampling and the yearly average and stan-
dard deviation (SD) were computed for each SAR metric (VV and VH backscatter and VV
coherence) and converted to the decibel (dB) scale.

Notice that layover and shadow areas were masked using the DEM-derived auxiliary
layers. Foreshortened areas were also masked, because scattering area may be underesti-
mated, leaving them with anomalously high values. To determine when such anomalies
appear, we characterized the distribution of the annual average of VH backscatter, calculat-
ing its median and median absolute deviation for all forest pixels (forest was expected to
have the largest values over sloping terrain). A pixel was marked as distorted if the mean
annual VH backscatter had a median-based z-score larger than 3 in all years and the pixel
was within 100 m of any LUT-masked pixel (i.e., pixels where topographic normalization
may still be problematic).

3.2. Land Cover Reference Dataset

We used two datasets for training and validation: a GEDI-derived point layer showing
forest cover presence or absence, and a land cover raster layer. For the GEDI-based layer,
shots (points) were labeled as presence when the fractional tree cover was above 10%, as
estimated from both the GEDI shots and the Landsat-derived tree cover ancillary data
included in the GEDI file; the canopy height (rh100) was above 5 m. If none of these
thresholds was reached, the shot was considered as non-forest.

The land cover dataset was created by a Boolean combination of preexisting land
cover maps. To combine them, we first resampled all data sources to a pixel grid matching
the Sentinel-1 dataset. Nearest neighbor resampling was employed for qualitative datasets,
bilinear resampling was employed for Sentinel-2 data, and mode resampling was employed
for GUF, as its pixel size was smaller when compared to the processed Sentinel-1 data.
The matching grids were combined based on the rules depicted on the Tables 1 and 2:
to receive a specific sub-class a pixel had to meet all conditions imposed for that specific
subclass. The logic behind the specific ruleset is described in the following paragraphs, as
different conditions were necessary for each site due to the land cover types present and
the difference in available ancillary data.
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Table 1. Temperate site classification scheme together with the ruleset employed to determine the membership based on the
preexisting datasets. The subclasses are based on agreement between CLC and CCI LC. GUF had to be 255 (urban) for the
homonymous class, and 0 (other) for the rest of classes. “!=” denotes the NOT operator, i.e. “!=1” indicates not classified as
forest in AFNF or TFNF.

Class Subclass CLC 2018 CCI LC 2015 AFNF 2017 TFNF 2018

Urban Artificial 1xx: Artificial surfaces 190: Urban areas - 0: Urban

Low vegetation

Crops 211: Non-irrigated
Arable land

10: Cropland
11: Herbaceous

!=1: Other
(not forest)

2: Not forest

Pasture 231: Pastures 11: Herbaceous
130: GrasslandGrassland 321: Grassland

Permanent crops 222: orchards
242: agriculture mix 12: Tree or shrub

Transitional
woodland-shrub

324: transitional
Woodland-shrub

40–153: natural
vegetation -

Forest

Broadleaf 311: broadleaf 50–62: broadleaf

1: Forest 1: ForestNeedleleaf 312: needleleaf 70–82: needleleaf

Mixed 313: mixed 90: mixed

Water Water - 210: Water !=1: Other !=1: Other

Table 2. Tropical site classification scheme together with the ruleset employed to determine the membership based on
the preexisting datasets. The subclasses are based on CCI LC. GUF had to be 255 (urban) for the homonymous class, and
0 (other) for the rest of classes. “!=” denotes the NOT operator.

Class Subclass, CCI LC 2015 AFNF 2017 TFNF 2018 Sentinel-1
2018, 2019

Sentinel-2
2020

Urban 190: Urban areas

!=1: Other

0: Urban - NDVI < 0.6
NDWI < 0

Low vegetation

30: Mosaic of cropland with
natural vegetation

2: Not forest VV < −8
NDMI < 0.05
NDVI < 0.6
NDWI < 0

40: Mosaic of natural vegetation
with cropland

100: Mosaic tree/shrub and herbaceous
120: Shrubland

Forest 50–62: broadleaf 1: Forest 1: Forest - NDVI > 0.6
NDWI < 0

Water 210: Water !=1: Other !=1: Other VH < −20 dB
VV < −15 dB NDWI > 0

At the temperate site, the AFNF was not used to determine urban cover because it
disagreed with the remaining datasets (i.e., parts of the cities were classified as forest). For
the rest of non-forest classes, the condition imposed on AFNF was “NOT forest”, as open
areas and water surfaces were sometimes misclassified as each other due to a similarly
low backscatter. In the case of transitional woodland-shrub, it was necessary to remove
AFNF or relax the condition (any natural cover of CCI land cover), as most of the plots
from CLC were lost due to the large size of ESA CCI pixel size, or due to the object-based
generalization of AFNF. For areas meeting the imposed conditions, a two-pixel negative
buffer was applied to avoid edge effects.

At the tropical site, Sentinel-1 annual averages (by polarization) were added to avoid
the shortcomings of the preexisting datasets, together with normalized difference indices
(ND) derived from one Sentinel-2 image (24 August 2020). In the case of low vegetation,



Remote Sens. 2021, 13, 4814 7 of 25

large areas were covered by mixed land covers (forest and low vegetation appear together)
in the CCI LC. To avoid including thin tree lines in the low vegetation sample, pixels
with a backscattering intensity over −8 dB on the Sentinel-1 VV annual averages, a ND
moisture index (NDMI [45]) over 0.05, and ND vegetation index (NDVI [46]) over 0.6 in the
Sentinel-2 image were masked out, as these characteristics indicate tree cover. Forest had to
have an NDVI over 0.6 in the 2020 Sentinel-2 image to avoid including areas that may have
been deforested after the creation of the land cover datasets. ND water index (NDWI [47])
had to be negative for land classes, and positive for water. Water also needed to have an
annual backscattering intensity average under −15 and −20 dB for VV and VH channels
to avoid errors caused by changes in the water cover. Forest and low vegetation (dominant
classes) received the two-pixel negative buffer. The few pixels available for urban areas
precluded such a buffer. Similarly, the sample for water cover would have been greatly
reduced by a negative buffer, as it appears as thin rivers.

3.3. Training Data Preparation

The training sample was taken from unmasked SAR pixels (not affected by layover,
shadow, or foreshortening) in all the relative orbits employed for the site. The training
dataset was designed to withhold at least 30% of the sub-class samples for validation,
taking up to 25.000 random samples from the pixels with said sub-class. In the specific case
of forest sub-types, samples were taken from the GEDI-derived tree cover layer, selecting
the shots overlapping with a pixel with the specific forest type.

The training data was culled by applying the local outlier factor algorithm to each
individual sub-class, keeping all points that were considered inliers in all orbits and years.
In the case of water cover, the median-based z-score was also employed by dropping any
sample where the z-score for the VH channel was over three, cases where we assumed
the pixel may be partially occupied by land and/or aquatic vegetation, thus reducing
the separability with low vegetation classes. For each land cover, 5000 random points
evenly distributed between its subclasses were selected. All sub-classes always had over
1000 training samples, with the lowest counts for the temperate site low vegetation sub-
classes (1000 samples each), and tropical site urban (1891 samples as the single sub-class).
Training data was employed to plot the distribution of the land cover classes.

3.4. Classification Scheme

Yearly classifications were created using an increasing number of features. The first set
includes backscatter annual statistics, the second adds long-term interferometric coherence,
and the third adds short-term coherence statistics. While training the classifier, each year
was considered an independent sample, i.e., each classifier was trained with 20.000 samples
per year. A “one-versus-rest” linear support vector machine classifier was fitted for every
orbit, as anisotropic effects may remain even after performing radiometric terrain flatten-
ing [42]. These classifiers were fit with a regularization parameter of 1, primal problem
optimization, L1 penalty, 0.001 stopping tolerance, and 10.000 iterations maximum. At
the temperate site, data from several relative orbits were combined to maximize coverage
as large areas were masked in each individual orbit due to the SAR related geometric
distortions. For each pixel, every orbit casts a vote with a weight equal to the inverse of
its scattering area, as pixels with large scattering suffer larger geometric and radiometric
distortions [43,48]. The pixel is classified as the land cover accumulating the largest weight.
Detailed information about the methodology can be found in [49].

3.5. Validation

The land cover validation set was created after discarding pixels overlapping the
GEDI shots, those that have been masked as distorted in all orbits, and any pixel that has
been considered for inclusion in the training sample. The GEDI validation set (forest and
non-forest classes) was created using all shots, except for those considered as candidates
for inclusion in the training sample (see Sections 3.2 and 3.3).



Remote Sens. 2021, 13, 4814 8 of 25

Validation was performed directly for the land cover dataset (same classes), whereas,
for comparison with the GEDI forest/non-forest validation set, the resulting classification
was matched to the GEDI binary scheme, with forests being considered as forest presence
and the remaining classes forest absence. We employed confusion matrices and its derived
metrics, overall accuracy (OA), Kappa statistic (K), omission, and commission errors (OE,
CE) to assess the results. Alluvial diagrams were employed to track OE and CE origin.
Classification stability was assessed as the percentage of unchanged pixels between yearly
classifications (i.e., 2018 vs. 2019) by separating pixels with known land cover (in the
validation sample) and pixels not included in the validation sample. We analyzed the type
of change by disaggregating into four groups: deforestation and “afforestation” (forest to
low vegetation and vice versa), water related changes (water to low vegetation and vice
versa), urbanization (forest or low vegetation to urban), and other changes. Note that these
changes have not been independently verified.

4. Results
4.1. Data Distribution

At both sites, the pixel-wise annual backscatter average was larger over forests when
compared to low vegetation, with a large overlap between both. Distribution of the urban
class overlapped with the distribution of the forest class, as the former showed a large
variability (Figures 3 and 4).
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Figure 3. Value distribution of a subset of 1000 random pixels extracted from the training sample
at the temperate site. The diagonal displays histograms, the remaining cells display the 2D kernel
density estimate for each pair of variables. Water cover has been excluded to improve visibility for
the remaining classes. STC stands for “short-term coherence” whereas LTC stands for “long term
coherence”. Note that backscattering intensity annual statistics were calculated in linear scale and
then converted to decibel (dB).
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Annual backscatter standard deviation (SD) displayed similar tendencies, with a large
degree of overlap between forest, low vegetation, and urban classes. Long-term coherence
helped separating forests from urban, as the former generally displays lower values, with
little overlap between the two classes. Average short-term coherence showed the lowest
value for forest, increasing for low vegetation and reaching maximum over the urban cover.
The annual standard deviation helped separating forest from low vegetation, as it tends to
be higher for the latter, albeit some overlap remained.
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Figure 4. Value distribution of a subset of 1000 random pixels extracted from the training sample
at the tropical site. The diagonal displays the histograms, whereas the rest of cells display the 2D
kernel density plots for each pair of variables. Water cover has been excluded to better display the
distribution overlap for the rest of classes. STC stands for “short-term coherence” whereas LTC
stands for “long term coherence”. Note that backscattering intensity annual statistics were calculated
in linear scale and then converted to decibel (dB).

4.2. Classification with Feature Sets

All classifications attained accurate results (OA > 90%) and substantial agreement
(K > 0.75 [50]) when assessed against the reference land cover (LC) and the GEDI-derived
validation sets (Table 3). When only the backscatter annual statistics were used as predictors,
the overall accuracy ranged between 94–99% (LC) and 92–97% (GEDI). At the temperate site,
the Kappa statistic ranged within the 0.86–0.91 (LC) and 0.79–0.84 (GEDI) interval, whereas
at the tropical site it ranged between 0.87–0.93 (LC) and 0.77–0.79 (GEDI). Adding long-
term coherence data resulted in opposite results depending on the site. At the temperate
site, the overall accuracy and K increased to 97% and 0.93, respectively. Conversely, at the
tropical site the Kappa statistic decreased slightly, 0.85–0.91 (LC) and 0.76–0.79 (GEDI).
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Adding annual statistics from short-term coherence series increased the overall accuracy at
both sites to 99% (using the land cover dataset as reference) and 96–97% (using the GEDI
data set as reference). Similarly, the Kappa statistic increased at both sites. At the temperate
site Kappa increased to 0.97–0.98 (LC), and 0.90–0.91 (GEDI), whereas at the tropical site it
increased to 0.92–0.96 (LC), and 0.82–0.83 (GEDI).

Table 3. Overall accuracy (%) and kappa by classification. “LC” stands for land cover-based reference dataset.
B00—classification using backscatter annual statistics, B0C—adding long-term coherence, and BCC—further adding
short-term coherence statistics. Cells are shaded with a gradient between yellow and green, associated with lower, and
higher metrics, respectively.

Temperate Tropical

Overall accuracy Kappa statistic Overall accuracy Kappa statistic

B00 B0C BCC B00 B0C BCC B00 B0C BCC B00 B0C BCC

LC

2017 94 97 99 0.86 0.93 0.98
2018 96 97 99 0.91 0.93 0.97 98 97 99 0.87 0.85 0.92
2019 96 97 99 0.90 0.93 0.97 99 99 99 0.93 0.91 0.96

G
ED

I 2017 92 96 97 0.79 0.90 0.91
2018 93 95 96 0.84 0.89 0.91 95 95 96 0.77 0.76 0.82
2019 93 96 96 0.82 0.89 0.90 95 95 97 0.79 0.79 0.83

At both sites, the prevalent land cover types (low vegetation and forest) were most
affected by misclassification (Figures 5 and 11). However, there were different tendencies
between the two study sites. At the temperate site, using only the backscatter annual
statistics as predictor variables resulted in an omission error (OE) of 4–12% for the forest
class, with most pixels being assigned to the urban class, which showed an 83% commission
error for 2017, 60% for 2018 and 67% for 2019 (Table 4, Figure 5).

Table 4. Temperate site errors (%) disaggregated by land cover (Ur, Urban; LV, low vegetation; Fo, forest; Wa, water). B00—
classification using backscatter annual statistics, B0C—adding long-term coherence, and BCC—further adding short-term
coherence statistics. Complete matrices in Appendix A (Table A1). Cells are shaded with a green-yellow gradient, indicating
lower and higher errors.

2017 2018 2019

Ur LV Fo Wa Ur LV Fo Wa Ur LV Fo Wa

Commission
error

B00 83 1 9 14 60 1 8 11 67 1 8 16
B0C 37 1 7 14 30 1 7 10 28 1 7 14
BCC 16 <1 1 6 13 1 1 5 17 1 1 5

Omission
error

B00 7 4 12 9 14 4 4 9 11 4 6 9
B0C 4 3 2 9 4 3 2 9 6 3 2 9
BCC 1 1 1 8 1 1 2 8 1 1 2 9

There was a large variation on urban commission error across the yearly classification,
with forest being the main contributor. To understand the source of this misclassification,
we examined the prevalence of said error in the individual classifications generated for
each orbit disaggregating by sub-swathes (Figure 6). For the by-orbit classification of
year 2017, the misclassification of forest as urban was more prevalent within a particular
sub-swath for both, 29 and 131 orbits.



Remote Sens. 2021, 13, 4814 11 of 25

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 24 
 

 

0.76–0.79 (GEDI). Adding annual statistics from short-term coherence series increased the 
overall accuracy at both sites to 99% (using the land cover dataset as reference) and 96–
97% (using the GEDI data set as reference). Similarly, the Kappa statistic increased at both 
sites. At the temperate site Kappa increased to 0.97–0.98 (LC), and 0.90–0.91 (GEDI), 
whereas at the tropical site it increased to 0.92–0.96 (LC), and 0.82–0.83 (GEDI). 

Table 3. Overall accuracy (%) and kappa by classification. “LC” stands for land cover-based refer-
ence dataset. B00—classification using backscatter annual statistics, B0C—adding long-term coher-
ence, and BCC—further adding short-term coherence statistics. Cells are shaded with a gradient 
between yellow and green, associated with lower, and higher metrics, respectively. 

   Temperate  Tropical 

   Overall accuracy Kappa statistic Overall accuracy Kappa statistic 

   B00 B0C BCC B00 B0C BCC B00 B0C BCC B00 B0C BCC 

LC
 2017 94 97 99 0.86 0.93 0.98       

2018 96 97 99 0.91 0.93 0.97 98 97 99 0.87 0.85 0.92 
2019 96 97 99 0.90 0.93 0.97 99 99 99 0.93 0.91 0.96 

G
ED

I 2017 92 96 97 0.79 0.90 0.91       
2018 93 95 96 0.84 0.89 0.91 95 95 96 0.77 0.76 0.82 
2019 93 96 96 0.82 0.89 0.90 95 95 97 0.79 0.79 0.83 

At both sites, the prevalent land cover types (low vegetation and forest) were most 
affected by misclassification (Figures 5 and 11). However, there were different tendencies 
between the two study sites. At the temperate site, using only the backscatter annual sta-
tistics as predictor variables resulted in an omission error (OE) of 4–12% for the forest 
class, with most pixels being assigned to the urban class, which showed an 83% commis-
sion error for 2017, 60% for 2018 and 67% for 2019 (Table 4, Figure 5). 

Table 4. Temperate site errors (%) disaggregated by land cover (Ur, Urban; LV, low vegetation; Fo, 
forest; Wa, water). B00—classification using backscatter annual statistics, B0C—adding long-term 
coherence, and BCC—further adding short-term coherence statistics. Complete matrices in Appen-
dix A (Table A1). Cells are shaded with a green-yellow gradient, indicating lower and higher errors. 

   2017 2018 2019 
   Ur LV Fo Wa Ur LV Fo Wa Ur LV Fo Wa 

Commission 
error 

B00 83 1 9 14 60 1 8 11 67 1 8 16 
B0C 37 1 7 14 30 1 7 10 28 1 7 14 
BCC 16 <1 1 6 13 1 1 5 17 1 1 5 

Omission 
error 

B00 7 4 12 9 14 4 4 9 11 4 6 9 
B0C 4 3 2 9 4 3 2 9 6 3 2 9 
BCC 1 1 1 8 1 1 2 8 1 1 2 9 

 

   
B00 (4–6% error) B0C (3% error) BCC (<1% error) 
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Figure 5. Alluvial diagrams of the errors (OE, CE) as a function of predictor variables used for
classification at the temperate site. Left vertical axes show the reference label (Ur, Urban, in purple;
LV, low vegetation, in orange; Fo, forest, in green; Wa, water, in blue), right vertical axes show
classified label for the misclassified (error—‘e’) pixels. The thickness of the lines indicates error
frequency compared to the total error.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 24 
 

 

There was a large variation on urban commission error across the yearly classifica-
tion, with forest being the main contributor. To understand the source of this misclassifi-
cation, we examined the prevalence of said error in the individual classifications gener-
ated for each orbit disaggregating by sub-swathes (Figure 6). For the by-orbit classification 
of year 2017, the misclassification of forest as urban was more prevalent within a particu-
lar sub-swath for both, 29 and 131 orbits. 

 
Figure 6. Percentage of forest pixels misclassified as urban, disaggregated by orbits and sub-
swathes, at the temperate site. 

When displaying the 2017 classifications there is a clear cutline, where misclassifica-
tion becomes more prevalent (Figure 7). 

 
Sentinel 2 from 16/10/2019 

(R: B8, G:11, B: 02) 
VV channel annual SD for 

year 2017 
Ur LV Fo Wa 
2017 classification 

Figure 7. Annual (2017) SD for VV polarization for orbit 29 (subset), and the derived classification 
for said orbit prior to classification merging. The dotted line represents the limit between both sub-
swathes. From left to right: Sentinel-2 image shown as reference, annual SD (VV) and, classified 
land cover (Ur, urban; LV, low vegetation; Fo, forest; Wa, water). 

To understand the sub-swathes differences, we plotted the distribution of all pixels 
labeled as forest in the validation sample disaggregating by orbit, year, and sub-swath 
(Figure 8). VV and VH annual averages showed little difference between years and sub-
swathes, with a near-complete match between the distributions of all years and sub-
swathes. However, for year 2017 the VV annual SD for ascending orbits (29, 131) had its 
distribution shifted compared to years 2018 and 2019. For orbit 29, the distributions for 
the sub-swathes were centered around different values, whereas both had a similarly high 

Figure 6. Percentage of forest pixels misclassified as urban, disaggregated by orbits and sub-swathes,
at the temperate site.

When displaying the 2017 classifications there is a clear cutline, where misclassification
becomes more prevalent (Figure 7).
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Figure 7. Annual (2017) SD for VV polarization for orbit 29 (subset), and the derived classification
for said orbit prior to classification merging. The dotted line represents the limit between both
sub-swathes. From left to right: Sentinel-2 image shown as reference, annual SD (VV) and, classified
land cover (Ur, urban; LV, low vegetation; Fo, forest; Wa, water).
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To understand the sub-swathes differences, we plotted the distribution of all pixels
labeled as forest in the validation sample disaggregating by orbit, year, and sub-swath
(Figure 8). VV and VH annual averages showed little difference between years and
sub-swathes, with a near-complete match between the distributions of all years and sub-
swathes. However, for year 2017 the VV annual SD for ascending orbits (29, 131) had its
distribution shifted compared to years 2018 and 2019. For orbit 29, the distributions for
the sub-swathes were centered around different values, whereas both had a similarly high
value for orbit 131. VH annual SD showed smaller shifts, with some mismatch between
sub-swathes from orbit 131.
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Figure 8. Statistical distribution for pixels labeled as forest in the validation sample disaggregated by
year (color) and sub-swath (one line per sub-swath).

Omission errors for forest class were reduced when coherence information was in-
cluded. Adding long-term coherence as predictor reduced forest OE to 2%, while urban CE
decreased to 28–37%. Including coherence annual statistics further reduced the commission
error for urban class (from 28–37% to 13–17%), forests (from 7% to 1%), and water (from
10–14% to 5–6%).

Evaluating forest cover presence with the GEDI-derived reference (Table 5) showed CE
and OE for forest cover between 14–15% and 8–18%, respectively, when using backscatter
annual statistics as predictor variables. CE and OE for non-forest ranged between 3 and 7%.
Adding long term coherence reduced errors for both forest and non-forest classes whereas
including coherence annual statistics further reduced CE for the forest class from 10–12%
to 2–3%, while increasing OE omission from 4–5% to 11–13%. As expected, the non-forest
class showed opposite trends., i.e., decreasing OE from 4–5% to 1%, and increasing CE
from 1–2% to 4–5%.

Table 5. Temperate site errors (%) based on GEDI forest presence/absence validation dataset.
B00—classification using backscatter annual statistics, B0C—adding long-term coherence, and
BCC—further adding short-term coherence statistics. Complete matrices in Appendix A (Table A2).
Cells are shaded with a green-yellow gradient, indicating lower and higher errors.

2017 2018 2019

B00 B0C BCC B00 B0C BCC B00 B0C BCC

Commission
error

Forest 14 10 2 15 12 3 15 11 2
Other 7 2 4 3 1 4 4 2 5

Omission
error

Forest 18 5 11 8 4 11 10 4 13
Other 5 4 1 6 5 1 6 5 1

Classifications using the full feature set had opposing trends on CE and OE, depend-
ing on the validation set employed for the assessment. Such trends were explained by
examining the CCI/CLC cover over the GEDI shots where forest omission had happened.
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Most such shots were considered broadleaf forests (27–32% CCI, 19–27% CLC) followed by
the CLC classes “Fruit tree and Berry plantations”, “Complex cultivation patterns”, and
“Land mainly occupied by agriculture”. Combined, these agricultural areas represented a
35–41% of OE for forest class when using the GEDI-derived reference layer. Tree and shrub
were the CCI land cover class with the second largest contribution to misclassification
(18–23%). Notice that CCI tree and shrub class largely corresponds to CLC agricultural
classes that can have a significant tree cover (Figure 9).
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Figure 9. Example illustrations from Corine Land Cover nomenclature guidelines [33,34] for some mixed land covers
appearing in the temperate site. Photographies by György Büttner (231) and Barbara Kosztra (242, 243). Copyright:
European Environment Agency.

For the tropical site, the overall classification errors were similar no matter the feature
set employed (Table 6), with slight differences for the majority classes (forest and low
vegetation), which increased for the minority classes, especially urban, whose omission
fell from 62–71% to 7–9%. The similar classification errors may stem from the adequate
separability of forest and low vegetation classes based on backscatter statistics (Figure 4).

Table 6. Tropical site errors (%) disaggregated by land cover (Ur, Urban; LV, low vegetation; Fo, forest;
Wa, water). B00—classification using backscatter annual statistics, B0C—adding long-term coher-
ence, and BCC—further adding short-term coherence statistics. Complete matrices in Appendix A
(Table A3). Cells are shaded with a green-yellow gradient, indicating lower and higher errors.

2018 2019

Ur LV Fo Wa Ur LV Fo Wa

Commission
error

B00 99 17 <1 16 99 8 <1 16
B0C >99 15 <1 22 >99 6 <1 19
BCC 89 11 <1 22 89 5 <1 17

Omission
error

B00 71 4 2 1 62 4 1 1
B0C 24 4 3 1 27 4 1 1
BCC 7 4 1 1 9 3 <1 1

To check differences between sub-swathes on the backscatter-based classification,
the percentage of forest validation pixels misclassified as low vegetation (most common
misclassification of the forest class), was plotted by sub-swath (Figure 10). Indeed, a larger
error (3%) was observed for sub-swath IW3 when compared to the remaining sub-swathes
for year 2018. However, the differences in distribution were not as evident as at the
temperate site.
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Figure 10. Tropical site percentage of forest pixels misclassified as low vegetation disaggregated by
sub-swaths.

At the tropical site, adding the coherence-based variables resulted in under- or over-
prediction of the minority classes (Table 6, Figure 11). Adding long-term coherence reduced
forest omission, low vegetation commission and urban omission errors. When coherence
annual statistics were included as well, CE for low vegetation dropped to 5–11%, forest OE
dropped to 1% or less, and urban CE dropped to 89%.
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Figure 11. Alluvial diagrams of the errors as a function of predictor variables used for classification at
the tropical site. Left vertical axes show the reference label (Ur, Urban, in purple; LV, low vegetation,
in orange; Fo, forest, in green; Wa, water, in blue), right vertical axes show classified label for the
misclassified (error—‘e’) pixels. The thickness of the lines indicates error frequency compared to the
total error.

When assessing the tropical site classifications against the GEDI derived reference
layer (Table 7), similar results were observed regardless of the input features. Differences
appeared only when short-term coherence statistics were added, with CE for non-forest
dropping from 29–33% to 23–25%. In addition, the OE for both, forest and non-forest
classes, were reduced by 1–2%.

Table 7. Tropical site errors (%) based on GEDI forest presence/absence validation dataset.
B00—classification using backscatter annual statistics, B0C—adding long-term coherence, and
BCC—further adding short-term coherence statistics. Complete matrices in Appendix A (Table A4).
Cells are shaded with a green-yellow gradient, indicating lower and higher errors.

2018 2019

B00 B0C BCC B00 B0C BCC

Commission
error

Forest 1 1 1 <1 <1 <1
Other 32 33 25 29 29 23

Omission
error

Forest 5 5 4 5 5 3
Other 5 5 4 4 4 4

4.3. Classification Stability

The stability between 2018 and 2019 yearly classifications was assessed. The year 2017
was excluded due to the SAR processing induced differences between sub-swaths and the
lack of data over the tropical site. Over 85% of all unmasked pixels (not affected by SAR
geometric distortions) were stable, i.e., did not change classes from year to year regardless of
the site (Figure 12). In addition, pixels labeled as “forest” in the LC validation sample shows
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a particularly high stability (>95% in most cases). At the temperate site, the classification
based on backscatter statistics features showed lower stability as well as slightly larger
proportion of stable, but misclassified pixels when compared to classifications based on
features taking advantage of the coherence information. Differences for the tropical site
were smaller, with the largest stability appearing when using the full feature set, followed
by the backscatter statistics set, and with little difference in the proportion of stable, but
misclassified, pixels. Note that an unknown proportion of the changes detected may be
actual land cover changes, as changes have not been validated.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 24 
 

 

unclassified changes accounted for up to 25% of all changes (using backscatter statistics), 
albeit most of them were eliminated by the morphological operator “opening”. 

 
Figure 12. Percentage of pixels with no change between the 2018–2019 classifications segregated in: 
“Not validated”—pixels with no validation label, “all”—all pixels (with or without validation label), 
“validated”- pixels with validation labels, and “forest”—pixels whose validation label was forest 
(green). Blue bars denote stability. In the case of validated subset, the blue bar indicates accurate 
and stable pixels, whereas red indicates stable but misclassified pixels. 

Deforestation/afforestation followed a similar trend at the tropical site, accounting 
for 86% of the change in the yearly classifications when using the backscatter statistics 
feature set, 72% when adding long-term coherence and 93% when using the full feature 
set. Changes from vegetation to urban and unclassified changes had a larger representa-
tion when using the full feature set, reaching 12% (compared to 2–9%) and 16% (compared 
to 4–5%) respectively. Nevertheless, most patches were eliminated by the “opening” op-
erator, indicating that they appear as small, thin areas (salt and pepper noise). 

 
Figure 13. Contribution of each specific change type disaggregated by site. The paler bar indicates 
small-sized changes that would be lost after a single pass of the morphological operator “opening” 
(i.e., lone misclassified pixels). The darker bars indicate changes that were larger and would not be 
lost (i.e., bigger change patch). 

5. Discussion 
Backscatter-based overall mapping accuracy was high regardless of the site (OA 

>92%). However, in temperate environments (i.e., Carpathians), classifications based on 
backscatter annual statistics frequently misclassified forest as urban, especially over steep 
slopes. The 2017 classification presented a particularly large tendency to misclassify forest 
as urban, prompting further analysis on the possible cause. The analysis showed that such 
misclassifications were prevalent in specific sub-swathes, where the statistical distribution 

Figure 12. Percentage of pixels with no change between the 2018–2019 classifications segregated in:
“Not validated”—pixels with no validation label, “all”—all pixels (with or without validation label),
“validated”- pixels with validation labels, and “forest”—pixels whose validation label was forest
(green). Blue bars denote stability. In the case of validated subset, the blue bar indicates accurate and
stable pixels, whereas red indicates stable but misclassified pixels.

Generally, changes between the yearly classifications (2018 vs. 2019) were caused
by transitions between forest and low vegetation classes (Figure 13) which appeared fre-
quently at class borders. At the temperate site, the apparent deforestation and afforestation
increased when more coherence-based features were added, representing 41%, 58% and
70% of change as the feature set grows larger (backscatter annual statistics, long-term
coherence, coherence annual statistics). These changes appeared near the mountain tops
and in areas with a sparse tree cover (young forest, tree orchards). Changes from low
vegetation/forest to urban accounted for 33% of the total changes. At the temperate site,
unclassified changes accounted for up to 25% of all changes (using backscatter statistics),
albeit most of them were eliminated by the morphological operator “opening”.

Deforestation/afforestation followed a similar trend at the tropical site, accounting
for 86% of the change in the yearly classifications when using the backscatter statistics
feature set, 72% when adding long-term coherence and 93% when using the full feature set.
Changes from vegetation to urban and unclassified changes had a larger representation
when using the full feature set, reaching 12% (compared to 2–9%) and 16% (compared to
4–5%) respectively. Nevertheless, most patches were eliminated by the “opening” operator,
indicating that they appear as small, thin areas (salt and pepper noise).



Remote Sens. 2021, 13, 4814 16 of 25

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 24 
 

 

unclassified changes accounted for up to 25% of all changes (using backscatter statistics), 
albeit most of them were eliminated by the morphological operator “opening”. 

 
Figure 12. Percentage of pixels with no change between the 2018–2019 classifications segregated in: 
“Not validated”—pixels with no validation label, “all”—all pixels (with or without validation label), 
“validated”- pixels with validation labels, and “forest”—pixels whose validation label was forest 
(green). Blue bars denote stability. In the case of validated subset, the blue bar indicates accurate 
and stable pixels, whereas red indicates stable but misclassified pixels. 

Deforestation/afforestation followed a similar trend at the tropical site, accounting 
for 86% of the change in the yearly classifications when using the backscatter statistics 
feature set, 72% when adding long-term coherence and 93% when using the full feature 
set. Changes from vegetation to urban and unclassified changes had a larger representa-
tion when using the full feature set, reaching 12% (compared to 2–9%) and 16% (compared 
to 4–5%) respectively. Nevertheless, most patches were eliminated by the “opening” op-
erator, indicating that they appear as small, thin areas (salt and pepper noise). 

 
Figure 13. Contribution of each specific change type disaggregated by site. The paler bar indicates 
small-sized changes that would be lost after a single pass of the morphological operator “opening” 
(i.e., lone misclassified pixels). The darker bars indicate changes that were larger and would not be 
lost (i.e., bigger change patch). 

5. Discussion 
Backscatter-based overall mapping accuracy was high regardless of the site (OA 

>92%). However, in temperate environments (i.e., Carpathians), classifications based on 
backscatter annual statistics frequently misclassified forest as urban, especially over steep 
slopes. The 2017 classification presented a particularly large tendency to misclassify forest 
as urban, prompting further analysis on the possible cause. The analysis showed that such 
misclassifications were prevalent in specific sub-swathes, where the statistical distribution 

Figure 13. Contribution of each specific change type disaggregated by site. The paler bar indicates
small-sized changes that would be lost after a single pass of the morphological operator “opening”
(i.e., lone misclassified pixels). The darker bars indicate changes that were larger and would not be
lost (i.e., bigger change patch).

5. Discussion

Backscatter-based overall mapping accuracy was high regardless of the site (OA > 92%).
However, in temperate environments (i.e., Carpathians), classifications based on backscatter
annual statistics frequently misclassified forest as urban, especially over steep slopes.
The 2017 classification presented a particularly large tendency to misclassify forest as
urban, prompting further analysis on the possible cause. The analysis showed that such
misclassifications were prevalent in specific sub-swathes, where the statistical distribution
of the pixel-wise annual standard deviation appears to be shifted compared to other sub-
swathes and years. This phenomenon could be attributed to the limited information
provided by the Sentinel-1 noise lookup table prior to 13/03/2018, which only annotated
noise in the range direction. Past this date, the Sentinel-1 instrument processing facility
software (IPF), was upgraded to version 2.90, and started providing noise annotations
in azimuth direction as well [51–53]. This conclusion is also supported by the marginal
differences in distribution observed for years 2018 and 2019.

Backscatter-based classifications for years 2018 and 2019 displayed a smaller tendency
to misclassify forest as urban. However, misclassifications were still observed and may
be related to the inclusion of 2017 data (with the related noise problem) in the training
sample. Other possible sources of error were the under-correction of slopes facing the
sensor [23,49,54] and the elongation of the path traversed within the forest canopy on
backslopes [42]. Such errors may be alleviated if topographic information is included (ori-
entation, slope, incidence angle, etc.) [19]. It is also important to consider that urban cover
is mostly discontinuous, with a significant presence of gardens and trees that influence
the urban radiometric signature (small settlements misclassified as forest), a problem that
also has been encountered by [55]. Furthermore, backscatter-based maps presented lower
stabilities at the temperate site which may be related to differences in the meteorological
conditions across the years such as the winter length (forest presents lower backscatter in
freezing conditions [22,56]), or rain frequency (less contrast between land covers [57]).

Adding long-term coherence reduced the misclassification of forest as urban up to
9%. Such reductions were possible because urban was the only land cover that retained
higher coherence levels over long periods [14,26]. Errors for all land covers dropped when
short-term coherence statistics were added. In particular, an important reduction of low
vegetation to forest misclassification was observed, as the former has higher coherence
values (i.e., pastures, grasslands), or higher variations (e.g., agriculture cropping cycle)
than forests which are characterized by low coherence values [27]. Accompanying these
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gains in accuracy, there were successive increases in classification stability. The remaining
apparent changes were mainly observed between forest and low vegetation. Apparent
afforestation patches appeared close to the mountain tops and may be related to how
long the stable winter conditions (i.e., increased coherence) lasted every specific year [58].
Apparent deforestation generally appeared close to the edges of forest, and in areas with
smaller tree cover and height. This may be related to the use of an adaptative estimator
for coherence. Such estimators reduce the loss of resolution compared to a boxcar filter,
albeit it may bias the coherence estimation [29]. The employed estimator combined several
coherence estimates using a gaussian weighting function [40,41]. It is possible that in
border areas (i.e., forest contact with pastures) the weighting may have been modified
depending on the meteorologic conditions (i.e., a coherence drop due intense precipitation),
affecting the annual statistics and inducing instability.

When comparing with GEDI-derived forest presence/absence, including short-term,
coherence statistics decreased the commission error for forest, but increased its omission.
These opposing trends were explained by the presence of other land uses with tree presence
(orchards, scattered trees, treed plot borders, Figure 4) considered as forest cover, according
to the criteria set for the GEDI validation dataset, but not classified as such. This suggests
that it may be possible to separate agricultural classes with significant tree cover from
actual forests using the Sentinel-1 coherence temporal statistics [27]. Notice that such
separation based solely on backscatter features is difficult, as is also shown in previous
studies [16].

Over tropical areas, smaller differences between classifications were observed. The
trends were also different when compared to temperate environments. Such differences
were attributed to flatter terrain and improved Sentinel-1 processing at IPF which led to a re-
duced impact on the training sample. The use of C-band dual-pol backscatter annual statis-
tics provided highly accurate results, in line with results in the recent literature [10,16,23].
This contrasts with older studies based on single-pol data from the active microwave
instrument (SAR) on board of the European remote sensing missions (ERS AMI-SAR),
where the C-band VV backscatter could not discriminate tropical forest from other land
covers [59–61].

Including long-term coherence as a feature slightly decreased classification accuracy
as well as its stability, due the over-prediction of urban (some near-bare areas also kept
a high coherence). This had little impact on GEDI validation results, indicating the over-
prediction of urban cover does not come from the misclassification of forest. Adding
short-term coherence statistics increased accuracy, reducing the errors for most land cover
classes, regardless of validation dataset. This is thanks to the improved contrast between
forest, urban and low vegetation, as also shown in prior studies based on either ERS [59–61]
or Sentinel-1 imagery [62,63].

Differences between sites could be related to the different land cover classes, terrain
characteristics, land cover dataset generation, the changes in the Sentinel-1 IPF or the lower
number of acquisitions at the tropical site, where the longer temporal baseline may have
degraded the contrast between classes, and thus, the value of using coherence data [28,29].

6. Conclusions

The aim of this study was to evaluate how temporal features extracted from Sentinel-1
data affect forest/non-forest classification as well as to differentiate possible misclassifica-
tion sources. Increasingly richer feature sets were tested starting with annual backscatter
statistics (average and standard deviation of VV and VH backscattering intensities) and
adding long-term coherence as well as short-term coherence statistics. Using only backscat-
ter derived features has advantages as they can be obtained from the ground range detected
(GRD) products. Contrarily, coherence derived metrics require pairs of single-look complex
images (SLC), with the associated increase in data volume and processing times. Validation
was performed with a land cover dataset, and GEDI data binarized into forest presence
and absence as per the FAO definitions [1].
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All three feature sets provided high overall accuracies, and acceptable omission (<19%)
and commission (<16%) for forested areas with additional improvements in accuracy and
classification stability being observed as more features were added. Accuracy of forest
cover showed larger differences depending on the feature set used at the temperate site.
Classifications based on backscatter annual statistics showed important omissions (up
to 18%) for forested areas which were often misclassified as urban. Adding long-term
coherence reduced forest omissions to 5%, while adding annual coherence statistics reduced
forest commission errors.

Over the tropical site the results were highly accurate and stable from year to year,
with small improvements being observed as more features were added. Classifications
based on backscatter annual statistics tended to misclassify urban areas as forest. Adding
long-term coherence greatly reduced such misclassifications. Annual coherence statistics
had an overall positive effect, reducing forest omission and low vegetation commission
error, as well as reducing the error for forest presence/absence when comparing with the
GEDI dataset.

Our results show that it is possible to generate highly accurate (>92%) forest/non-
forest maps based on backscatter annual statistics, with further gains being observed when
adding coherence-based features, particularly over areas characterized by rough terrain.
There results complement the study of [29], by providing additional evidence on the use of
dense temporal series of interferometric coherence for land classification in tropical areas,
as well as over temperate regions characterized by very rough terrain.
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Appendix A

Table A1. Temperate site confusion matrices by year and feature set (Reference > columns; Classified > Rows) compared to the land cover validation dataset (comm. stands for commission).

Backscatter
Statistics (B00)

Backscatter Statistics,
Long-Term Coherence (B0C)

Backscatter and Short-Term Coherence
Statistics, Long-Term Coherence (BCC)

Ur,
urban

LV, low
vegetation

Fo,
forest

Wa,
water

Comm.
error

Ur,
urban

LV, low
vegetation

Fo,
forest

Wa,
water

Comm.
error

Ur,
urban

LV, low
vegetation

Fo,
forest

Wa,
water

Comm.
error

20
17

Urban 156,219 55,550 715,668 658 83 162,320 37,453 55,637 488 37 167,829 29,648 3342 130 16
Low vegetation 3657 16,924,371 176,319 5994 1 1439 17,010,367 78,215 5904 1 605 17,455,162 71,215 3200 0

Forest 8643 592,541 6,284,942 1474 9 4874 524,324 7,042,834 1764 7 240 96,711 7,101,180 3769 1
Water 200 11,807 774 80,258 14 86 12,125 1017 80,228 14 45 2748 1966 81,285 6

Omission error 7 4 12 9 4 3 2 9 1 1 1 8

20
18

Urban 145,629 46,935 168,236 1173 60 161,350 33,984 35,227 723 30 167,339 23224 2067 84 13
Low vegetation 3767 16,918,692 145,035 5343 1 1667 16,981,859 93,019 5574 1 1072 17,458,751 146,454 3239 1

Forest 19,092 609,823 6,863,700 1502 8 5594 560,937 7,048,591 1712 7 245 99,990 7,027,733 4110 1
Water 230 8826 732 80,366 11 107 7496 866 80,375 10 62 2311 1449 80,951 5

Omission error 14 4 4 9 4 3 2 9 1 1 2 8

20
19

Urban 149,579 49,470 258,754 1242 67 158,263 27,764 34,328 654 28 167,557 32,022 2929 106 17
Low vegetation 3492 16,927,829 143,335 5639 1 1972 17,020,180 103,283 5730 1 887 17,464,510 140,887 3525 1

Forest 15,427 592,422 6,774,737 1371 8 8365 524,202 7,039,024 1863 7 220 85,246 7,031,885 3936 1
Water 217 14,549 874 80,132 16 115 12,124 1065 80,137 14 51 2492 1999 80,817 5

Omission error 11 4 6 9 6 3 2 9 1 1 2 9

Table A2. Temperate site confusion matrices by year and feature set (Reference > columns; Classified > Rows) compared to the GEDI validation dataset.

Backscatter
Statistics (B00)

Backscatter Statistics,
Long-Term Coherence (B0C)

Backscatter and Short-Term Coherence
Statistics, Long-Term Coherence (BCC)

Forest Other Commission error Forest Other Commission error Forest Other Commission error

20
17

Forest 132,335 20,733 14 153,689 16,252 10 144,063 3162 2
Other 28,749 412,269 7 7308 416,645 2 16,934 429,735 4

Omission error 18 5 5 4 11 1

20
18

Forest 148,331 25,887 15 155,003 21,617 12 143,374 3911 3
Other 12,753 407,116 3 5994 411,281 1 17,623 428,987 4

Omission error 8 6 4 5 11 1
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Table A2. Cont.

Backscatter
Statistics (B00)

Backscatter Statistics,
Long-Term Coherence (B0C)

Backscatter and Short-Term Coherence
Statistics, Long-Term Coherence (BCC)

Forest Other Commission error Forest Other Commission error Forest Other Commission error

20
19

Forest 144,210 25,552 15 154,712 19,966 11 140,655 2581 2
Other 16,874 407,451 4 6372 413,037 2 20,429 430,422 5

Omission error 10 6 4 5 13 1

Table A3. Tropical site confusion matrices by year and feature set (Reference > columns; Classified > Rows) compared to the land cover validation dataset (comm. stands for commission).

Backscatter
Statistics (B00)

Backscatter Statistics,
Long-Term Coherence (B0C)

Backscatter and Short-Term Coherence
Statistics, Long-Term Coherence (BCC)

Ur,
Urban

LV, Low
vegetation

Fo,
forest

Wa,
Water

Comm.
error

Ur,
Urban

LV, Low
vegetation

Fo,
forest

Wa,
Water

Comm.
error

Ur,
Urban

LV, Low
vegetation

Fo,
forest

Wa,
Water

Comm.
error

20
18

Urban 238 8677 32,889 0 99 634 18,288 207,037 15 >99 775 5743 618 14 89
Low vegetation 248 2,072,595 437,681 278 17 96 2,069,778 357,844 313 15 57 2,086,317 247,654 221 11

Forest 345 84,345 22,139,966 0 <1 103 75,279 22,041,792 0 <1 2 71,001 22,357,746 0 <1
Water 4 770 5734 33,914 16 2 1124 8265 33,863 22 1 1356 8176 33,924 22

Omission error 71 4 2 1 24 4 3 1 7 4 1 1

20
19

Urban 316 15310 29671 0 99 606 22,379 125,915 9 >99 760 5903 372 12 89
Low vegetation 219 2,079,824 187,958 275 8 125 2,074,418 142,987 311 6 72 2,097,155 106,030 234 5

Forest 293 70,427 22,393,056 0 <1 97 68,317 22,336,185 0 <1 0 61,805 22,499,246 0 <1
Water 5 826 5585 33,917 16 5 1273 6785 33,871 19 1 1472 5491 33,913 17

Omission error 62 4 1 1 27 4 1 1 9 3 <1 1
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Table A4. Tropical site confusion matrices by year and feature set (Reference > columns; Classified > Rows) compared to the GEDI validation dataset.

Backscatter
Statistics (B00)

Backscatter Statistics,
Long-Term Coherence (B0C)

Backscatter and Short-Term Coherence
Statistics, Long-Term Coherence (BCC)

Forest Other Commission error Forest Other Commission error Forest Other Commission error

20
18

Forest 377,770 2298 1 376,550 2096 1 383,515 1957 1
Other 20,381 43,775 32 21,548 43,946 33 14,572 44,083 25

Omission error 5 5 5 5 4 4

20
19

Forest 379,793 1839 <1 379,675 1842 <1 384,333 1727 <1
Other 18,359 44,236 29 18,201 44,219 29 13,532 44,332 23

Omission error 5 4 5 4 3 4
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